

Shared Source CLI 2.0 Internals

Joel Pobar, Ted Neward

with David Stutz and Geoff Shilling

Table of Contents

Table of Contents

PREFACE ... 1

Who Should Read This Book ... 4
How This Book Is Structured ... 4
Online CLI Resources .. 6
Acknowledgments .. 6

1 INTRODUCING THE CLI COMPONENT MODEL ... 9

The CLI Virtual Execution Environment ..10
A CLI Implementation in Shared Source: Rotor ...17

2 GETTING STARTED WITH ROTOR ..25

A Simple Component Assembly ...25
Observing Managed Execution ...36
Looking Ahead ..39

3 USING TYPES TO DESCRIBE COMPONENTS ..40

Types and Type Systems ...40
More on Value Types ..53
More on Reference Types..58
Type Interoperability ...65
Using Types in Data-Driven Code ..67

4 EXTRACTING TYPES FROM ASSEMBLIES ..71

Type Packaging ...71
Application Domains ...88
Bootstrapping the Assembly Load Process ...90
Securing Against Harmful Assemblies ..94

5 SYNTHESIZING COMPONENTS ..96

The Anatomy of a Component ..96
Verifying and Compiling CIL ...120
Calling Conventions in Managed Code ...128

Table of Contents

6 GENERICS ...137

Design Approach ...138
Implementation ..141
Breadth of Changes ...152

7 RUNTIME TYPE DEFINITION AND EXPLORATION ..157

Reflection API ...157
Emitting Components Dynamically ..181
Lightweight Code Generation ...184

8 REGULATING THE EXECUTION ENGINE ..192

Threads ..192
Traversing the Execution Engine Stack ...195
Threading and Concurrency ..203
Synchronizing Concurrent Access to Components ...219
Handling Component Exceptions ..220

9 MANAGING MEMORY WITHIN THE EXECUTION ENGINE ...233

Memory and Resource Management ...234
Organizing and Allocating Dynamic Memory ..236
Reclaiming Memory ..243
Structuring Metadata for Collection ..249
Scheduling Collection ...251
Finalization ..253

10 INTERLUDE: ENABLING COMPONENT INTEGRATION WITH METADATA257

Altering Metadata Representation ...257
Transforming Metadata in the CLI ..258
Metadata in Action ..259

APPENDIX A: THE PLATFORM ADAPTATION LAYER...260

PAL Overview ...260
Common Infrastructure ...262
Processes and Threads ...267
Synchronizing Processes and Threads ...273
Implementing Signaling ..279
Suspending and Resuming PAL Threads ..285
Asynchronous Procedure Calls ..287
Handling Exceptions in the PAL ...287
Managing Memory with the PAL ..295
Exploring the Rest of the PAL ..298
Joining Components to the OS ..301

APPENDIX B: ADD A NEW CIL OPCODE ..302

Adding Exponentiation to Rotor ..302

Preface | 1

Shared Source CLI

2.0 Internals

Joel Pobar, Ted Neward

with David Stutz and Geoff Shilling

Preface
Version 1.0 of the Microsoft Shared Source CLI (still affectionately referred to by many as ―Rotor,‖ its

code name) was released to the programming community at large in November of 2002. It is a portable

implementation of the programming tools and libraries that make up the ECMA-335 CLI standard,

distributed as source code.

Version 2.0 of Rotor was released to the programming community at large simultaneously with the Visual

Studio 2005 product (code-named ―Whidbey‖), as an implementation of version 2.0 of the CLI standard,

again distributed as source code, and containing a number of enhancements commensurate with the new

specification.

The fascination that source code holds for programmers has long been known at Microsoft, yet it remains

an unusual way for Redmond to distribute its software. In the case of Rotor, however, the choice was

obvious: for experimentation, learning, and as a teaching vehicle, source code has no peer. There is no finer

way to learn about any computer standard than to browse and tinker with an implementation directly.

This book is a companion to Rotor‘s code. It illustrates the design principles used in the CLI standard,

using Rotor‘s own implementation of that standard. More broadly, this book is about virtual machines, and

the illusions, trapdoors, invisible linkages, and hidden levers from which they are built. Complex software

systems, and the ways in which they bridge the abstract world of the programmer with the physical world

of a computational model frozen in silicon, are invariably a fascinating topic.

The Rotor Distribution (from the 2
nd

 Edition)

Five years ago, the first edition of this book released in dead-trees form to the .NET development

community, to outstanding acclaim amongst a small group of .NET developers. SSCLI Essentials v1 was a

breakout endeavor, both for me and the community at large, as well as for Microsoft as a company.

For me, the book not only taught me a great deal from David and Geoff about the CLI (and Rotor‘s

commercial cousin, the CLR) during its authoring, which brought me to conferences, but also it opened

Preface | 2

doors to company meetings, where introductions would often elicit the response, ―Oh, you‘re the guy who

did the Rotor book, how cool!‖ For that, I will always have a fondness in my heart for the SSCLI code

base.

And certainly I was not the lone beneficiary of Rotor‘s release—several others within the wider CLI

community have seen their understanding of how a CLI implementation (and, by extension, the CLR itself)

works by poring through the source code, and at times stepping through it in a debugger. Rotor has served

as the underpinning for several conference talks, numerous mailing list discussions, and hallway

conversations. In fact, alongside Lutz Roeder‘s wonderful Reflector utility, Rotor was, for many years, the

only way a .NET developer could peer inside the machine—be that machine the actual execution engine

itself or the collection of libraries that shipped with it—to discover if the behavior exhibited by the runtime

was deliberate, misunderstood, or a bug.

But Rotor also opened some doors at Microsoft as well, in this case, the doors to the wider open-source

community. Prior to Rotor‘s release, Microsoft‘s record with respect to open source was not just spotty, it

was nonexistent, to the point where Microsoft was not only routinely held up as the classic model of a

―closed-source‖ company, but portrayed (accurately, at times) as an aggressive foe of the practice.

With Rotor‘s release, Microsoft took a tentative step in the open source direction, and the success there

(where success, in this case, was defined as, ―Hey, we can do this and not go bankrupt! Cool!‖) led to ever-

increasingly more bold steps of similar nature, such as the release of WiX on SourceForge, the creation of

CodePlex, the release of IronPython‘s source from the very earliest stages, and now the IronRuby project,

which not only makes the source available for others to build but also accepts source from external parties.

With the most recent release of Visual Studio (2008, the .NET 3.5 release), Microsoft has gone the extra

step of making the Framework Class Library source available for developers to step through during

debugging, yet another indication of the success developers have found in having the source available to

them during their own endeavors. It may not seem like much to those who grew up in the open source

mindset, but for a Fortune 50 company that makes its money from products and not services, it‘s huge.

With this release of SSCLI Essentials, I was fortunate to team up with yet another wickedly smart co-author

(a trend I hope never abates) in Joel, and again the process repeats itself: I learned a lot, a book was

produced, and the small but intense community interested in how an execution engine operates will now get

to peer under the hood at the most significant change to the CLI, generics, and get a better feel for the costs

and benefits associated with its implementation.

But the book also marks a turning point, as well: with the release of the FCL source to the wider world of

the development community and the lack of significant changes to the execution engine since v2, the Rotor

distribution has effectively been ―cut loose‖ by its original creators, to stand on its own within the

community, as every open source project must do at some point. This is not a cause for alarm or concern—

the Mono project continues full force, and Microsoft‘s growing comfort with the open-source community

leads to the distinct possibility that the commercial CLR source will, one day, stand where Rotor once

stood.

Until that time, however, Joel and I fervently hope that those brave, hardy, curious and adventurous souls

who continue to plumb the depths of execution engines and virtual machines will find this book a useful

map. The CLI continues to grow in adoption, the community surrounding .NET continues to contribute

new and useful ideas, including new languages to the mix (check out Boo, Nemerle, or F# if you‘ve never

looked beyond C# or Visual Basic), and all signs point to that trend continuing unabated.

In the meantime, pull up a comfy chair, fire up the laptop, open a command shell with the Rotor bits

installed, turn to Chapter 1, and enjoy. And, if you happen to be at a conference where Joel and/or I are

attending or speaking, and if you find the journey fulfilling and the book useful, come on over, and let‘s

raise a pint to David‘s original memo back in 1996 that led to this thing called Rotor.

Ted Neward

Redmond, Washington

July 11, 2008

Preface | 3

The Rotor Distribution (from the 1
st
 Edition)

Over five years ago, I wrote a memo outlining how and why Microsoft should invest in building a

companion runtime to its then current Component Object Model (COM). This idea was not new, either

inside or outside of Microsoft; products were already shipping for this purpose in the form of C++

frameworks and integrated development tools, such as Delphi and Visual Basic. The popularity of these

language-specific approaches made it clear that the technical community was ready to accept features in

their everyday tools and APIs that had once served to distinguish programming languages from one

another, such as direct support for thread-based concurrency, structured exception handling, garbage

collection, and the runtime enforcement of typesafety.

The technologies that made up the list of features in the original proposal had been waiting in the wings

(for decades, in some cases), and some were already available to programmers as Windows APIs.

Augmenting these APIs with a library implementation that could be shared in place of a growing number of

subtly incompatible and overlapping component runtimes made obvious sense. A small team was

empaneled by David Vaskevitch to flesh out the details and to make an initial technical proposal, which

was run through Microsoft‘s somewhat harrowing consensus-building process. Having been deemed a

Good Idea, the proposal became the initial strawman for the product now called the Microsoft .NET

Framework.

Very early in the development of the .NET Framework, there was discussion of creating a source-code

distribution of the technology for researchers, academics, and experimenters. This discussion was spurred

by Microsoft‘s desire to attract a critical mass of developers, toolmakers, and innovative software products

to the new platform. Realizing that having a portable implementation of the CLI was important for both

standardization purposes and for the research community, Paul Maritz sponsored the formation of a small

team under Geoff Shilling to explore the idea and begin implementation plans. With help from many

individuals, both inside Microsoft and out, Geoff‘s small team developed and built the Shared Source CLI.

In the interim between memo and product, a wonderful thing happened. While the original goal had been to

provide a core set of modern services for COM programmers, what emerged five years later was far more

useful. The original runtime library, in the hands of Brian Harry, Mike Toutonghi, and a talented cast of

thousands, had become a complete, general-purpose virtual execution model. Even better, this model had

been carefully refined as it was shepherded through the ECMA specification and standardization process by

Jim Miller. The CLI standard had been born.

The CLI, at its heart, is an approach to building software that enables code from many independent sources

to coexist and interoperate safely. The intent of its design is not simply to sweep gnarly hardware and

device-driver details under the rug in the form of a ―universal virtual machine,‖ but rather to build a virtual

computational model that can be brought up safely within existing host environments and can expose the

native capabilities of these environments directly. The design implications that come along for the ride are

profound, and they are explored at length within this book.

To use any or all of Rotor‘s rich codebase for your own noncommercial purposes, read and abide by the

simple, one page shared license that accompanies the code. The code can be found on the CD that

accompanies this book, along with additional documentation and related materials. As with any

collaborative effort, this CD is only a snapshot in time; go to Rotor‘s homepage on MSDN

(http://msdn.microsoft.com/net/sscli) or to http://www.sscli.net for details about current versions or other

late-breaking information.

Rotor is now in your hands. It is no longer a Microsoft-only endeavor, but rather an ongoing collaboration

with all of you who wish to enhance and extend the CLI standard. Because Rotor takes the form of source

code, it is easy for interested individuals to offer suggestions, upgrade or patch the implementation, and

offer support. This book will help you participate by furnishing context; I hope that you enjoy discovering

the fine points of the CLI as much as we have enjoyed writing about them!

David Stutz

Redmond, Washington

November 24, 2002

Preface | 4

Who Should Read This Book

This book is not about the C# language, the Visual Basic .NET language, the Base Class Libraries (BCLs),

or any other part of the .NET Framework that has received marketing attention and lots of press coverage.

This book is about the one piece of the .NET Framework that makes all of the above possible: the CLI

standard. As standardized runtime plumbing, it plays a critical role in Microsoft‘s .NET strategy. Its

technical depth makes it an excellent subject for discourse.

To illustrate the finer points of the CLI standard, this book uses the Shared Source CLI as demonstration

material. The book, however, is by no means a complete overview of Rotor. The compiler discussions, the

detailed descriptions of its test harnesses, the coverage of BCL implementation details, and countless other

subjects are missing. As a complex industrial codebase, Rotor deserves this kind of detailed attention; alas,

this book isn‘t where you‘ll find it!

The target audience for this book falls mainly into four categories:

The research community

There has long been tremendous interest in virtual machines, and Rotor‘s implementation of the CLI

should provide many traditional research opportunities in areas, such as security, memory

management, and code generation, as well as less traditional opportunities centered on the industrial,

―real world‖ character of the heavily instrumented code.

The teaching community

Many curricula already include managed execution and its capabilities among their subjects, and Rotor

should provide a bountiful experimental testbed within which to explore this topic. Compiler, systems,

and architectural courses should all find teaching material in Rotor‘s codebase.

The professional community

Hordes of programmers, familiar with COM and C++, are moving to the .NET Framework with little

or no familiarity with managed environments. Architects and team leaders will be asked hard

questions, and Rotor‘s behind-the-scenes look at the .NET execution engine should provide them with

excellent resources from which they can extract answers.

The community of CLI implementers

Rotor is intended to serve as a useful baseline when bringing the CLI to other platforms. While this

group will undoubtedly be smaller than the other three, it will be this community that provides the

most leveraged contribution, whether porting it to new platforms or using it as learning material for its

own new implementations.

More informally, if you live and breathe for virtual machine specifications, such as the Java Virtual

Machine specification or the Smalltalk ―blue book,‖ this book is definitely for you. If you have

implemented a Scheme or a Forth compiler just for the heck of it, this book is for you. If you find yourself

defending a favorite ―misunderstood‖ programming language from Philistines who don‘t properly

understand its boutique feature set or the intrinsic value of its totally hackable runtime and compiler, then

this book is for you. In short, if you care about the internals of programming languages, developer tools, or

runtime systems, this book should provide you with enjoyable reading.

How This Book Is Structured

The CLI provides a number of services to programming languages and tools that wish to produce managed

code, and the runtime mechanisms needed to create and run managed components are the focus of this

book. After introducing the CLI, its core concepts, and the Rotor implementation, the following topics are

covered:

Preface | 5

The CLI type system

Unlike some virtual execution environments, the type system is the heart of the CLI. Chapter 3

examines what constitutes a type, how types map into internal data structures and processor-specific

values, and how Rotor implements the features found in the ECMA CLI specification.

Component packaging

Assemblies are the construct that the CLI uses to package executable code safely. Chapter 4 covers

what assemblies are, how they are built and loaded, and what design goals they were intended to meet.

Type loading and JIT compilation

The ECMA CLI specification specifically states that CIL was designed to be transformed into native

CPU instructions before being directly executed. Chapter 5 focuses on the details of how Rotor

converts types, expressed as CIL and metadata, into native code, and what triggers this process.

Managed code

Running native code safely under the control of a virtual execution environment is not simple. Chapter

6 details the execution engine and how it uses mechanisms such as threads and exceptions to maintain

control while also allowing extensive access to the underlying platform.

Garbage collection

The CLI provides a memory management model that frees programmers from the details and concerns

of manually allocating and freeing memory. Chapter 7 explains how Rotor tracks the liveness of object

references, how memory is allocated and released, and how finalization is implemented.

The Platform Adaptation Layer (PAL)

The PAL is what makes the Shared Source CLI easy to port, as demonstrated by running Win32, Mac

OS X, and FreeBSD implementations. Chapter 9, which discusses the implementation of the PAL, will

be especially interesting to anyone interested in porting Rotor to other platforms. It is also of general

interest, however, since the PAL enumerates the systems constructs that are assumed to exist within

the CLI specification.

In addition, this book contains two appendices that discuss:

 How to add a custom IL instruction to the Rotor execution engine

 The Rotor Platform Adaption Layer (PAL), and a brief bit about how to port Rotor to other platforms

Assumptions This Book Makes

Because this book uses industrial source code as its demonstration material, there are some fairly

heavyweight assumptions made about our readers‘ familiarity with programming languages and systems.

We assume that you have some familiarity with C# or Java, as well as a good understanding of C++, which

is what comprises most of the sample code in this book. The C++ used in the Rotor source is very

straightforward and does not exercise the ―dangerous‖ features of the language. A few examples use CIL or

snippets of assembler. To understand these, a cursory knowledge of any assembly language should help.

Because so many of the operating system interactions in Rotor are made via its Win32-based abstraction

layer, you should have a basic familiarity with the Win32 API; although, again, this can be quite cursory.

References will be made to particular sections of the Rotor code without reproducing that code directly in

the book‘s text. It is expected that readers will have downloaded the Rotor code, and will have walked

through the code from the friendly confines of their favorite text editor, debugger, or development

environment.

Rotor‘s code was originally drawn from the same codebase that is used to build the commercial .NET

Framework. Several of its major subsystems were swapped out, and extensive changes were made to make

the code approachable and more portable. In addition, numerous parts of the commercial product were

Preface | 6

removed because their presence would be irrelevant and confusing. Despite these significant changes, the

code retains the complexity of a cutdown and transformed version of a larger work. Not all of its sections

are pretty or easy to browse. For some, these imperfections will make the code appealing, since large, real-

world codebases rarely see the light of day. If you are not one of these masochists, you may be occasionally

frustrated as you follow our guided trip through the code. We apologize in advance, but exhort you to make

the journey with us despite these minor inconveniences!

Online CLI Resources

Rotor‘s homepage can be found at http://research.microsoft.com/sscli. , and the official web home of

ECMA and its standards specifications is http://www.ecma.ch, although the specifications for ECMA-334

and ECMA-335 are also widely mirrored.DevelopMentor hosts several CLI-related mailing lists, including

the DOTNET-ROTOR list, all of which are archived at http://discuss.develop.com.

There are two significant open source projects built around the CLI specification: the Mono project

(http://www.go-mono.org) and the DotGNU Portable .NET project (http://www.southern-

storm.com.au/portable_net.html). Look to these sites for yet more interesting source code.

Conventions Used in This Book

The following font conventions appear in this book:

Italic is used for:

 New terms where they are defined

 Pathnames, filenames, URLs, and program names

Constant Width Bold is used for:

 Typed user input

 Emphasis within code samples and tables

Constant Width is used for:

 C++, CIL, and C# source code

 Assembler and CIL code

 Symbol and macro names

This icon designates a note, which is an important aside to the nearby text.

This icon designates a warning relating to the nearby text.

Acknowledgments

Joel Pobar

Writing the second edition of this book has been too much fun. Cracking open Source Insight (one of my

favorite development IDEs) and drilling down on the bits and bytes that make up the SSCLI source code

http://research.microsoft.com/sscli

Preface | 7

has been every bit as enlightening as my first day on the CLR team. I‘d have never thought that five years

after my start date, I‘d be writing about the very thing that drew me to Microsoft in the first place.

I never publicly thanked the individuals who helped me move from a comfortable and warm existence in

Brisbane Australia, to the big house in Redmond. It seems fitting to do that here, given that their passion

for the SSCLI and the CLR were so gravitational, and were to become major inputs in that life changing

decision: Peter Drayton and Jim Miller, thanks.

And of course, a big cheers to the people who selflessly dedicated time to help us figure the hard stuff out:

Jan Kotas, Simon Hall, Rick Byers, Vance Morrison, David Mortenson and the rest of the CLR team

hackers. Mark Lewin, who navigated the big house politics and landed this project safely - thanks for your

patience. Also, a tip of the hat to Joseph Cooney, whose lunch-time chatter helped a lot, and to my old

office mate Joe Duffy, who managed to complete two books in the time it took me to upgrade one – mate,

you‘re a machine. Sandra, Mum, and Dad, thanks.

And to Ted, David and Geoff – the first edition was brilliant, I hope the second meets the high bar you‘ve

already set. Cheers.

Ted Neward

In the previous edition of this work, I wrote how it marked the fourth time I‘ve written acknowledgements

for a book, and how I was (and continue to be) amazed at just what a good deal an author has: people spend

hours of their own lives supporting an author‘s endeavors, and in return get their names mentioned in a

brief paragraph or two.

That still holds, I‘ve found, all this time later.

My thanks this time around go primarily to Mark Lewin, who championed this project within Microsoft,

because ―there really should be a new edition to catch up with the Whidbey bits‖; to John Osborn, who

worked with us to see the book through the Creative Commons licensing process (which was just getting

started at OReilly at the time we started down this path) so that the book could continue as a child of the

open source community itself; and, of course, to Joel, for having the time, energy and passion to take on a

project of this magnitude with me—I could never have done it alone.

After a draft of this manuscript appeared on Joel‘s weblog, several individuals exemplifying the idea of

―community‖ stepped up and took on the Herculean task of sanity-checking Joel‘s and my prose; in no

particular order, I‘d like to publicly call out ―Props!‖ to Darryl Cain and Brian Hartung, and offer my

thanks for stepping up to debug a book, always a non-trivial task.

Last but not in any way least, I must reiterate an acknowledgement that appeared in the first edition of this

book but still holds true a half-decade later:

Finally, I owe staggering debts of gratitude to … my father Lance Neward, who bought that Apple][+ back

in 1978 instead of a new Volvo—no other single decision he has made, aside from marrying my mother, has

so dramatically altered my life.

Thanks, Dad. That was a gift that just keeps on giving, thirty years later.

David Stutz (from the 1
st
 edition)

This is my first attempt at a book. Thanks to my wife Beth, who bemusedly watched from her experienced

vantage without making too many sarcastic comments, and to those who showed me the details, especially

our editors Brian Jepson and John Osborn. I also thank Brian, Geoff, John, and Ted for their patience

during occasional personal lacunae induced by two of the truly important things in life: winemaking and

music-making.

Preface | 8

Special thanks go to those who spent so much effort commenting on drafts, including Jan Kotas, John

Norwood, Vladimir Fedorov, Eric Albert, and the rest of the Rotor team: Geoff, Barry, Mario, Stephe, and

Pankaj. Jan, Vlad, and Barry kept me from telling outright technical lies (although I‘m sure that I‘ve

slipped a few by them), and John‘s detailed review comments were invaluable.

Many of the implementers of Microsoft‘s .NET Framework also helped with the task of reviewing the text,

including Jim Miller, Chris Brumme, Patrick Dussud, Ian Carmichael, Alan Shi, and George Bosworth. For

both reviewing this book, and for transforming our original COM runtime proposal into today‘s CLI,

thanks!

Microsoft Research provided much help in getting the word out about Rotor. In particular, the Cambridge

research lab, run by Roger Needham with the help of his crack University Relations group of Pierre-Yves

Saintoyant, Van Eden, and Bruno Quarta, along with Greg O‘Shea, were indispensable. Just as important

were reviewers and agitators external to Microsoft, including Peter Drayton, Jason Whittington, Jim

Bennett, Chris Sells, Gary Nutt, Chris Tavares, and all of our O‘Reilly technical reviewers. I‘m sure that

I‘ve missed people here; to any of these, and to the web denizens who sent comments on posted chapters:

thanks! We have been looking at Rotor‘s code for years, and your externally focused viewpoint helped give

us a fresh perspective.

Finally, I‘d like to thank Antonio Cisternino, Werner Vogels, Damien Watkins, and Yahya Mirza for

helping to move the early Rotor community forward, and Miguel de Icaza for supporting and promoting the

CLI standard within the open source community.

Geoff Shilling (from the 1
st
 edition)

This is my first time writing a book, and what a ride it has been. I wish to express my appreciation to my

coauthors, David and Ted, for all their hard work, and to the folks at O‘Reilly who were willing to go ahead

with this project. To our editors Brian Jepson and John Osborn—I‘m still not sure how you put up with us.

We had great help in reviewing and improving the drafts, and I‘m very grateful for everyone who gave

their time and insight to help us get it right. Barry, Eric, and Jan—thank you for answering the endless

series of questions and correcting those misconceptions I had.

Special thanks go to everyone at Microsoft who made Rotor possible in the first place: to Paul Maritz for

driving the idea forward, and to Yuval Neeman and David Treadwell for their ongoing support. Thanks to

Jeff Ranck, who helped us through the twisty world of licenses and to the entire CLR team who supported

us from the start, even if they weren‘t quite sure what we were doing with their code. To the team at the

Microsoft Research Cambridge University Relations team—Pierre-Yves Saintoyant, Greg O‘Shea, Van

Eden, and Bruno Quarta, and the head of the lab, Rodger Needham—thank you very much for your support

in bringing Rotor to the broader community. And thanks to Jim Miller for his ongoing support for

everything Rotor.

To the best team I have ever had the privilege to lead: thank you. Barry Bond, John Norwood, David Stutz,

Stephen Walli, Jan Kotas, Eric Albert, Vladimir Fedorov, Mario Chenier, and Pankaj Kakkar—you guys

really made Rotor and this book a great experience.

Finally, I wish to thank my wife Ann for supporting me (and tolerating me) throughout this project.

Chapter 1: Introducing the CLI Component Model | 9

1. Introducing the CLI Component

Model

The programmer of the 21
st
 century has a lot to worry about.

For one thing, useful software is far more complex than ever before. No longer is it acceptable to simply,

present a simple terminal-based command prompt or a character-based user interface; users now demand

rich, graphical user interfaces with all sorts of visual goodies. Data can seldom be structured to fit in flat

files in a local filesystem; instead, the use of a relational database is often required to support the query and

reporting requirements that computer users have come to depend on, as well as the ongoing transformations

that shape and reshape long-lived data. A single computer once sufficed for application deployment, on

which data sharing was accomplished using files or the clipboard; now most computers on the planet are

wired for networking, and the software deployed on them must not only be network-aware, but must also

be ready to adapt to changing network conditions. In short, building software has moved beyond being a

craft that can be practiced by skilled individuals in isolation; it has become a group activity, based on ever

more sophisticated underlying infrastructure.

Programmers no longer have the luxury of being able to complete an entire project from scratch, using

tools that are close to the processor, such as assemblers or C compilers. Few have the time or the patience

to write intermediate infrastructure, even for things as simple as an HTTP implementation or an XML

parser, much less the skills to tune this infrastructure to acceptable levels of performance and quality. As a

result, great emphasis is now placed on reusable code and on reusable components. The operating system

plus a few libraries no longer suffices as a toolkit. Today‘s programmer, like it or not, relies on code from

many different sources that works together correctly and reliably, in support of his applications.

Component software, a development methodology in which independent pieces of code are combined to

create application programs, has arisen in response to this trend. By combining components from many

sources, programs can be built more quickly and efficiently. However, this technique places new demands

on programming tools and the software development process. Reliance on components that were created by

untrusted or unknown developers, for example, makes it essential to have stringent control over the

execution and verification of code at runtime. In our era of ubiquitous network connectivity, complex

component-based software is often updated on-the-fly without local intervention and sometimes

maliciously. Ask any virus victim about the necessity of preserving the sanctity of her computers and data,

or talk to an unsophisticated computer user about the baffling loss of stability that comes from installing

and uninstalling applications on his system, and you will discover that component-based software often

contributes as much to the problem as to the solution.

For many years, the business promises of component software and its expected efficiencies were offset by

the complexity of combining components from many sources in a safe way. Within the last 15 years
1
,

however, we have seen the successful commercialization of virtual execution environments that host

managed components . Managed components are simply software parts that can be developed and deployed

independently, yet safely coexist within applications. We call them ―managed‖ because they need a virtual

execution environment to provide runtime and execution services. These environments, to match

component requirements, focus on presenting an organizational model geared towards safe cooperation and

1 Some may argue that Smalltalk or Lisp vendors successfully commercialized before this, but it‘s fairly safe to point

out that by just about any measure, they clearly failed to reach the same scale that Java and .NET have.

Chapter 1: Introducing the CLI Component Model | 10

collaboration, rather than on exposing the physical resources of the processors and operating systems on

which they are implemented.

Virtual execution environments and managed components, such as the ones abstractly portrayed in Figure

1-1, provide advantages to three different software communities: application developers (who build the

applications utilized by either internal or external users), infrastructure developers (who build programming

tools and libraries for use by application developers), and system administrators (who administer the

software built). Application developers using managed components to build complex applications discover

that the presence of infrastructure tools and libraries translates to less time spent on integration and

communications tasks and more productivity. To the infrastructure developers, such as compiler writers,

the presence of supporting infrastructure and a high-definition, carefully specified virtual machine

translates to more time available for building tools and less time worrying about infrastructure and

interoperability. Finally, administrators and computer users reap the benefits and control that come from

using a single runtime infrastructure and packaging model, both of which are independent of processor and

operating system specifics.

Figure Error! No text of specified style in document.-1. When hosted within a virtual

execution environment, components can collaborate safely

The CLI Virtual Execution Environment

The ECMA Common Language Infrastructure (CLI) is a standardized specification for a virtual execution

environment. It describes a data-driven architecture , in which language-agnostic blobs of data are brought

to life as self-assembling, typesafe software systems. The data that drives this process, called metadata , is

used by developer tools to describe both the behavior of the software as well as its in-memory

characteristics. The CLI execution engine uses this metadata to enable managed components from many

sources to be loaded together safely. CLI components coexist under strict control and surveillance, yet they

can interact and have direct access to resources that need sharing. It is a model that balances control and

flexibility.

ECMA, the European Computer Manufacturers Association, is a standards body that has

existed for many years. Besides issuing standards on its own, ECMA also has a strong

relationship with ISO, the International Standards Organization, and based on this

relationship, the CLI specification has been approved as ISO/IEC 23271:2003, with an

accompanying technical report designated as ISO:IEC 23272:2006. The C# standard has

also been approved, and has become ISO/IEC 23270:2006.

The CLI specification is available on the web sites mentioned in the Preface. It consists of five large

―partitions‖ plus documentation for its programming libraries. At the time that the CLI was standardized, a

programming language named C# was also standardized as a companion effort. These standards are

Chapter 1: Introducing the CLI Component Model | 11

consistently updated to include new CLI and C# language features; one such revision has already taken

place since the first edition of this book, again ratified by the ECMA and ISO committees. C# exploits most

of the features of the CLI, and it is the easy-to-learn, object-oriented language in which we have chosen to

implement most of the small examples in this book. Formally, the C# and CLI specifications are

independent (although the C# specification does refer to the CLI specification), but practically, both are

intertwined.

Some have suggested that C# is the ―natural‖ language of the CLI, and as such enjoys a

closer relationship to the underlying runtime; this is a fallacious belief, and one that is

frequently challenged by Visual Basic and C++/CLI developers with a certain degree of

vehemence. In truth, each of these languages (as well as the hundreds of others that map

to the CLI) maps differently to the underlying CLI, but no one language, except perhaps

―ILASM‖, the assembler of the CLI, can claim predominance in language features or

expressiveness of CLI functionality.

Virtual execution in the CLI occurs under the control of its execution engine, which hosts components (as

well as code that is not component-based) by interpreting the metadata that describes them at runtime. Code

that runs in this way is often referred to as managed code, and it is built using tools and programming

languages that produce CLI-compatible executables. There is a carefully-specified chain of events that is

used to load metadata from packaging units called assemblies and convert this metadata into executable

code that is appropriate for a machine‘s processor and operating system. A simplified version of this chain

of events is shown schematically in Figure 1-2 and will form the basis of the rest of this book. It is also

described in Partition I of the CLI specification in great detail. (Section 8, describing the Common Type

System, and section 12, describing the Virtual Execution System, both provide particularly good

background information.)

Figure Error! No text of specified style in document.-2. Each step in the CLI-loading

sequence is driven by metadata annotations computed during the previous step

In some ways, the CLI execution engine is similar to an operating system, since it is a privileged piece of

code that provides services (such as loading, isolation, and scheduling) as well as managed resources (such

as memory and I/O) to code executing under its control. Furthermore, in both the CLI and in operating

systems, services can either be explicitly requested by programs or else made available as an ambient part

of the execution model. (Ambient services are services that are always running within an execution

environment. They are important because they define a large part of the runtime computational model for a

system.)

In other ways, the CLI resembles the traditional toolchain of compiler, linker, and loader, as it performs in-

memory layout, compilation, and symbol resolution. The CLI specification takes pains to describe in detail

not only how managed software should work, but also how unmanaged software (that is, software that

Chapter 1: Introducing the CLI Component Model | 12

executes conceptually ―outside‖ of the virtual execution engine) coexists safely with managed software,

enabling seamless sharing of computing resources and responsibilities. Its combination of system and tool

infrastructure is what makes it a unique and powerful new technology for building component-based

software.

Fundamental Concepts in the CLI Specification

Behind the CLI specification and execution model are a core set of concepts. These key ideas were folded

into the design of the CLI both as abstractions and as concrete techniques that enable developers to

organize and partition their code. One way to think of them is as a set of design rules :

 Expose all programmatic entities using a unified type system.

 Package types into completely self-describing, portable units.

 Load types in a way that they can be isolated from each other at runtime, yet share resources.

 Resolve intertype dependencies at runtime using a flexible binding mechanism that can take version,

culture-specific differences (such as calendars or character encodings), and administrative policy into

account.

 Represent type behavior in a way that can be verified as typesafe, but do not require all programs to be

typesafe.

 Perform processor-specific tasks, such as layout and compilation, in a way that can be deferred until

the last moment, but do not penalize tools that do these tasks earlier.

 Execute code under the control of a privileged execution engine that can provide accountability and

enforcement of runtime policy.

 Design runtime services to be driven by extensible metadata formats so that they will gracefully

accommodate new inventions and future changes.

We‘ll touch on a few of the most important ideas here, and revisit them in detail as we progress through the

book.

Types

The CLI categorizes the world into types, which programmers use to organize the structure and behavior of

the code that they write. The component model used to describe types is powerfully simple: a type

describes fields and properties that hold data, as well as methods and events that describe its behavior (all

of which will be discussed in detail in Chapter 3). State and behavior can exist at either the instance level,

in which components share structure but not identity, or at the type level, in which all instances (within an

isolation boundary) share a single copy of the data or method dispatch information. Finally, the component

model supports standard object-oriented constructs, such as inheritance, interface-based polymorphism, and

constructors.

The structure of a type is captured as metadata that is always available to the execution engine, to

programmers, and to other types. Metadata is very important because it enables types from many people,

places, and platforms to coexist peacefully, while remaining independent. By default, the CLI loads types

only as they are needed; linkages are evaluated, resolved, and compiled on demand. All references within a

type to other types are symbolic, which means that they take the form of names that can be resolved at

runtime, rather than being precomputed addresses or offsets, such as what we see in ―native‖ languages like

C++. By relying on symbolic references, sophisticated versioning mechanisms can be constructed, and

independent forward-versioning of types can be achieved within the binding logic of the execution engine.

A type can inherit structure and behavior from another type, using classic object-oriented, single-

inheritance semantics. All methods and fields of the base type are included in the derived type‘s definition,

and instances of the derived type can stand in for instances of the base type. Although types may have only

one base type, they may additionally implement any number of interfaces. All types extend the base type,

System.Object, either directly or through their parents‘ lineage.

Chapter 1: Introducing the CLI Component Model | 13

The CLI component model augments the concepts of field and method by exposing two higher-level

constructs for programmers: properties and events. Properties allow types to expose data whose value can

be retrieved and set via arbitrary code rather than via direct memory access. From a plumbing perspective,

properties are strictly syntactic sugar, since they are represented as methods internally, but from a

semantics perspective, properties are a first-class element of a type‘s metadata, which translates to more

consistent APIs and to better development tools.

Events are used by types to notify external observers of interesting occurrences within their

implementations (for example, notification of data becoming available or of internal state changes). To

enable external observers to register interest in an event, CLI delegates encapsulate the information

necessary to perform a callback. When registering an event callback, a programmer creates one of two

kinds of delegate: either a static delegate that encapsulates a pointer to a static method of a type, or an

instance delegate that associates an object reference with a method on which that object will be called

back. Delegates are typically passed as arguments to event registration methods; when the type wants to

raise an event, it simply performs a callback on its registered delegates.

COM and the CLI
Standardized component packaging and runtime interoperability have long been essential to

software designers looking for reuse, as demonstrated by the early use of punch-card decks as

reusable libraries of computing routines. The twin goals of unified packaging and fine-grained

interoperability were the reason that the Component Object Model (COM) was developed at

Microsoft.

The resulting ―interface-based‖ approach to binary component packaging has been used

successfully by countless software producers to deploy their APIs and modular pieces of code.

Unlike the CLI, COM is a component model that is almost completely based on shared

conventions and reliance on programmers‘ discipline and cooperation, rather than on a shared

execution engine. COM components share the barest runtime infrastructure and cooperate on a

per-component basis. This approach can be very useful, and it is particularly well-suited to

environments in which the programmer must squeeze every last bit of performance out of very

limited computing resources or in which large existing code bases wish to expose a component

façade.

Using nothing more than COM‘s shared conventions, fine-grained binary interoperability between

components has become commonplace in software running on the Windows operating system. It

is used widely and successfully as a way for applications to expose their internals for the purpose

of programmability and also as a standard way to publish APIs. Some of the systems facilities of

Windows are also exposed via COM interfaces, and many third-party ―controls‖ exist that are sold

as reusable parts.

There is a definite downside to the COM approach, however. In its model, the implementer is

responsible for every last detail of runtime operation, and must very carefully conform to complex

cooperative protocols to operate correctly. This code is both redundant and prone to bugs, since

the protocols are difficult to implement correctly.

Much of the complexity associated with COM can be eliminated by providing shared underlying

services for use by component builders, just as operating systems provide shared underlying

services for the benefit of all programs using machine resources. (Garbage-collected memory, for

example, is the kind of service that can radically reduce the amount of cooperation required

between components.). In 1997, a companion runtime for COM was proposed that would provide

a class model along with common runtime services for COM programmers, both to increase

productivity (no longer would programmers have to write the same support mechanisms over and

over again) and to enable greater safety, efficiency, and stability. The original name for this

runtime was Component Object Runtime (COR), which can still be found embedded in a few

function names in the Shared Source CLI.

Microsoft took COR further than the original, limited proposal for a companion runtime to COM

and decided to pursue a general-purpose virtual execution environment. This process culminated

in the standardization of the CLI.

Chapter 1: Introducing the CLI Component Model | 14

Types, from a minimalist perspective, are a hierarchal way to organize programming modules using fields

to hold data and methods to express behavior. Above this simple-yet-complete model, constructs such as

properties and events provide additional structure with which to build the shared programming libraries and

runtime services that distinguish the CLI.

A shared type system and intermediate language

Types in the CLI are built from fields and methods at the lowest level, but this then raises the question of

how fields and methods are themselves defined? The CLI specification defines a processor-agnostic

intermediate language for describing programs, as well as a common type system that provides the basic

datatypes for this intermediate language. Together, these two entities form an abstract computing model.

The specification embellishes this abstract model with rules that describe how it can be transformed into

native instruction streams and memory references; these transformations are designed to be efficient and to

capture and accurately represent the semantics of many different programming languages. The intermediate

language, its types, and the rules for transformation form a broad, language-independent way to represent

programs.

The intermediate language defined in the CLI specification is called the Common Intermediate Language

(CIL). It has a rich set of opcodes, not tied to any existing hardware architecture, which drive a simple-to-

understand abstract stack machine. Likewise, the Common Type System (CTS), defines the base set of

types that embody standardized cross-language interoperability. To fully realize the benefits of this

language-agnostic world, high-level compilers need to agree on both the CIL instruction set and its

matching set of datatypes. Without this agreement, different languages might choose different mappings;

for example, how big is a C# int, and how does it relate to a Visual Basic Integer? Is that the same as a

C++ long? By matching the instruction set to the types, these choices are made considerably simpler;

choices about exactly which instructions and types to use are, of course, in the hands of compiler

implementers, but the presence of a well-thought-out specification means that making these choices is

considerably more straightforward. Using this approach means the resulting code interoperates easily with

code and frameworks written in other languages, which facilitates more effective reuse. Chapter 3 discusses

the CLI type system in great detail, while Chapter 5 covers CIL and how it is converted into native

instructions.

Portable packaging for types: assemblies

With its type system and its abstract computational model, the CLI enables the idea that software

components, written at different times by different parties, can be verified, loaded, and used together to

build applications. Within the CLI, individual components are packaged into units called assemblies ,

which can be dynamically loaded into the execution engine on demand either from local disk, across a

network, or even created on-the-fly under program control.

Assemblies define the component model semantics for the CLI. Types cannot exist outside of assemblies;

conversely, the assembly is the only mechanism through which types can be loaded into the CLI.

Assemblies are in turn made up of one or more modules— a packaging subunit in which information

resides—plus a chunk of metadata describing the assembly called the assembly manifest . While assemblies

can be made up of multiple modules, most often an assembly will consist of one module.

To ensure that assemblies aren‘t tampered with between the time they were compiled and the time they are

loaded, each assembly can be signed using a cryptographic key pair and a hash of the entire assembly, and

this signature can be placed into the manifest. The signature is respected by the execution engine, to such a

degree that the execution engine will refuse to load an assembly that fails this signature-check; this ensures

that damaged assemblies won‘t be loaded, preventing a certain class of malicious attack against the system.

Thus, if a hash generated at runtime from the assembly doesn‘t match the hash contained in the assembly‘s

manifest, the runtime will refuse to load the assembly and raise an exception before the potentially bad

code has a chance to do anything.

In many ways, assemblies are to the CLI what shared libraries or DLLs are to an operating system: a means

of bounding and identifying code that belongs together. Thanks to the full-fidelity metadata and symbolic

binding approach found in the CLI, each component can be loaded, versioned, and executed independently

of its neighbors, even if they depend on each other. This is crucial, since platforms, applications, libraries,

Chapter 1: Introducing the CLI Component Model | 15

and hardware change over time. Solutions built from components should continue to work as these

components change. Assemblies are discussed in Chapter 3 and Chapter 4.

Component isolation: application domains and remoting

As important as the ability to group code together into components is the ability to load these components

in a way that they can work together and yet be protected from malicious or buggy code that might exist in

other components. Operating systems often achieve isolation by erecting protected address spaces and

providing communication mechanisms that can bridge them; the address spaces provide protected

boundaries, while the communications mechanisms provide channels for cooperation. The CLI has similar

constructs for isolating executing code, which consist of application domains and support for remoting.

Assemblies are always loaded within the context of an application domain, and the types that result are

scoped by their application domain. For example, static variables defined in an assembly are allocated and

stored within the application domain. If the same assembly is loaded into three different domains, three

different copies of the type‘s data for that assembly are allocated. In essence, application domains are

―lightweight address spaces,‖ and the CLI enforces similar restrictions on passing data between domains as

operating systems do between address spaces. Types that wish to communicate across domain boundaries

must use special communications channels and behave according to specific rules.

This technique, referred to as remoting, can be used to communicate between application domains running

on different physical computers (and running different operating systems on different processors). Just as

often, the remoting mechanisms are used to isolate components within domains that exist in a single

process on a single machine. Components that wish to participate in remoting can be Serializable, in

which case they are copied and passed from domain to domain, or alternatively can extend the

System.MarshalByRefObject type, in which case they can communicate using proxy objects that

act as relays. Application domains, remoting, and the details of loading will be covered in Chapter 4.

Naming conventions for version-flexible loading

Because all types and their code live within assemblies, there needs to be a well-defined set of rules

describing how the execution engine will discover and use assemblies when their types are needed.

Assembly names are formed from a standard set of elements, which consist of an assembly base name, a

version number, a culture (for internationalization), and a hash of the public key that represents the

distributor of the assembly. Compound names ensure that software built from assemblies will

accommodate version changes gracefully. When compiled, each assembly also carries references to the

compound names of other assemblies that it was compiled against and remembers the versioning

information for each of those assemblies. As a result, when loaded, assemblies request very specific (or

semantically-compatible) versions of the assemblies on which they depend. The binding policy used to

satisfy these requests can be influenced by configuration settings but is never ignored.

Assemblies are normally found in one of two places: in a machine-wide cache known as the Global

Assembly Cache (GAC) or on a URL-based search path. The GAC is effectively a per-machine database of

assemblies, each uniquely identified by its four-part name. The GAC can be, but doesn‘t have to be, a

filesystem directory; a CLI implementation must be able to put multiple versions of the same assembly into

the GAC and track them. The search path is essentially a collection of URLs (usually filesystem

directories) that are searched when an assembly is requested for loading. The loading process and how it

can be implemented is detailed in Chapter 4.

One of the principal enhancements to the commercial CLR implementation of the CLI

provides extensions to the CLR‘s assembly-location process, thus permitting extenders of

the CLR to locate assemblies stored in some particular, unique place, such as a relational

database table. This is not a formal part of the CLI specification, but demonstrates how

the capabilities described in this book and the CLI Specification can be extended by a

CLI implementation to provide additional enhancements.

Chapter 1: Introducing the CLI Component Model | 16

JIT compilation and typesafety

The execution model described by the CLI implies that the act of compiling high-level type descriptions

should be separated from the act of turning these type descriptions into processor-specific code and

memory structures. This separation introduces a number of important advantages to the computing model,

such as the ability to easily adapt code to new operating systems and processors after the fact, as well as the

ability to independently version components from many different sources. It also introduces new

challenges. For example, because all types are represented using CIL and the CTS, all types must be

transformed into native code and memory structures before they can be used; in essence, the entire

application must always be recompiled before it can be run, which can be a very expensive proposition.

To amortize the cost of transforming CIL into native code, both in terms of time taken to load and in terms

of memory required, types in a CLI-based application are typically not loaded until they are needed, and

once a type is loaded, its methods are not translated until they are needed for execution. This process of

deferring layout and code generation is referred to as just-in-time (JIT) compilation. The CLI does not

require last-minute JIT compilation to occur, but deferred loading and compilation are implied at some

point in an application‘s lifecycle, to convert the CIL into native code. One can imagine an installation

utility that might perform the necessary compilation into native code, for example, thus eliminating the

necessary JIT conversion when the application is executed. (Such a utility, known colloquially as ―ngen‖,

ships as part of the commercial CLR.) The way that JIT compilation can be implemented to conform to the

CLI is discussed in Chapter 5. Extensions of the JIT compilation strategy to include parametric

polymorphism (also known as generics) are discussed in Chapter 6.

The most important reason that JIT compilation is built into the CLI execution model is not obvious. The

transformation from abstract component to running native code, under the control of the execution engine‘s

own loader and compiler is what enables the execution engine to maintain control at runtime and run code

efficiently, even when calling back and forth between code written in C++ and code written in a managed

language. The traditional pipeline of compilation, linking and loading, continues to exist in the CLI, but as

we have seen, each toolchain element must make heavy use of clever techniques (such as caching) because

deferred use leads to higher runtime costs. These higher costs are well worth bearing because deferral also

results in comprehensive control over the behavior of executing components. Some of this toolchain is

discussed further in Chapter 8.

Since execution in the CLI is based on the incremental loading of types, and since all types are defined

using a platform-neutral intermediate language, the CLI execution engine is constantly compiling and

adding new behavior as it runs. CIL is designed to be verifiably typesafe, and since compilation into native

code is performed under the control of the privileged execution engine, typesafety can be verified before a

new type is given a chance to run. Security policy can also be checked and applied at the time that CIL is

transformed into native code, which means that security checks can be injected directly into the code, to be

executed on behalf of the system while methods are executing. In short, by deferring the loading,

verification, and compilation of components until runtime, the CLI can enforce true managed execution .

Managed execution

Type loading is the trigger that causes the CLI‘s toolchain to be engaged at runtime. As part of this loading

process, the CLI compiles, assembles, links, and validates executable format and program metadata,

verifies typesafety, and finally even manages runtime resources, such as memory and processor cycles, on

behalf of the components running under its control. The tying together of all of these stages has led the CLI

to include infrastructure for name binding, memory layout, compilation and patching, isolation,

synchronization, and symbol resolution. Since the invocation of these elements is often deferred until the

last possible moment, the execution engine enjoys high-fidelity control over loading and execution policies,

the organization of memory, the code that is generated, and the way in which the code interacts with the

underlying platform and operating system.

Deferred compilation, linking, and loading facilitate better portability both across target platforms and

across version changes. By deferring ordering and alignment decisions, address and offset computation,

choice of processor instructions, calling conventions, and of course, linkage to the platform‘s own services,

assemblies can be much more forward-compatible. A deferred process, driven by well-defined metadata

and policy, is much more robust.

Chapter 1: Introducing the CLI Component Model | 17

The execution engine that interprets this metadata is trusted system code, and because of this, security and

stability are also enhanced by late loading. Every assembly can have a set of permissions associated with it

that define what the assembly is permitted to do. When code in the assembly attempts to execute a sensitive

operation (such as attempting to read from or write to a file, or attempting to use the network), the CLI can

look at the call stack and walk it to determine if all of the code currently in scope has appropriate rights—if

code on the stack doesn‘t have correct permissions, the operation can be rejected, and an exception can be

thrown. (Exceptions are another mechanism that enables simpler interactions between components; the CLI

was designed to not only support a wide range of exception semantics within the execution engine, but also

to integrate tightly with exception signaling from the underlying platform.) Managed execution is discussed

at length in Chapter 8 and Chapter 9.

Enabling data-driven extensibility with metadata

CLI components are self-descriptive. A CLI component contains definitions for every member contained

within it, and the guaranteed runtime availability of this information is one factor that helps make

virtualized execution highly adaptable. Every type, every method, every field, every generic type, every

single parameter on every single method call must be fully described, and the description must be stored

within the assembly. Since the CLI defers all sorts of linkages until the moment they are needed, tools and

programs that wish to manipulate components or create new ones by working with metadata gain a

tremendous amount of flexibility. The same kinds of tricks played by the CLI can be used by code built on

top of the CLI, which is a windfall for tools and runtime services.

To get information about types, programmers of the CLI can use the reflection services of the execution

engine. Reflection provides the ability to examine compile-time information at runtime. For example, given

a managed component, developers can discover the structure of the type, including its constructors, fields,

methods, properties, events, interfaces, and inheritance relationships. Perhaps more importantly, developers

can also add their own metadata to the description, using what are called custom attributes .

Not only is compile-time information available, but it can be used to manipulate live instances. Developers

can use reflection to reach into types, discover their structure, and manipulate the contents of the types

based on that structural information. For methods, the same is true; developers can invoke methods

dynamically at runtime. The capabilities of this metadata-driven style of programming, and how it can be

implemented, are touched on in Chapter 3, and examined in more detail in Chapter 8.

A CLI Implementation in Shared Source: Rotor

In the summer of 2001, a small team of developers in Redmond announced plans for a (at the time)

Microsoft rarity: a freely-available software distribution containing modifiable, redistributable, source

code. This distribution, named the Shared Source CLI (SSCLI, also known affectionately by its code name,

―Rotor‖), was to contain a fully-functional CLI execution engine, a C# compiler, essential programming

libraries, and a number of relevant developer tools. It had been quietly under development alongside the

commercial .NET framework and represented an important facet of Microsoft‘s developer tool strategy. In

particular, the SSCLI had three goals to meet: to validate the portability of the CLI standard, to help people

learn about and understand Microsoft‘s commercial CLR offering, and to stimulate long-term academic

interest in the CLI. Above all else, the SSCLI was to match the ECMA standard so that anyone who wished

to understand or implement this standard would have a guide.

Months after the release of the .NET framework version 2.0 (not to mention numerous other ―source-

available‖ tools and frameworks, such as Enterprise Library, IronPython and IronRuby), Microsoft released

version 2.0 of the Shared Source CLI, following the same pattern of development as its predecessor.

Affectionately known as Rotor v2, or Rotor Whidbey, it contains all the new and exciting features of its

commercial framework cousin, including Generics, Lightweight Code Generation, Stub-based dispatch

support (an interface dispatch mechanism), as well as Reflection and Reflection.Emit enhancements.

Naturally, the Rotor team didn‘t stop there: the new C# 2.0 language features like Anonymous Methods,

Anonymous Delegates and C# Generics support were also included.

Chapter 1: Introducing the CLI Component Model | 18

Although the name changed, throughout this book we will continue to refer to the Shared

Source CLI v2.0 release as ―Rotor‖, except in those few cases where we need to draw a

distinction between the v1.0 and v2.0 versions. In those cases, the first version will be

called ―Rotor v1‖ and its successor we will call either ―Rotor v2.0‖, ―SSCLI 2.0‖, ―Rotor

2‖, or ―Rotor Whidbey‖, depending on which sounds better at the time. Most of the time,

the distinction between v1 and v2 will either be irrelevant, or entirely self-evident, so it

shouldn‘t present much of a problem to the reader.

Although the SSCLI is nominally the subject of this book, the CLI standard is its heart. The SSCLI helps us

illustrate how and why the CLI is such an interesting piece of work. The distribution itself is a large body

of code, and as such, it can provide a significant leg up for researchers and experimenters working in the

area of developer tools or systems design, as well as to those teaching computer science. This book

attempts to act as a top-level guide to the code for such people, giving information beyond the theory of the

CLI to facilitate hacking and to explain the conventions of the code base. The CLI standard will be

important for years to come, and there is no better way for you to understand it fully than by browsing,

building, observing, and tweaking a running implementation.

While Rotor demonstrates one way to build a portable, programming language-independent version of the

CLI standard, it is certainly not the only way. Alternate implementations exist at the time of writing,

including three from Microsoft (the commercial .NET Framework, a version designed to run inside the

Web browser to support Silverlight applications called the ―CoreCLR‖, and a version for the small device

market that is called the ―Compact Framework ―), and two third-party, open source implementations, one

from Novell (called Mono: http://www.go-mono.com/) and one from the DotGNU project (called

Portable.NET: http://www.gnu.org/software/dotgnu/). Rotor itself, to provide additional developer tools

and facilities, implements more than just the standard. To clarify what is contained in the distribution,

Figure 1-3 contains a pictorial representation of the differences between Microsoft‘s commercial offering

(.NET CLR), the CLI and C# specifications, and Rotor.

The SSCLI, as shown in Figure 1-3, is a superset of the CLI standard, and the Microsoft commercial

offering is, in turn, a superset of the SSCLI.

Rotor is a large collection of code built by many people over a number of years, and because of this, it is

complex and stylistically variable. In terms of scale, it is comparable to the largest familiar source code

distributions such as XFree86, Mozilla, and OpenOffice. As with these distributions, getting started in the

code can be an intimidating prospect. This book will help make this task easier, beginning with this brief

tour of the distribution itself.

http://www.go-mono.com/
http://www.gnu.org/software/dotgnu/

Chapter 1: Introducing the CLI Component Model | 19

Figure Error! No text of specified style in document.-3. Components of the Shared

Source CLI distribution

The SSCLI is built using a combination of C++ and C#, with a smattering of assembler for processor-

specific details. The distribution is built as a three step process. First, a platform-specific C++ compiler is

used to build a Platform Adaptation Layer (PAL), which is a library that hides the differences between

operating system APIs behind a single set of programming abstractions. After this, a set of build tools

(including the C# compiler) that are needed to build the SSCLI are built and linked against the PAL library.

Finally, the rest of the distribution is built using these tools and the PAL.

Table 1-1 lists some of the interesting subdirectories to visit in the SSCLI source code, which differs

somewhat from the directory structure of Rotor v1. (As a reminder, the SSCLI v2 source code can be

downloaded from http://research.microsoft.com/sscli, and readers are encouraged to take a moment to

download and extract the code before continuing.)

Table Error! No text of specified style in document.-1. Important subdirectories of the

distribution and their contents

Subdirectory Contents

/binaries.xxxxx.rotor Contains built executables and libraries

/clr/src Home to many core subdirectories

/clr/clr/bcl The base class libraries, written in C#

/csharp A C# compiler, written in C++

/clr/src/classlibnative Programming libraries implemented in C++

http://research.microsoft.com/sscli

Chapter 1: Introducing the CLI Component Model | 20

/clr/src/debug Support for managed debugging

/clr/src/fjit The SSCLI JIT compiler

/clr/src/fusion Code for locating versioned files

/clr/src/ilasm A CIL assembler

/clr/src/ildasm A CIL disassembler

/clr/src/inc Shared include files

/clr/src/md Metadata facilities

/clr/src/toolbox/caspol Source to the caspol security utility

/clr/src/tools Home to many-utility programs

/clr/src/tools/clix The SSCLI managed executable launcher

/clr/src/tools/gac Source to the gacutil cache utility

/clr/src/tools/peverify The peverify CIL verification utility

/clr/src/tools/strongname The sn code-signing utility

/clr/src/toolbox/sos The SOS debugging extension library

/clr/src/vm The CLI execution engine

/docs Documentation

/fx/src Home to additional managed libraries

/fx/src/net/system/net The networking library

/fx/src/regex/system/text The regular expressions library

/jscript A complete JScript compiler that compiles to CIL

code, written in C# (a managed managed code

compiler!)

/clr/src/managedlibraries/remoting Additional remoting support to what is found in the

bcl directory

/pal Multiple operating system-specific implementations

of the PAL

/palrt Low-level APIs that support the SSCLI

implementation but are not operating system-

specific

/samples Sample programs that use the CLI

/tests Extensive tests and test infrastructure

/tools Tools used to build the SSCLI distribution

The subdirectories can be divided into four distinct conceptual areas, as follows:

 The CLI execution engine

 Component frameworks that both wrap and extend the execution engine

 A portability layer (the PAL) used to move from one operating system to another

 Tools, tests, compilers, documentation, and utilities for working with managed code

Let‘s examine each of these areas in turn, focusing on where to find their implementation.

The CLI execution engine

The execution engine is the heart of the CLI, and quite possibly the most interesting part of the whole set.

(At the very least, this is where we will spend the majority of our time.) It contains the component model,

as well as runtime services, such as exception handling, and automatic heap and stack management. In

many respects, this is the big kahuna; it is the code that we refer to when we speak of ―the runtime‖ or ―the

Chapter 1: Introducing the CLI Component Model | 21

virtual execution environment.‖ JIT compilation, memory management, assembly and class loading, type

resolution, metadata parsing, stack walking, and other fundamental mechanisms are implemented here.

This code can be found in sscli20/clr/src and in the four directories vm, fjit, md, and fusion, in which the

bulk of the execution engine resides.

Figure Error! No text of specified style in document.-4. Many libraries typically

combine to run managed code

The execution engine, as shown in Figure 1-4, is built as a set of dynamically loadable libraries rather than

as a standalone executable. The clix program launcher (or any program that wishes to use the services of

the execution engine) loads the main shared library, sscoree, to create an instance of the CLI in process and

then feeds this instance a start-up assembly to be executed.

The same is true of the commercial CLR; when an assembly is compiled under the CLR,

it gets a native entrypoint that does this same boostrap sequence to bring the CLR into the

application‘s program space, just as the SSCLI does.

As a result, there is no main in the execution engine; it is packaged to be hosted by other programs. The

execution engine depends on a number of other shared libraries, which include libraries that are broken

because they are replaceable, such as the crypto code necessary to load and build signed assemblies that is

located in sn, as well as libraries that are potentially useful in many different places, such as the PAL,

which can be found in rotor_pal and rotor_palrt. Finally, code that may not always be needed is also

packaged into separately loaded libraries, such as mscordbc, which implements debugger support.

Programming libraries in the CLI

The shared infrastructure of the CLI includes not only standardized, low-level capabilities such as

metadata, the common intermediate language, and the common type system, but also high-level,

productivity-oriented class libraries . The contents of these libraries are briefly summarized by functional

area in Table 1-2.

Table Error! No text of specified style in document.-2. High-level elements included in

CLI standard libraries

Category Facilities

Productivity libraries Text formatting, regular expressions, collections,

time, dates, file and network IO, configuration,

diagnostics, globalization, isolated storage, XML

Execution engine libraries Isolation domains, asynchronous callbacks,

stackwalks, stack traces, garbage collector, handles,

Chapter 1: Introducing the CLI Component Model | 22

environment, threads, exceptions, monitor-based

synchronization, security, verification, reflection,

serialization, code generation, native code

interoperability

Type-related libraries Primitive types, value types, delegates, strings,

arrays, generics

Extended numerics library Decimal numbers, double and single precision

floating point numbers, math

Programming language support Compiler services, custom metadata attributes,

resource reclamation

These libraries provide an interface to the facilities of the underlying operating system but in a way that has

been tailored to exploit the services and conventions of the CLI, increasing programmer productivity

through their consistency and quality.

These APIs also serve another, less obvious role: they facilitate component integration by exposing

programming services and conventions that will promote good component hygiene through their use.

Services that minimize the amount of bookkeeping necessary for component builders to implement, or that

minimize the need for complex intercomponent management protocols, make for smoother and safer

integration (and less code to write). The less a component needs to rely on other components and the fewer

things that a component must do on behalf of other components, the more likely an application will be bug-

free, simple to read, and robust. To realize the true promise of component-based software, components

need to be built to rely on managed execution within an environment designed with these principles in

mind.

One might think of the CLI libraries as a modern equivalent to the C runtime library. They do not attempt

to provide all things to all programmers; instead, they are a core set of components for which nearly every

programmer will find a use. Since the base libraries, found in sscli20/clr/src/bcl, are specified to be part of

any CLI implementation, they form a basis for portable application implementations. Additional libraries,

found in the sscli20/fx, sscli20/clr/src/classlibnative, and sscli20/clr/src/managedlibraries directories, are

either optional standard libraries or specific to the SSCLI. At this point in time, all of the libraries in the

SSCLI are also found in the commercial Microsoft .NET Framework 2.0.

Explorers of the programming libraries will find that, besides the documentation found in

sscli20/docs that is specific to the Rotor distribution and to its utilities, there is website

containing all class library documentation. This can be found at

http://msdn2.microsoft.com/library/default.aspx.

The Platform Adaptation Layer

The PAL is an interesting piece of software with more uses than might meet the eye at first glance. Of

course, as is typical of any adaptation or driver layer in a large piece of code that is meant to run on many

operating system platforms, the first goal of the PAL was to isolate implementers from the details of

various operating systems. The choice in the case of the SSCLI was obvious: since it had started as Win32-

specific code, the PAL was designed to present a subset of the Win32 API (which can be seen in

sscli/pal/rotor_pal.h). This implementation is by no means complete, as it needs to provide only the calls

that are actually made by the CLI. Do not attempt to use the PAL as a general Win32 emulation layer,

because it is incomplete!

The PAL is, of course, the place where the work to bring Rotor to new platforms would begin, since the

tools that are used to build Rotor depend on the PAL for their operating systems‘ resources. To see what is

involved, examine the sscli20/pal/unix directory. There is a significant amount of work having to do with

providing a common exception-handling mechanism, common threading, a shared handle manager, IO,

synchronization, debugging, and more. Specialized host processes, such as web servers or databases, might

very well have their own similar runtime needs, which might need to take the semantics of the PAL into

http://msdn2.microsoft.com/library/default.aspx

Chapter 1: Introducing the CLI Component Model | 23

consideration. Because of this and because the PAL defines how operating system resources are used,

understanding the various PAL implementations will be important for many people.

The Rotor team wanted to get Rotor v2 out to the door as quickly as possible and

therefore decided to focus only on the x86 Windows platform, which has the widest

SSCLI developer base. As a result, the Rotor v2 PAL does not include updates to support

the FreeBSD and MacOS platforms. Having said that, however, the PAL source code has

been updated to support the latest version of XP and Windows Vista. For those that are

interested, the previous release of Rotor can be run on older versions of FreeBSD and

MacOS, or you can update the PAL source code yourself to work with other architectures

and operating systems.

In addition to the PAL, there is a directory named sscli20/palrt/src, which contains a library

implementation of Win32 APIs that are needed by the SSCLI but are not dependent on the operating

system for implementation. This library also includes a small number of PAL-specific APIs. It is a true

hodgepodge of facilities, but to give it flavor, it contains decimal arithmetic, a stub implementation of some

of the Microsoft COM component model, array-handling, memory management, and numerous other utility

functions.

The most interesting aspect of the PAL has to do with execution engine control. The SSCLI is designed to

run cooperatively with native code within native processes, which means that many operating system calls

need to be caught to give the execution engine a chance to maintain bookkeeping information for the use of

runtime systems, such as the garbage collector or the security system. This is a critical use of the PAL

layer; the SSCLI implementation is built in terms of the abstractions that are presented by the PAL and

without them, it could not maintain isolation, security, and control. For example, both threading and

exception handling are implemented in the PAL and both of these are critical to the execution engine at

runtime, since it uses exception frames to track managed code and the stacks associated with threads to

store diffuse structures that hold the state of many of its services. Details of this aspect of the PAL will be

covered at length in Chapter 6, while the PAL‘s design itself is the topic of Appendix A.

Tools, compilers, tests, documentation, and utilities

A significant percentage of the code in Rotor consists of support infrastructure that is used to build, test,

and use its CLI implementation. The PAL, which we have just discussed, is such code. There are numerous

additional developer tools, utilities, and test programs that can be found in various spots within the

distribution. These fall into the broad categories of utilities for managed development and utilities for

building the distribution.

As far as managed development goes, many of the tools in the Rotor distribution will be familiar to any

programmer who has spent time with the SDK for the Microsoft .NET Framework because the two

implementations share their basic set of utilities, such as linker, assembler, and disassembler. The

sscli20/clr/src, sscli20/clr/src/tools, and sscli20/clr/src/toolbox directories contain directories for these

utilities, as well as for utilities that are unique to developing and running managed code with the SSCLI,

such as clix.exe. Programmers should consult the documentation in sscli20/docs to see whether features are

shared between the Rotor version of a utility and its .NET Framework counterpart; not all features were

ported.

The build system used to bootstrap Rotor can be found in sscli20/tools. These tools are built against the

PAL and are used to track dependencies, drive the build process, and assemble the libraries and

executables, once built, into the sscli20/binaries.xxxx.rotor directory. Dependencies in Rotor are

convoluted, as they are with most large projects, and so these tools are quite important. To understand how

they are used and how developers should interact with them when modifying code, see

sscli20/docs/buildtools directory.

Once the SSCLI is built, it can be tested by using the tests in the sscli20/tests directory. Of particular note

are the PAL tests, found in sscli20/tests/palsuite, which can be used to verify new PAL implementations or

changes to an existing PAL, and the developer Build Verification Tests (BVT) found in sscli20/tests/bvt,

which can be used to check work being done in the execution engine. There are also tests for other areas

Chapter 1: Introducing the CLI Component Model | 24

such as the base class libraries; most of these, along with the BVTs, use the test harness found in

sscli20/tests/harness and documented in sscli20/docs/testing_overview.html.

Documentation and technical notes for Rotor can be found in sscli20/docs. This directory contains material

that is useful for browsing the sources, for modifying code, and for understanding both the architecture of

the CLI and the specific implementation choices that were made when building the SSCLI. There is also a

detailed specification included for the PAL that would be very useful to anyone porting Rotor to new

platforms. It is well worth taking some time to browse this directory.

Scoping This Book

The second edition of this book maintains the original focus of how the CLI component model and its

underlying execution engine are implemented from the SSCLI 2.0 prospective, but takes special focus on

the new features of version 2. The requirements that the resulting mechanisms place on the operating

system, and general porting issues, are briefly discussed. Discussions of compilers, languages, and

frameworks, however, are sometimes lacking, as well as non-component-oriented uses of the CLI, which

fortunately can be found in the numerous other books on the .NET Framework and the CLI.

A disclaimer is also called for: the numerous C++ samples in this book taken from the SSCLI source code

have been considerably cleaned up, becoming pseudo-code in the process. This was done to remove ugly

macros, error-handling, and asserts that pepper the Real Code, and to make the code more readable. If you

are planning to add to or modify the SSCLI code, you should be aware of the invariants that must be

maintained and adopt the same programming conventions and error handling methods used by the

developers of the SSCLI. See Appendix D for a short description of these requirements.

Summary

The CLI is the first virtual execution environment designed from the ground up to be shared by many

different programming languages. Platform providers, framework builders, and programmers are not forced

into all-or-nothing language decisions just to take advantage of the facilities that make component-based

computing work, such as exceptions, garbage collection, reflection, code access security, and data-driven

extensibility. Using the CLI, it is easy to incorporate preexisting code into component-based programming

efforts, which results in increased interoperability and shared infrastructure.

The CLI‘s standardized format for packaging, describing, and deploying components is tied to neither

operating system nor implementation language. This is important because this format forms the foundation

for the CLI‘s data-driven architecture. Data-driven mechanisms increase programmer productivity because

they enable diverse programs, libraries, and tools to interact seamlessly and to evolve over time. A data-

driven component model is as future-proof as today‘s technology allows.

The abstract instruction set and the type system that outline the CLI‘s virtual execution model offer a

tempting glimpse of the Holy Grail: software that runs everywhere. The designers of the CLI certainly

anticipated a world in which multiple implementations and multiple versions of their standard would run

both side-by-side and on many platforms. Yet in this world, each implementation is likely to expose unique

frameworks, services, utilities, tools, or language features that augment the basic capabilities, using the

CLI‘s excellent support for interoperability. What will result is akin to C language development, in which

one rarely finds significant applications built on top of the standard runtime alone. Instead, applications

judiciously combine standard facilities with either platform-specific libraries or libraries designed

specifically for cross-platform use. Most significant CLI programs will combine standard components with

either platform-specific components or third-party components designed specifically for cross-platform use.

The CLI‘s language-agnostic approach, its data-driven architecture, and its virtual execution model were

developed to create an arena in which components could cooperate effectively without sacrificing their

security and autonomy. Its unfolding chain of metadata creates an environment in which it is possible to

reason about the behavior of components and inject safeguards into their code before running them. Each

stage in the CLI‘s execution model involves receiving data from the prior stage and transforming or

augmenting it before passing it on to another stage. This book describes this entire chain of stages and the

Chapter 1: Introducing the CLI Component Model | 25

execution engine in which they are implemented, from its initial bootstrap sequence to the death of its last

managed resource.

Chapter 2: Getting Started with Rotor | 26

2. Getting Started with Rotor

The expertise needed to build a virtual machine spans disciplines as diverse as systems design, compiler

theory, and hardware architecture. Understanding how and why this is true is important, both for those

using virtual machines to solve day-to-day problems and for those extending or implementing them. The

purpose of this book is to explain the CLI specification in these terms, drawing on Rotor‘s source code for

examples and clarification.

Before getting to these details, we‘ll take a detailed look at building, running, debugging, and modifying

managed code with Rotor. A simple example will demonstrate these concepts: a managed component that

echoes its input back to the console. This example will form a recurring basis for continuing discussions of

Rotor‘s implementation in the chapters that follow.

A Simple Component Assembly

Consider the simple CLI component in Example 2-1, which consists of a single type named Echo. The

Echo type has a single property named EchoString, and a single method, DoEcho.

Example Error! No text of specified style in document.-1. A simple CLI component expressed in C# code

using System;

public class Echo

{

 private string toEcho = null;

 public string EchoString {

 get { return toEcho; }

 set { toEcho = value; }

 }

 public string DoEcho()

 {

 if (toEcho == null)

 throw new Exception("Alas, there is nothing to echo!");

 return toEcho;

 }

}

This component is written using the C# programming language and can be compiled into a CLI component

using any C# compiler. C# was chosen for examples in this book, because it was developed as a companion

language for the CLI standard and has direct syntax for many of the features found in the CLI.

The SSCLI source code distribution includes several compilers in addition to the C#

compiler that will be used in this book. Most notably, there is a full JScript compiler that

is itself written in C#. Although there are no JScript samples in this book, the source code

for this compiler (found in the jscript directory) is worth browsing, since the typeless

dynamic semantics of the language differ greatly than from those of C#. The

implementation techniques used to support features such as runtime expression

evaluation demonstrate alternative design approaches.

Chapter 2: Getting Started with Rotor | 27

Given the renewed interest in recent years in ―dynamic languages‖ (such as Ruby,

ECMAScript, Python, or Lisp), curious programmers will find it a useful exercise to

write a simple ―Hello, script!‖ program in ECMAScript, compile it using jsc, then look at

the generated code using ildasm.

If you are unfamiliar with C#, don‘t worry. Readers familiar with any high-level, component oriented

programming languages such as Java should have no problem reading and understanding these very simple

examples. Many good online tutorials and books are available for those who would like to learn C#; the

MSDN Visual C# developer center web site http://msdn2.microsoft.com/en-us/vcsharp/default.aspx is one

good place to start.

Although we make no specific reference to C# 2.0 features in this chapter, those

programmers unfamiliar with the C# 2.0 enhancements (most notably generics, since that

will be a major topic in this edition of the books) should brush up on their C# 2.0 before

proceeding too deeply into the subsequent chapters. Again, while such knowledge is not

required to understand the material, having a context in which to frame the discussion is

most helpful, and close to crucial in later chapters (such as Chapter 6).

Before we can compile and run the code for the Echo component, we need to prepare Rotor for first use.

Configuring the Environment

Rotor is packaged as a compressed file archive, which can be expanded using your archiving utility of

choice. WinRAR (http://www.rarlab.com) and WinZip (http://www.winzip.com) are two popular software

packages that will uncompress the Rotor tarball.

After profuse disk activity, unarchiving will leave a directory named sscli20 in its wake, containing more

than 13,000 files and directories, containing collectively over 3.5 million lines of code.

For most developers, this will be their first experience with a source base containing 7 digits‘ worth of

code, so a quick reassurance here is necessary: you do not have to read through all of it to understand Rotor

or the CLI. In fact, when viewed logically, it‘s ludicrous to expect that any one person, even those working

on the CLI at Microsoft, has such knowledge. We will spend most of our time on the execution engine

itself; other readers may find it useful and instructive to spend some time in the directories containing the

Framework Class Library source code in order to understand the underlying libraries, such as System.Xml

or System.Net, better.

To tame this huge volume of code, the first thing that you will need to do after expanding the archive is to

set up a working environment within a command-line shell. Rotor is designed for tinkering: it is assumed

that you will be working with multiple versions of the CLI on a single machine as you experiment, make

modifications, and use instrumented versions of the runtime for debugging, profiling, or tracing. To make

side-by-side operation easy, configuration is done using environment variables that are easy to set and to

change.

Within the root of the sscli20 directory, a batch file stands ready to configure the runtime environment:

env.bat. Running the batch file is as simple as firing up cmd.exe and typing:

 C:\sscli20> env

One of three different build variants can be established using command-line arguments to the script. In the

checked build, symbols are generated for debugging and no compiler optimizations are used when building

code. Some extra instrumentation is also built into the CLI execution engine. This mode is slow but very

useful when debugging. Free mode, in contrast, is built without debugging instrumentation. It is also built

using compiler optimizations so that it can be as fast as possible and will have the best performance of the

three variants. Fastchecked is a compromise between the free and checked: it preserves debug symbols and

instrumentation but also uses some compiler optimizations.

http://msdn2.microsoft.com/en-us/vcsharp/default.aspx
http://www.rarlab.com/
http://www.winzip.com/

Chapter 2: Getting Started with Rotor | 28

Whenever you run code using the SSCLI or use tools from within the distribution, you‘ll

need to set up your environment first. There are several runtime configuration parameters

that depend on values found in environment variables or are directory-specific. This bit of

legerdemain may seem a bit awkward and unnecessary at first, but it is done to support

side-by-side execution. Using Rotor, it is possible to run assemblies built from differing

versions of the CLI (including your own custom versions!) without issues. By using

version-specific command shells that have had their environments tailored to specific

instances of the Rotor build, you can easily switch between versions by switching

between command windows.

Passing the mode as a parameter to one of the env scripts will set up corresponding environment values. If

no mode is specified, fastchecked is the default. Since most users of Rotor will want debug symbols,

fastchecked is a good option for most purposes, as it was designed as a compromise between execution

speed and source-level debugging. Users who are primarily debugging and spelunking through the Rotor

code, however, may prefer the debug checked build, since the optimizations of fastchecked may cause

some source lines to appear out of sync with compiled code.

You will see the mode printed in response to your command.

 C:\sscli20> env free

 Setting environment for using Microsoft Visual Studio 2005 x86 tools.

 32-bit build

 Free Environment

 Building for Operating System - NT32

 Processor Family - x86

 Processor - i386

 Build Type - fre

With your environment in place, you‘ll want to build the distribution. Rotor is distributed without any

binaries, and so you must build it to do anything more than browse through source code. Fortunately, this is

straightforward, and there are only a few prerequisites: you‘ll need quite a bit of free disk space (over a

gigabyte is best), and you‘ll need to have suitable development tools (including perl) in your execution

path. Appendix A describes these prerequisites in detail.

Of course, if you‘d like to skip the Appendix, the simplest option is to do a complete build. There is a batch

file script for this purpose in the sscli20 directory named buildall.cmd. Using the command window in

which you‘ve prepared the environment, from the sscli20 directory, type:

 C:\sscli20> buildall -c

Feel free to take a break at this point, because the build process is lengthy! After lots of stimulating disk

exercise, during which well over half a gigabyte of disk space is consumed, you‘ll have a ready-to-execute

Shared Source CLI 2.0 installation, along with its rich set of accompanying tools and examples. To verify

that the build was successful, try typing:

 C:\sscli20> csc -?

If all has gone well, you‘ll see the usage message for the C# compiler scroll by. (Pay attention to the banner

message indicating the version of the compiler, just in case your environment accidentally has the Visual

Studio tools in the PATH. Although compiling with Visual Studio and executing with Rotor is supported,

it‘s confusing and distracting.

At this point, you‘re ready to compile the Echo component.

Creating an Echo Component

To compile the C# Echo component into an executable on-disk library, use the following invocation of the

C# compiler (assuming that you‘ve saved it into a file named echo.cs):

Chapter 2: Getting Started with Rotor | 29

 C:\sscli20> csc /target:library /debug echo.cs

This command will produce a file named echo.dll that serves as a container for a CLI assembly that

contains the Echo type. The /debug switch causes a second file to be created, echo.ildb, which contains

line number and symbol information for the cordbg debugger.

If you try to compile echo.cs without command-line switches, compilation will fail,

because Echo doesn‘t define a method named Main, which is needed by convention to

create standalone executables in C#.

Using the ildasm disassembler that comes with the SSCLI, you can verify that echo.dll contains both

metadata tables and CIL code for the Echo type:

 C:\sscli20> ildasm -all echo.dll

 // Microsoft (R) Shared Source CLI IL Disassembler. Version 2.0.50826.0

 // Copyright (c) Microsoft Corporation. All rights reserved.

 // ----- DOS Header:

 // Magic: 0x5a4d

 // Bytes on last page: 0x0090

 // Pages in file: 0x0003

 // Relocations: 0x0000

 // Size of header (paragraphs):0x0004

 // Min extra paragraphs: 0x0000

 // Max extra paragraphs: 0xffff

 // Initial (relative) SS: 0x0000

 // Initial SP: 0x00b8

 // Checksum: 0x0000

 (MUCH more follows, spewing across pages of output)

Note that echo.dll is a well-formed PE/COFF executable. Many only slightly interesting details that relate

to the file‘s structure scroll by, until you reach output about the Echo type itself. Stripped to its essence

(and liberally edited for readability), it looks like this:

 .class public auto ansi beforefieldinit Echo

 extends System.Object

 {

 .field private string toEcho

 .method public hidebysig specialname instance string

 get_EchoString() cil managed

 {

 // CIL stripped for clarity

 }

 .method public hidebysig specialname instance void

 set_EchoString(string 'value') cil managed

 {

 // CIL stripped for clarity

 }

 .method public hidebysig instance string

 DoEcho() cil managed

 {

 // CIL stripped for clarity

 }

 .method public hidebysig specialname rtspecialname

Chapter 2: Getting Started with Rotor | 30

 instance void .ctor() cil managed

 {

 // CIL stripped for clarity

 }

 .property instance string EchoString()

 {

 // CIL stripped for clarity

 }

 } // end of class Echo

The Echo type has a single field, a string named toEcho, a property named EchoString, and a method

named DoEcho. It also has a constructor, which was automatically produced by the C# compiler.

Everything that a compiler would need to do type checking and other compile-time validation is part of the

definition. No external resources are needed, such as header files or linker maps. Types in the CLI are self-

contained and self-describing. Unlike traditional compilation toolsets, in which names, structural

information, source code, and object code often reside in separate places, CLI executables contain all of

their information in a single file.

If you expand the DoEcho implementation, you can see that the simple, three- line C# method has been

converted into 12 CIL opcodes by the C# compiler (the comments have been removed for clarity):

 .method public hidebysig instance string

 DoEcho() cil managed

 {

 // Code size 39 (0x27)

 .maxstack 2

 .locals init ([0] string CS$1$0000,

 [1] bool CS$4$0001)

 IL_0000: nop

 IL_0001: ldarg.0

 IL_0002: ldfld string Echo::toEcho

 IL_0007: ldnull

 IL_0008: ceq

 IL_000a: ldc.i4.0

 IL_000b: ceq

 IL_000d: stloc.1

 IL_000e: ldloc.1

 IL_000f: brtrue.s IL_001c

 IL_0011: ldstr "Alas, there is nothing to echo!"

 IL_0016: newobj instance void [mscorlib]System.Exception::.ctor(string)

 IL_001b: throw

 IL_001c: ldarg.0

 IL_001d: ldfld string Echo::toEcho

 IL_0022: stloc.0

 IL_0023: br.s IL_0025

 IL_0025: ldloc.0

 IL_0026: ret

 } // end of method Echo::DoEcho

CIL is an intermediate representation of the behavior originally expressed in the C# program, and is the

target representation for compilers and other utilities that wish to express behavior natively in terms of the

CLI runtime‘s services. CIL itself is a simple language to read and understand, particularly for those with

some experience working with assembly language. It is fully described in the third partition of the ECMA

specification, for those who would like to dig deeper. (There are also a number of books that cover the

subject, including .NET IL Assembler 2.0 by Serge Lidin, published by APress.)

One key to understanding CIL is to realize that the instruction set is stack-based. So, for example, when the

first instruction ldarg.0 (load argument zero) executes, it pulls the first argument passed to the method

Chapter 2: Getting Started with Rotor | 31

(which in this case is a this pointer to the Echo instance being called) and pushes it onto the execution

stack. This value is then used by the next instruction ldfld (load instance field contents), which takes a

single operand, the name of the field to load, dereferences it, and stores the result on the stack. In the

example, ldfld takes the this pointer from the top of the stack and uses it to dereference the named

field: Echo::toEcho.

Those familiar with assembly language might start to grow a bit skeptical: just how wide is this stack? Is it

32-bit? 64-bit? The beauty of the CLI execution model and the CIL instruction set is that implementation

details, such as the stack‘s size, are irrelevant. CIL was not designed for direct execution, but rather for

compilation into code native to whatever processor is at hand. Alignment issues are also something that the

CLI programmer can rely on the JIT compiler to take care of automatically.

Other CIL Tools
CIL is a lingua franca for CLI structure and behavior, and every CLI component can be shown as

CIL. In fact, files containing CIL component descriptions can be built by hand and assembled

directly into an executable by using the ilasm utility, without using any higher-level compiler. The

ilasm assembler is a counterpart to ildasm, and its file format is often used as a target by compilers

that wish to target the CLI. In fact, the output from ildasm can be recompiled by ilasm, a

capability called ―round-tripping .‖ It is easy to capture the dump to a file and ―round-trip‖ the

Echo component from its compiled form to CIL and back again:

 C:\sscli20> ildasm -out=roundtrip.il echo.dll

 C:\sscli20> ilasm -dll roundtrip.il

CIL is also easy to manipulate and examine statically. As an example of this, you might examine

the peverify tool that comes with the Rotor distribution. This utility verifies that the combination

of metadata and CIL within an executable‘s assemblies is typesafe. Its code can be found in

sscli20/clr/src/tools/peverify.

The rest of the method is fairly easy to understand. The brtrue.s (branch short if true) instruction is

used to test the results of the ldfld to see whether the topmost element on the execution stack is non-null.

If it is, there is a jump to the label IL_001c, which can be found in the column of labels on the lefthand

side of the CIL instructions. Otherwise, the ldstr (load string) instruction loads a reference to the

constant string Alas, ... onto the execution stack, where it is used as the sole parameter to the

constructor for a System.Exception, created by the newobj instruction that follows it. With an

Exception object on the stack, the throw instruction terminates execution of this method and unwinds

the stack, looking for exception handlers. The instruction sequence for the nonexception path results in a

reference to the string value from the Echo::toEcho field being pushed onto the stack with ldloc.0.

It is returned to the original caller of the method with ret.

The ECMA specification for the CLI contains an excellent summary of the complete set

of CIL opcodes. See Partition III for details.

Exercising the Echo Component

Given the lengthy disassembled output, echo.dll appears to contain a valid CLI component. Without a

program that takes advantage of its capabilities, however, this component and the assembly in which it is

contained are of little use. Here is code that will put Echo through its paces:

using System;

public class MainApp

{

Chapter 2: Getting Started with Rotor | 32

 public static void Main()

 {

 Echo e = new Echo();

 e.EchoString = "Echo THIS!";

 System.Console.WriteLine("First echo is: {0}", e.DoEcho());

 e.EchoString = null;

 System.Console.WriteLine("Second echo is: {0}", e.DoEcho());

 }

}

This simple program instantiates an Echo component, sets its EchoString property, and calls DoEcho,

printing the results to stdout. It then sets EchoString to null, and calls DoEcho again.

To find out more about any of the tools or utility programs being discussed in this

chapter, browse the documentation that comes as part of the SSCLI. The file

sscli20/docs/index.html has links to individual web pages for every program in the

distribution. These pages document syntax and command-line arguments, as well as

general usage.

To compile and run the code, save it into a file named main.cs and feed it to the compiler, passing echo.dll

on the command line as a referenced component. The resulting main.exe program can be executed by using

the managed code launch utility, clix:

 C:\sscli20> csc /target:exe /reference:echo.dll /debug main.cs

 Microsoft (R) Shared Source CLI C# Compiler version 2.0.0001

 for Microsoft (R) Shared Source CLI version 2.0.0

 Copyright (C) Microsoft Corporation. All rights reserved.

 C:\sscli20> clix main.exe

 First echo is: Echo THIS!

 Unhandled Exception: System.Exception: Alas, there is nothing to echo!

 at Echo.DoEcho() in C:\sscli20\echo.cs:line 15

 at MainApp.Main() in C:\sscli20\main.cs:line 97

As you can see, the program does precisely what it should, echoing the first string and then blowing up

with an unhandled exception! Because you compiled both files using the /debug switch, the resulting

stack trace contains line number information about the problem, but to find out more about the exception

and what is causing it, you can drop into the managed code debugger, cordbg:

 C:\sscli20> cordbg main.exe

 Microsoft (R) Common Language Runtime Test Debugger Shell Version 2.0.50826.0

 Copyright (c) Microsoft Corporation. All rights reserved.

 (cordbg) run main.exe

 Process 440/0x1b8 created.

 [thread 0xce0] Thread created.

 004: public static void Main() {

 (cordbg)

The debugger loaded main.exe and automatically ran until the first line of code in Main. Note that to get to

this point, the CLI has fired up three managed threads (of which much more will be said in later chapters).

The debugger prints out the current line, and then waits patiently for instructions. To see command options,

you can type:

 (cordbg) ?

Chapter 2: Getting Started with Rotor | 33

This will give you a list of all possible debugger commands. Typing show (sh) will display the source code

for the current method:

 (cordbg) sh

 001: using System;

 002:

 003: public class MainApp {

 004:* public static void Main() {

 005: Echo e = new Echo();

 006: e.EchoString = "Echo THIS!";

 007: System.Console.WriteLine("First echo is: {0}", e.DoEcho());

 008: e.EchoString = null;

 009: System.Console.WriteLine("Second echo is: {0}", e.DoEcho());

The asterisk indicates current position. By typing continue (cont), you can watch the exception happen:

 (cordbg) cont

 001: using System;

 002:

 003: public class MainApp {

 004:* public static void Main() {

 005: Echo e = new Echo();

 006: e.EchoString = "Echo THIS!";

 007: System.Console.WriteLine("First echo is: {0}", e.DoEcho());

 008: e.EchoString = null;

 009: System.Console.WriteLine("Second echo is: {0}", e.DoEcho());

 (cordbg) cont

 First echo is: Echo THIS!

 First chance exception generated: (0x00cd6688) <System.Exception>

 Unhandled exception generated: (0x00cd6688) <System.Exception>

 _className=<null>

 _exceptionMethod=<null>

 _exceptionMethodString=<null>

 _message=(0x00cd2110) "Alas, there is nothing to echo!"

 _data=<null>

 _innerException=<null>

 _helpURL=<null>

 _stackTrace=(0x00cd66f4) array with dims=[48]

 _stackTraceString=<null>

 _remoteStackTraceString=<null>

 _remoteStackIndex=0x00000000

 _dynamicMethods=<null>

 _HResult=0x80131500

 _source=<null>

 _xptrs=0x00000000

 _xcode=0xe0524f54

 017: }

Using where (wh) to view a trace of the execution stack and print (p) to examine the state of the instance of

Echo, you can see that the null string field is causing the problem:

 (cordbg) wh

 Thread 0xce0 Current State:GCUnsafe spot

 0)* echo!Echo::DoEcho +00c2 in C:\sscli20\echo.cs:17

 1) main!MainApp::Main +00ba in C:\sscli20\main.cs:9

 --- Managed transition ---

Although the commands might be foreign, this debugger interaction should be familiar to any programmer.

Based on the information discovered, you could correct Main by adding a try block around calls to the

Echo component, which would give the program a chance to recover from runtime exceptions.

Chapter 2: Getting Started with Rotor | 34

Bootstrapping the Loading Process

To bootstrap the loading process, the clix application launcher receives the name of a managed executable

and runs that executable by loading the CLI execution engine, loading the executable file, and putting them

to work. We will take clix apart in much more detail in Chapter 4, but the executive summary goes

something like this:

1. clix loads the execution engine into its process space by dynamically loading the sscoree.dll module.

2. clix then finds the file named in its command-line argument and loads it into memory.

3. Finally, clix feeds the loaded file to a function exposed by the sscoree module named

_CorExeMain2. When the function returns, the managed executable has exited, and it’s time to shut

off the lights and go home.

Once the file is passed to the execution engine, the CLI begins the business of loading and JIT-compiling

assemblies as they are needed.

Debugging the Rotor Execution Engine

If you run clix itself under a debugger, rather than running the managed executable under a managed

debugger, you can see the workings of the execution engine in great detail. The cdb.exe Windows debugger

from the Debugging Tools for Windows package

(http://www.microsoft.com/whdc/devtools/debugging/default.mspx) allows you to poke around the

execution engine:

 C:\sscli20> cdb –lines clix main.exe

 Microsoft (R) Windows Debugger Version 6.7.0005.0

 Copyright (c) Microsoft Corporation. All rights reserved.

 CommandLine: clix

 Symbol search path is: C:\sscli20\binaries.x86chk.rotor\Symbols;C:\sscli20\binar

 ies.x86chk.rotor

 Executable search path is:

 ModLoad: 00400000 00405000 clix.exe

 ModLoad: 7c900000 7c9b0000 ntdll.dll

 ModLoad: 7c800000 7c8f5000 C:\WINDOWS\system32\kernel32.dll

 ModLoad: 79e80000 79e9b000 C:\sscli20\binaries.x86chk.rotor\rotor_pal.dll

 ModLoad: 10200000 10321000 C:\WINDOWS\WinSxS\x86_Microsoft.VC80.DebugCRT_1fc8b

 3b9a1e18e3b_8.0.50727.762_x-ww_5490cd9f\MSVCR80D.dll

 ModLoad: 77c10000 77c68000 C:\WINDOWS\system32\msvcrt.dll

 ModLoad: 71ab0000 71ac7000 C:\WINDOWS\system32\WS2_32.dll

 ModLoad: 71aa0000 71aa8000 C:\WINDOWS\system32\WS2HELP.dll

 ModLoad: 77dd0000 77e6b000 C:\WINDOWS\system32\ADVAPI32.dll

 ModLoad: 77e70000 77f01000 C:\WINDOWS\system32\RPCRT4.dll

 ModLoad: 7e410000 7e4a0000 C:\WINDOWS\system32\USER32.dll

 ModLoad: 77f10000 77f57000 C:\WINDOWS\system32\GDI32.dll

 ModLoad: 79ec0000 79edf000 C:\sscli20\binaries.x86chk.rotor\rotor_palrt.dll

 ModLoad: 79e00000 79e08000 C:\sscli20\binaries.x86chk.rotor\sscoree.dll

 (11c8.1404): Break instruction exception - code 80000003 (first chance)

 eax=002d1eb4 ebx=7ffdf000 ecx=00000006 edx=00000040 esi=002d1f48 edi=002d1eb4

 eip=7c901230 esp=001afb20 ebp=001afc94 iopl=0 nv up ei pl nz na po nc

 cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000202

 *** ERROR: Symbol file could not be found. Defaulted to export symbols for ntdl

 l.dll -

 ntdll!DbgBreakPoint:

 7c901230 cc int 3

 0:000> bp main

 0:000> l+t

 Source options are 1:

http://www.microsoft.com/whdc/devtools/debugging/default.mspx

Chapter 2: Getting Started with Rotor | 35

 1/t - Step/trace by source line

 0:000> l+s

 0:000> lsp 2 8

 At the prompt, display 2 source lines before and 8 after

 0:000> g

 Breakpoint 0 hit

 eax=003d3bd0 ebx=7ffde000 ecx=003d6fc8 edx=00000002 esi=7c9118f1 edi=00011970

 eip=004018b3 esp=001aff6c ebp=001affb8 iopl=0 nv up ei pl nz na po nc

 cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000202

 47: extern "C"

 48: #endif

 > 49: int __cdecl main(int argc, char **argv) {

 50: struct _mainargs mainargs;

 51:

 52: #ifdef _MSC_VER

 53: if (PAL_Initialize(0, NULL)) {

 54: return 1;

 55: }

 56: #else

 clix!main:

 004018b3 55 push ebp

This looks promising. Rather than C# code, we have now paused execution in the obviously C-language

main() method. This code, of course, is the Rotor implementation for clix, which will launch and run

main.exe. Using cdb‘s go command, you can cause this to happen:

 0:000> g

 First echo is: Echo THIS!

 (11e4.1730): Unknown exception - code e0524f54 (first chance)

 Loading C:\sscli20\binaries.x86chk.rotor\mscorrc.satellite to load strings.

 Unhandled Exception: ModLoad: 51800000 5182a000 C:\sscli20\binaries.x86chk.rot

 or\ildbsymbols.dll

 System.Exception: Alas, there is nothing to echo!

 at Echo.DoEcho() in C:\sscli20\echo.cs:line 15

 at MainApp.Main() in C:\sscli20\main.cs:line 9

 eax=77c3f88a ebx=00000000 ecx=77c3e9f9 edx=77c61a70 esi=7c90e88e edi=e0524f54

 eip=7c90eb94 esp=001ae0ec ebp=001ae1e8 iopl=0 nv up ei pl zr na pe nc

 cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000246

 ntdll!KiFastSystemCallRet:

 7c90eb94 c3 ret

 0:000>

Hmm, the debugger didn‘t catch the exception in this case but just bailed out. Why?

The unfortunate truth is that managed code and unmanaged code cannot easily be debugged from within

the same debugger. (We will see ways to examine JIT-compiled code and execution engine structures in

Chapter 5, but using these facilities with native debugging facilities is not easy.) Of course, this lack of

symbolic information for managed code doesn‘t stop us from listing and running the unmanaged code for

the execution engine under the debugger!

 0:000> lsa Launch

 93: }

 94: }

 95:

 96: DWORD Launch(WCHAR* pFileName, WCHAR* pCmdLine)

 > 97: {

 98: WCHAR exeFileName[MAX_PATH + 1];

 99: DWORD dwAttrs;

 100: DWORD dwError;

 101: DWORD nExitCode;

 102:

Chapter 2: Getting Started with Rotor | 36

The clix application contains a function named Launch, from which the CLI execution engine is

dynamically loaded and called. To run the C# code for Main, clix maps the main.exe into memory and then

hands the image to a function named _CorExeMain2, which will load and run the code. By placing a

breakpoint at this point, you can actually trace through this transition into managed code, but from the

perspective of the CLI implementer rather than the perspective of the C# programmer:

 0:000> ls 147

 147: nExitCode = _CorExeMain2(NULL, 0, pFileName, NULL, pCmdLine);

 148:

 149: // _CorExeMain2 never returns with success

 150: _ASSERTE(nExitCode != 0);

 151:

 152: DisplayMessageFromSystem(::GetLastError());

 153:

 154: return nExitCode;

 155: }

 156:

 0:000> bp `clix.cpp:147`

 0:000> g

At this point, put a breakpoint in RaiseException, which you know will be called when the Echo

component uses the throw statement from within DoEcho. Continuing, hit this breakpoint:

 0:000> bp kernel32!RaiseException

 0:000> g

 First echo is: Echo THIS!

 Breakpoint 2 hit

 eax=00000000 ebx=003de5c8 ecx=003de450 edx=00000007 esi=00000000 edi=003de450

 eip=7c812a09 esp=001ae668 ebp=001ae67c iopl=0 nv up ei pl nz na po nc

 cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000202

 kernel32!RaiseException:

 7c812a09 8bff mov edi,edi

The first "Echo THIS!" output is among cdb‘s output; now you know that you are at the same exact

spot that you were in cordbg: the Echo component is raising an exception, because its field has a null

value. Examining a slightly cleaned up version of the stack trace, let‘s look for the nested calls to Main and

DoEcho:

 0:000> k

 ChildEBP RetAddr

 WARNING: Stack unwind information not available. Following frames may be wrong.

 001ae664 79e8ec82 kernel32!RaiseException

 001ae67c 7934dae9 rotor_pal!PAL_RaiseException+0x2e

[c:\sscli20\pal\win32\win32pal.c @ 5614]

 001ae764 793abc99 mscorwks!RaiseTheExceptionInternalOnly+0x27d

[c:\sscli20\clr\src\vm\excep.cpp @ 2648]

 001ae8ac 0375c54a mscorwks!JIT_Throw+0x1a8 [c:\sscli20\clr\src\vm\jithelpers.cpp

@ 4670]

 001ae8f4 792e3ec5 0x375c54a

 001ae8f8 793a0914 mscorwks!CallDescrWorkerInternal+0x33

 001ae904 7932d3f6 mscorwks!GCSafeMemCpy+0xa4 [c:\sscli20\clr\src\vm\object.cpp @

1848]

 792e3ec5 7404f983 mscorwks!CallDescrWorker+0xa0 [c:\sscli20\clr\src\vm\class.cpp

@ 11285]

 792e3ec5 00000000 0x7404f983

 0:000>

Chapter 2: Getting Started with Rotor | 37

Looking at this stack trace in some detail, notice that at the point that the exception is being raised, you are

deep in the CLI execution engine. Not all frames are available for cdb to display, but the initial frames not

shown are actually the calls to the JIT compiled versions of DoEcho and Main. (In Chapter 5, we will

examine debugging techniques that can be used to verify this). The JIT-compiled code for DoEcho calls

the JIT_Throw helper function to actually raise its managed exception.

Don‘t worry if this doesn‘t make a lot of sense yet. It will, shortly. The Rotor implementation of the CLI

runtime is composed of large quantities of C, C#, and C++ code, mixed together in complex ways.

Wringing order from this apparently chaotic mass of code is the mission that this book sets out to complete.

Observing Managed Execution

Because so much of what‘s happening in the execution engine is low-level, self-modifying code, trying to

keep track of what‘s going on can be awkward. Rather than constantly walk through code in a debugger,

readers can take advantage of a number of tracing and diagnostic facilities that exist in Rotor.

To demonstrate the use of tracing, we will use it to observe the JIT compiler in action. First, modify

main.exe to contain a try block, as follows:

 using System;

 public class MainApp {

 public static void Main() {

 try {

 Echo e = new Echo();

 e.EchoString = "Echo THIS!";

 System.Console.WriteLine("First echo is: {0}", e.DoEcho());

 e.EchoString = null;

 System.Console.WriteLine("Second echo is: {0}", e.DoEcho());

 } catch {

 System.Console.WriteLine("Caught and recovered from bad Echo.");

 }

 }

 }

When you run this program, you will see:

 C:\sscli20> csc /target:exe /reference:echo.dll /debug main2.cs

 Microsoft (R) Shared Source CLI C# Compiler version 2.0.0001

 for Microsoft (R) Shared Source CLI version 2.0.0

 Copyright (C) Microsoft Corporation. All rights reserved.

 C:\sscli20> clix main2.exe

 First echo is: Echo THIS!

 Caught and recovered from bad Echo.

Scattered throughout the code that implements the CLI execution engine are thousands of calls to chunks of

code such as the following that are conditionally compiled for logging and debugging:

 #if defined(_DEBUG) || defined(LOGGING)

 const char *szDebugMethodName = NULL;

 const char *szDebugClassName = NULL;

 szDebugMethodName = compHnd->getMethodName(info->ftn, &szDebugClassName);

 #endif

 #ifdef _DEBUG

 static ConfigMethodSet fJitBreak;

 fJitBreak.ensureInit(L"JitBreak");

 if (fJitBreak.contains(szDebugMethodName, szDebugClassName,

 PCCOR_SIGNATURE(info->args.sig)))

 _ASSERTE(!"JITBreak");

Chapter 2: Getting Started with Rotor | 38

 // Check if need to print the trace

 static ConfigDWORD fJitTrace;

 if (fJitTrace.val(L"JitTrace"))

 printf("Method %s Class %s \n",szDebugMethodName, szDebugClassName);

 #endif

In fact, this code snippet was taken directly from sscli20/clr/src/fjit/fjitcompiler.cpp, which is where the

implementation of Rotor‘s JIT compiler can be found. Whenever a new method is compiled in a build in

which _DEBUG and LOGGING are defined (such as checked and fastchecked), the JIT compiler executes

this #ifdef code. To see it in action, create an environment variable named COMPlus_JitTrace, and

set its value to 1. You should then see the following when you run main2.exe:

 C:\sscli20> set COMPlus_JitTrace=1

 C:\sscli20> clix main2.exe

 Method SetupDomain Class AppDomain

 Method .cctor Class PermissionSet

 Method .ctor Class PermissionSet

 Method .ctor Class PermissionSet

 Method .ctor Class Object

 Method Reset Class PermissionSet

 Method SetUnrestricted Class PermissionSet

 Method .ctor Class AppDomainSetup

 Method set_DisallowBindingRedirects Class AppDomainSetup

 Method get_Value Class AppDomainSetup

 Method SetupFusionStore Class AppDomain

 Method SetupDefaultApplicationBase Class AppDomainSetup

 Method .cctor Class String

 (Many more messages follow)

 Method Main Class MainApp

 Method .ctor Class Echo

 Method set_EchoString Class Echo

 Method DoEcho Class Echo

 Method WriteLine Class Console

 (Many more messages follow)

 Method .ctor Class SyncTextWriter

 Method get_FormatProvider Class TextWriter

 Method WriteLine Class SyncTextWriter

 First echo is: Echo THIS!

 Caught and recovered from dysfunctional Echo.

 (Many more messages follow)

 Method op_Explicit Class IntPtr

 Method WriteLine Class Console

 Method WriteLine Class SyncTextWriter

The very first method to be JIT-compiled when main2.exe is run is AppDomain::SetupDomain. Is this

surprising? Not really. Remember that much of the Rotor CLI implementation is written in C#. To run any

program, some of this C# code will be loaded and executed. As part of that execution sequence, it will be

JIT-compiled from the CIL in its assembly, just like any other managed code. This is what happens in this

trace.

The entire trace is actually quite enlightening, but we won‘t print all 1300-plus lines here. Instead, we

included only a few of the important parts in the previous listing, including the lines in which the

MainApp and Echo types are compiled, as well as the point at which their output is emitted to the

Chapter 2: Getting Started with Rotor | 39

console. Note how many methods are compiled between the time that DoEcho is run and the time the

characters emerge on the console!

There is actually a vast diagnostic logging subsystem in Rotor with a number of different facilities defined,

each of which can be enabled for logging. The diagnostic variable named LogFacility is a bitmasked

field mapping to 32 different logging categories, defined in sscli20/clr/src/inc/loglf.h. These flags can be

combined to trace very specific parts of the execution engine. The LogLevel diagnostic variable is used

in conjunction with LogFacility to indicate the level of detail which the execution engine should

provide. Both LogLevel and LogFacility have default behavior that results in maximum logging.

One approach to setting these variables is to use environment variables, as you did with the JIT trace. First,

turn off the JIT trace:

 C:\sscli20> set COMPlus_JitTrace=0

Then, to turn on allocation tracing in the garbage collector, which by looking at the header file you know

has a flag value of 0x100, type the following:

 C:\sscli20> set COMPlus_LogEnable=1

 C:\sscli20> set COMPlus_LogToConsole=1

 C:\sscli20> set COMPlus_LogFacility=0x100

 C:\sscli20> clix main2.exe

 TID 12a4: Executing program with command line 'main2.exe '

 TID 12a4: Allocated 4096 bytes for REF_TYPE 01c00018 System.Object[]

 TID 12a4: Allocated 72 bytes for REF_TYPE 00ccf8a4

System.OutOfMemoryException[C:\sscli20\binaries.x86chk.rotor\mscorlib.dll]

 TID 12a4: Allocated 72 bytes for REF_TYPE 00ccf8ec

System.StackOverflowException[C:\sscli20\binaries.x86chk.rotor\mscorlib.dll]

 TID 12a4: Allocated 72 bytes for REF_TYPE 00ccf934

System.ExecutionEngineException[C:\sscli20\binaries.x86chk.rotor\mscorlib.dll]

 TID 12a4: Allocated 72 bytes for REF_TYPE 00ccf97c

System.Threading.ThreadAbortException[C:\sscli20\binaries.x86chk.rotor\mscorlib.dll]

 TID 12a4: Allocated 72 bytes for REF_TYPE 00ccf9c4

System.Threading.ThreadAbortException[C:\sscli20\binaries.x86chk.rotor\mscorlib.dll]

 TID 12a4: Allocated 12 bytes for REF_TYPE 00ccfa0c

System.Object[C:\sscli20\binaries.x86chk.rotor\mscorlib.dll]

 (and on and on...)

An interesting thing to notice in this example is that allocation order is quite different from JIT compilation

order. In fact, the first thing to be allocated is the Exception object for out-of-memory errors! Many

delightful factoids can be gleaned by examining execution traces.

 Log settings can also be made by using a configuration file that is tied to the build of the CLI being used,

such as sscli20/binaries.<arch><buildmode>.rotor/rotor/rotor.ini. For example, to watch every log

message available, with output going to both the console and a file named my.log, the rotor.ini file in the

rotor subdirectory of the appropriate binaries directory (binaries.x86chk.rotor for the fastchecked build on

x86) would look like this:

 [Rotor]

 LogEnable=1

 LogLevel=10

 LogToConsole=1

 LogToFile=1

 LogFile=C:\sscli20\rotor.log

Be warned that running with extremely high log levels generates copious amounts of output during

execution. Running at LogLevel=10, main2.exe generates many megabytes of text. As a result, not only

will a log file fill extremely quickly (or scroll by in the console window far too quickly to read), but

execution will slow down due to the amount of console I/O taking place. There are more instructions and a

Chapter 2: Getting Started with Rotor | 40

number of logging examples in the file docs/techinfo/logging.html that will help you navigate and use this

facility efficiently.

Looking Ahead

Within the rest of the book, we will focus in detail on each of the elements we have already touched on:

types, assemblies and metadata, JIT compilation, managed execution, automatic memory management, and

the platform adaptation layer. In the next chapter, we begin by examining the notion of type within the CLI

and the execution engine, and how the CLI guarantees typesafety within the managed environment.

Chapter 3: Using Types to Describe Components | 41

3. Using Types to Describe

Components

Types are the universal abstraction that enables CLI-based programs to interact with the operating system,

with foreign code, and with the world of the microprocessor. Below the CLI lurks a world of address

spaces, threads, instructions, interrupts, and registers, defined by the operating system and microprocessor

being used. Above the CLI, high-level programming languages project component-based abstractions that

help to ease programmer interactions with those painfully concrete low-level constructs. Types are the

organizational principle that bridges these two worlds safely, efficiently, and consistently. To understand

how the CLI creates native code and maintains control over its execution, it is first important to understand

its type system.

Types and Type Systems

The notion of a type system can be difficult to define. For most programmers, the old adage, ―I can‘t tell

you what it is, but I know it when I see it‖ describes their definition of a type system. Intuitively, we know

that primitive types, classes, structs, and such are part of a type system, and that languages will enforce

certain rules regarding the use of these types. But to actually say, in formal terms, what a type system is and

entails is difficult. Nonetheless, most programmers, regardless of their background, will be able to infer

some interesting details about the CLI type system from Example 3-1, even if they‘re not familiar or

comfortable with C#.

Example Error! No text of specified style in document.-1. The Echo component revisited

using System;

namespace SampleEcho

{

 public enum EchoVariation { Louder, Softer, Indistinct }

 public struct EchoValue

 {

 public string theEcho;

 public EchoVariation itsFlavor;

 }

 public interface IEchoer

 {

 void DoEcho(out EchoValue[] resultingEcho);

 }

 public class Echo : IEchoer

 {

 private string toEcho = null;

 private static int echoCount = 0;

 private const System.Int16 echoRepetitions = 3;

 public delegate void EchoEventHandler(string echoInfo);

 public event EchoEventHandler OnEcho;

 public Echo(string initialEcho)

Chapter 3: Using Types to Describe Components | 42

 {

 toEcho = initialEcho;

 }

 public string EchoString

 {

 get { return toEcho; }

 set { toEcho = value; }

 }

 public void DoEcho(out EchoValue[] resultingEcho)

 {

 if (toEcho == null)

 {

 throw(new Exception("Alas, there is nothing to echo!"));

 }

 resultingEcho = new EchoValue[echoRepetitions];

 for (sbyte i = 0; i < echoRepetitions; i++)

 {

 resultingEcho[i].theEcho = toEcho;

 switch (i)

 {

 case 0:

 resultingEcho[i].itsFlavor = EchoVariation.Louder;

 break;

 case 1:

 resultingEcho[i].itsFlavor = EchoVariation.Softer;

 break;

 default:

 resultingEcho[i].itsFlavor = EchoVariation.Indistinct;

 break;

 }

 }

 if (OnEcho != null)

 {

 OnEcho(System.String.Format("Echo number {0}", echoCount));

 }

 echoCount++;

 return;

 }

 }

}

Casual users of C, C++, or Java will find much here that feels familiar and intuitive. For example, the

Echo component contains a number of type definitions: the enumerated type EchoVariation, the struct

EchoValue, the interface IEchoer, and the class Echo. We can see some fields, some methods, some

code, and so forth—much of this is intuitive and familiar, even if we‘ve never put formal definitions to it.

Type, Object, and Component

We need to draw a distinction between the terms type, object, and component. These terms are frequently

used throughout the industry, often with vague or differing meanings. They are also used in very specific

ways in the ECMA CLI specification. Taking the time up front for definitions will help ensure a common

understanding of what is meant by these terms in this book.

Type

A type is a specification that describes how a piece of unadorned data will be interpreted within the CLI

execution engine. Types provide a way to classify both the shape of data and the ways that operations on

that data should be expected to behave. The use of types has proven to be indispensable for the construction

of reliable software on a large scale; their use results in a classification system that can be used to automate

and enrich most aspects of the programming process, from compilation and linking to ensuring correct

runtime behavior.

Chapter 3: Using Types to Describe Components | 43

In the CLI, types are always used to access and manipulate data, which results in a typesafe environment.

Typesafety is achieved jointly by cooperation between compilers and the execution environment. Within

the CLI, every object, every variable, and every piece of data used as part of the frameworks has a type

associated with it from the time that it is allocated by the execution engine to the time that it is no longer

used. A typesafe compiler for the CLI, such as the Rotor JIT compiler, will restrict the kind of code that it

emits to code that always obeys the rules of the typesystem and execution environment. From a practical

perspective, this gives the CLI a way to maintain control over managed code.

To put it simply, the CLI seeks to ensure through analysis that a program will behave ―according to the

rules.‖ If there are no semantic violations of the set of verification rules defined in the ECMA specification,

then that program is defined to be typesafe. For example, if a variable is declared to be an unsigned 32-bit

integer, then in a typesafe program, there will be no code that attempts to assign a string to it:

int x;

x = "12"; // this would not be typesafe

In addition to things like simple assignment compatibility checks, a strongly-typed environment ensures

that methods called on a type are actually declared as part of that type. For example, while

System.String has a method called IndexOf on it, an integer (an instance of System.Int32) does

not:

int x = 12;

x.IndexOf("1"); // also illegal

The C# compiler will reject both of these code fragments, and even if the programmer somehow fools the

compiler or build illegal CIL manually without a compiler, the execution engine will still recognize that

System.Int32 doesn‘t have this method and reject the compiled code. (The verification step that

performs this check is something we will cover later.) Both the compiler and the execution engine enforce

typesafety. The C# compiler does checking to provide the programmer with warnings and error messages at

compile time. The execution engine does checking so that it can protect the system against buggy

compilers, poor component design, and malicious code. By this careful attention to the rules, a level

playing field for components is maintained.

Object

A very careful discussion of the terms ―type‖ and ―object‖ can be found in Section 8 of the first partition of

the ECMA specification:

Types describe values and specify a contract that all values of that type shall support. Because the CTS

supports Object-Oriented Programming (OOP) as well as functional and procedural programming languages,

it deals with two kinds of entities: objects and values. Values are simple bit patterns for things like integers

and floats; each value has a type that describes both the storage that it occupies and the meanings of the bits

in its representation, and also the operations that may be performed on that representation. Values are

intended for representing the corresponding simple types in programming languages like C and also for

representing non-objects in languages like C++ and Java.

Objects have more to them than values. By this definition, each object is self-describing, which is to say

that a reference to its type is explicitly available from its in-memory representation. It has an identity that

distinguishes it from all other objects, and it has memory associated with it that can store other entities

(which may be either object references or values). While the contents of this memory may be changed, the

identity of an object never changes.

This book will continue to use the word ―object‖ in a very specific way rather than the general sense that

object-oriented programming languages and programmers often do. For the purposes of this book, objects

are values that match the criteria in the previous paragraph, which are classified as type System.Object

in the CLI typesystem, and are used according to this type‘s specification within the CLI execution engine.

Many Objects Make an Object

Chapter 3: Using Types to Describe Components | 44

As you browse the source code, you will discover three files that each seem to implement object

base classes: clr/src/bcl/system/object.cs, clr/src/vm/comobject.cpp, and clr/src/vm/object.cpp. The

first of these, object.cs, fits together with the code in comobject.cpp to form a hybrid

implementation of the CLI type System.Object, in which the methods marked with an

InternalCall attribute are implemented in C++. The file named object.cpp contains the

execution engine‘s private view of objects in a C++ class named Object. When a CLI object of

type System.Object is created using the CIL instruction newobj, the code emitted by the JIT

compiler causes a C++ Object to be created. Confusing, but true.

To make things even clearer, a fourth class, CObjectHeader, can be found in

clr/src/vm/gcsmp.cpp. This class represents the way that objects appear when they are laid out in

the garbage collector‘s heap.

There are many different ways to look at an ―object‖ in Rotor!

Not surprisingly, the CLI component model is about objects. Objects in the Shared Source CLI

implementation are represented at runtime by the C++ class Object, found in the filename object.h in the

clr/src/vm directory. A quick examination of this header file reveals that Object is closely tied to the

CLI‘s implementation details—think of objects as ―the thing represented by the System.Object class in

the CLI‖ and you‘ll never be confused. Within the CLI environment, all object types descend from this

special base type, whose type definition is shown here in C#:

public class System.Object

{

 // Constructors

 public Object();

 // Methods

 public virtual bool Equals(object obj);

 public static bool Equals(object objA, object objB);

 public virtual int GetHashCode();

 public Type GetType();

 public static bool ReferenceEquals(object objA, object objB);

 public virtual string ToString();

}

When using the CLI component model, all object types (and value types!) are descendants of

System.Object, which means that a reference to any value can be placed into an Object reference:

int x = 12;

string s = "Hello";

Object o = x;

System.Console.WriteLine(o.ToString()); // prints "12"

o = s;

System.Console.WriteLine(o.ToString()); // prints "Hello"

Note that, as the preceding code fragments imply, each and every type within the CLI has the methods

Equals, GetHashCode, ToString, and others defined for it—how this is possible for ―primitive

types‖ like int is discussed later, when we talk about value types. Also note that the assignment of x to o

causes a copy of the value 12 to be placed into o; changing the value of o doesn‘t change the original value

of x.

Component

Components are the abstract units of interoperability and reuse for programmers working with languages

that target the CLI. They are defined using types and manipulated using high-level computer languages or

CIL. The most important aspects of components, as discussed in Chapter 1, are their packaging as

autonomous independent units and their capability of adapting over time while maintaining type-correct

behavior. Because of these characteristics, components are replaceable; they can be modified and

Chapter 3: Using Types to Describe Components | 45

redeployed without requiring changes to other components with which they collaborate or to the execution

engine.

Since we‘ve tied up the word ―object‖ for a restricted concept (an instance of the CLI System.Object

type), the word ―component‖ will need to serve in a more general conceptual role. To make up for the very

specific definition of ―object‖ in the previous section, we use the word ―component‖ where other people

might frequently say ―object.‖ We‘ll try to be as clear and consistent as possible.

To programmers, components can be intuitively understood as ―separable units.‖ Take, for example, the

Echo example earlier in this chapter. The component revolves around four types: an enumerated type, a

value type, an interface, and an implementation class. Example 3-2 shows how these types can be used in

code.

Example Error! No text of specified style in document.-2. Using the Echo component

using System;

using SampleEcho;

namespace MainSampleProgram

{

 class EchoProgram

 {

 static void Main(string[] args)

 {

 Echo myEcho;

 EchoValue[] result;

 if (args.Length > 0)

 {

 myEcho = new Echo(args[0].ToString());

 }

 else

 {

 throw new Exception("Hi mom!");

 }

 // Set up an event handler and hook to component

 Echo.EchoEventHandler handler =

 new Echo.EchoEventHandler(CallMe);

 myEcho.OnEcho += handler;

 try

 {

 System.Console.WriteLine();

 myEcho.DoEcho(out result);

 System.Console.WriteLine("Main program received echo!");

 for (int i = 0; i < result.Length; i++)

 {

 Console.WriteLine("{0}: {1}, {2}", i,

 result[i].theEcho, result[i].itsFlavor);

 }

 }

 catch (System.Exception e)

 {

 System.Console.WriteLine("Caught exception: {0}", e.Message);

 }

 }

 static void CallMe(string msg)

 {

 System.Console.WriteLine(msg);

 }

Chapter 3: Using Types to Describe Components | 46

 }

}

In this example, the program creates instances of the types defined in the Echo component and works with

them. The four types defined as part of the Echo component—IEchoer, Echo, EchoValue, and

EchoVariation—are each declared as part of the SampleEcho namespace. The program also uses the

Echo component as a source of notifications. The program registers the static CallMe method as the

recipient of notifications from the Echo component, and when those notifications are received, prints the

string that is passed as a parameter to System.Console.WriteLine, another component.

If some of the surrounding terminology or code (events, delegates, namespaces, and so on) are unfamiliar,

fear not—all of these terms and code will be discussed in greater detail throughout the remainder of this

and other chapters. The key here is the difference between the overall component (Echo), and the many

types that are used, including, but not limited to, object types.

Note that in version 2.0 of the CLI, a new dimension was added to the type system—that of parameterized

types or parametric polymorphism, also known colloquially as ―generics‖. While generics are certainly a

key part of the CLI 2.0 type system, for simplicity‘s sake we defer most of the discussion of parameterized

types and the effects it has on the type system to Chapter 6.

Type Systems, More Formally Defined

The role of the type system in the CLI is twofold: it provides a logically consistent and unchanging

conceptual foundation for programmers, and it ensures that programs can be checked for correctness at

runtime. This latter role, enforcer of typesafety, helps to prevent tampering, and is an effective way to help

ensure a robust, stable, and secure runtime environment. It is absolutely required when building services

and applications that combine components from many sources.

In general, modern software engineering aims to ensure that a system behaves correctly as specified—that

is, as its creator intended. We accomplish this through a variety of means, some formal, some less so. At

the far end of the spectrum are powerful tools and/or methodologies, such as algebraic specification

languages and denotational semantics. These techniques use mathematics to prove that a given program

will behave precisely as specified. While powerful, these approaches tend to be cumbersome and awkward

to work with and frequently require a tremendous degree of skill on the programmer‘s part.

On the other end of the spectrum, we can put automatic checking into software tools that any programmer

(or even nonprogrammer) can utilize—compilers, linkers, source-code analyzers, and so on. Some of these

tools include model checkers, tools that scan finite-state systems (firmware, for example) for errors, and

runtime monitoring, in which a system can dynamically detect when a component is misbehaving by

comparing its behavior against the component‘s specification. By and large, however, the most popular

mechanism is type verification.

A system that checks (either statically or at runtime) to make sure that all types are being used correctly, as

defined in their type descriptions, is said to be strongly typed. Strongly typed systems avoid erroneous or

malicious computation by prohibiting operations that cannot be verified as typesafe; the ECMA

specification contains a number of rules that define exactly what this means in the context of the CLI.

When a component is JIT-compiled in the CLI‘s execution engine, the compiler not only produces

executable code, but also performs verification of that code using the rules specified in the ECMA

specification. By ensuring that all loaded components are typesafe, the execution engine provides an

important guarantee of integrity to component programmers.

There are many benefits to using type systems :

Detecting errors

This is the most obvious advantage, by which types are used to detect areas of code in which the

programmer has inadvertently asked for incorrect behavior—making a method call on a type that

doesn‘t exist, for example. It is better to detect this kind of error during development than at runtime,

since you can rely on tools to do very complete checks.

Chapter 3: Using Types to Describe Components | 47

Some might suggest that this compile-time perspective is outdated in the face of dynamic languages

like Ruby or Python; in fact, these checks are not atypical of those environments as well, but occur at

different times than in a statically-typed language.

Maintenance

This is an extension of error detection, in which programmers use typechecking as a powerful tool to

support the refactoring of code. Instead of relying on programmer-centric disciplines when changing

code to support new features or results, a programmer can simply change a type‘s definition and run

the compiler. The compiler will find the places where the code is no longer consistent, giving the

programmer a well-defined and precise list of what needs to be changed to support the modification.

While this technique might arguably fall into the category of slothful engineering practice, it is

nonetheless very common.

Abstraction

Strongly typed systems can enforce programmer discipline in ways that other tools simply cannot. This

is particularly true within object-oriented systems that support inheritance (either interface-based or

implementation-based)—when a method expects a parameter of type Person, for example, the

typechecker enforces that only Persons, and derived types, will be accepted. This in turn gives the

programmer a powerful means to differentiate between Persons and other types, such as Lists,

Forms, and XmlReaders, making code clearer and more intentional.

Again, as noted earlier, in the second version of the CLI, types were extended to support generics, in

which abstractions can extend to type information, allowing the compiler and tools to provide

additional type safety and runtime optimizations.

Documentation

Types are also handy when reading programs, since the structure of type declarations helps offer hints

regarding their usage and behavior. This sort of documentation is especially useful because, unlike

comments, there is no way for it to become outdated or inaccurate.

Efficiency

If the type of an argument can be extracted at runtime, then optimizations can be made on that type to

increase program speed, reduce memory footprints, or both.

Security

A typechecker can enforce a policy that says that types are not to be used in ways which would allow

for malicious code to subvert the program or act in other undesirable ways. Some languages may

choose to allow programmers to override a strict policy for the purposes of interfacing with code that is

not typesafe; in this case, it is important to permit these programmers to make explicit assertions about

their intentions, prove that they are authorized to make such assertions, and then include these

assertions in the type-checking process.

A strongly typed system can offer all of these benefits, without significant inconvenience.

Consider again the Echo component listed in Example 3-1. Drilling in a bit, notice that the Echo object

type contains several type members: the string field named toEcho, and the two number fields named

echoCount and echoRepetitions. The echoCount type member is also static, which means that

its value is shared across all instances of the component, rather than being stored on a per-instance basis.

Of course, the Echo object type consists of type members besides its fields. There is a property named

EchoString, a method named DoEcho, and an event named OnEcho. There is also a constructor for

the class; constructors for both instances and classes are another important kind of type member.

Method parameters and return values are also typed. The DoEcho method, for example, has a void return

type and actually returns its computed results by passing them an out parameter that is an array of

EchoValue structures. Under the covers, this out parameter is represented as a managed pointer, which

is one of several ways that the CLI encapsulates pointers for safe use.

Chapter 3: Using Types to Describe Components | 48

When the DoEcho method is called, the implementation raises an event after it has successfully

manufactured the array to be passed back to its caller. Events are an interesting kind of type member that

take advantage of another reference type called a delegate. Like managed pointers, a delegate encapsulates

a pointer in a special-purpose way; it contains a function pointer that refers to a method for one or more

specific component instances. When an event is raised, each instance contained in the delegate has its

method invoked. Besides the delegate, there is another kind of reference type in this sample: the interface

named IEchoer. Interfaces describe a set of operations that can be implemented by a component and are

implemented by providing methods that define these operations. How reference types are used is what

distinguishes them—delegates and interfaces, for example, can both refer to method signatures, but the

purposes for which they were designed are very different, as we will see.

Values, and references to them, can be woven together and accessed in many different ways. The managed

pointer used in DoEcho, for example, encapsulates a pointer to an array, which is a reference type that

contains values and is accessed by index rather than by name. The array itself is composed of structures,

which are compound value types. So, in this example, the parameter is a reference type that refers to

another reference type that contains compound value types that are themselves composed of simple values.

This intermixing of diverse types is a powerful, yet easily understood, way for programmers to access the

capabilities of the underlying operating system, of frameworks from many sources, and the services of the

CLI itself.

Types as Contracts

Types act as contracts between the programmer and the execution engine, through which the programmer

can describe storage requirements, dependencies, and behaviors. Type contracts are far deeper than mere

structure, since the CLI includes not only structural descriptions in component type information, but also

the intermediate code needed to generate native method implementations. In addition, types specify details

about how components will interact with the execution engine at runtime. The ECMA specification

contains a detailed definition of the word ―contract‖ as it relates to types. The short gloss would be:

contracts consist of concrete, well-described details of implementation that types assert they abide by.

The execution engine can vouch for the integrity of components that it loads at runtime because of the

presence of type contracts. Likewise, components that have no knowledge of other components‘ structure

or behavior can depend on type contracts and related runtime mechanisms to guide their interactions. Tools,

for example, can load and manipulate components by examining and annotating component type contracts;

this style of programming is sometimes called meta-programming, and the actual type contracts themselves

are represented by what is called component metadata.

Metadata is, simply put, the data used to describe types at runtime, their behavior, and layout information

that will be needed at runtime to load the component that they represent. Compilers and tools typically emit

metadata by using a standard set of APIs to write to, and read from, in-memory data structures. When the

tool wishes to save metadata, the in-memory structures are compressed and written out as binary data,

although tools can also choose to follow the more tedious route of writing the ECMA executable file format

directly to disk.

Metadata is structured within the execution engine itself as named tables that are mapped either from

secondary storage into memory or populated on the fly. These tables are fundamental to the execution

engine, since without them, there would be no way to comprehend the type structures used in any given

executable. The representation of metadata in the Shared Source CLI is optimized for read-only access

because the component contract is usually used while running programs that utilize a given component

rather than modify its structure. Load time is often the most critical optimization scenario.

The code for the metadata system can be found in clr/src/md. There are a number of

interesting tables, and their relationships are explained in the documentation for the

unmanaged metadata APIs that can be found in the .NET Framework 2.0 SDK.

Anyone who has used a relational database will feel at home while looking at the metadata implementation;

the data itself takes the form of either heaps (for variable-length data such as strings) or tables (for fixed-

Chapter 3: Using Types to Describe Components | 49

length data such as field definitions). These heaps and tables are accessed by using persistable tokens,

which contain a reference to a specific location within a specific table or heap. As you can see from

Example 3-3, there are a number of different kinds of token—each has a specific role in describing the

structure of types, and each has its own table or heap and a unique record format.

Example Error! No text of specified style in document.-3. Types of metadata tokens (defined in

clr/src/inc/corhdr.h)

typedef enum CorTokenType

{

 mdtModule = 0x00000000, //

 mdtTypeRef = 0x01000000, //

 mdtTypeDef = 0x02000000, //

 mdtFieldDef = 0x04000000, //

 mdtMethodDef = 0x06000000, //

 mdtParamDef = 0x08000000, //

 mdtInterfaceImpl = 0x09000000, //

 mdtMemberRef = 0x0a000000, //

 mdtCustomAttribute = 0x0c000000, //

 mdtPermission = 0x0e000000, //

 mdtSignature = 0x11000000, //

 mdtEvent = 0x14000000, //

 mdtProperty = 0x17000000, //

 mdtModuleRef = 0x1a000000, //

 mdtTypeSpec = 0x1b000000, //

 mdtAssembly = 0x20000000, //

 mdtAssemblyRef = 0x23000000, //

 mdtFile = 0x26000000, //

 mdtExportedType = 0x27000000, //

 mdtManifestResource = 0x28000000, //

 mdtGenericParam = 0x2a000000, //

 mdtMethodSpec = 0x2b000000, //

 mdtGenericParamConstraint = 0x2c000000,

 mdtString = 0x70000000, //

 mdtName = 0x71000000, //

 mdtBaseType = 0x72000000, //

} CorTokenType;

When metadata is referred to within CIL or during runtime in the execution engine, it is done by using 32-

bit integers that combine a RID or a heap pointer with the CorTokenType that designates its type.

Example 3-4 (which is defined in clr/src/inc/corhrd.h) contains the macro definitions used to access the

two individual parts of a token, its RID, and its type.

Example Error! No text of specified style in document.-4. The structure of a metadata token (defined in

clr/src/inc/corhdr.h)

typedef ULONG32 mdToken; // Generic token

// Build / decompose tokens.

//

#define RidToToken(rid,tktype) ((rid) |= (tktype))

#define TokenFromRid(rid,tktype) ((rid) | (tktype))

#define RidFromToken(tk) ((RID) ((tk) & 0x00ffffff))

#define TypeFromToken(tk) ((ULONG32)((tk) & 0xff000000))

#define IsNilToken(tk) ((RidFromToken(tk)) == 0)

Metadata tokens are inserted directly into component CIL, and because of this, the metadata for a

component must itself be verified as part of certifying the code as ―safe.‖ For example, method signatures

are part of the metadata representation of a component, and these method signatures themselves are used to

drive the code that passes parameters on the stack—if it were possible to modify the metadata, it would be

Chapter 3: Using Types to Describe Components | 50

possible to circumvent the security mechanisms put in place by the execution engine, and the component

model would not provide the guarantees needed for safe integration and interoperability.

CLI metadata is also extensible. This is very important for developer tools, which need to annotate types,

for a variety of purposes; for example, an implementation of a language that supports checked exceptions

(as Java does) would want to annotate method metadata with the exception types thrown so that callers

could be checked to ensure they handle those exception types. Also, tools or languages can add abstractions

that are not natively supported by the CLI by adding custom metadata; again, a given language might

support the concept of runtime-mutable types by marking compiled types with attributes indicating their

mutability and providing necessary runtime constructs around those types to provide the façade of

mutability. Custom attributes, as well as custom modifiers on signatures, are offered.

Since type contracts are the primary way that independently developed assemblies probe and utilize each

other‘s resources, it is desirable that the logical structure that they are capable of describing is rich enough

to support interesting component-to-component interactions, such as event handling, inheritance, and data

member access.

Types and Their Behavior

The CLI specifies a neutral instruction set, CIL, which describes component structure and behavior . CIL is

never executed directly in the SSCLI—it must be translated into native microprocessor instructions before

it can be used. (The instruction set was designed to be compiled before being executed, but it would be

possible for a CLI implementation to interpret it, albeit slowly.) Example 3-5 contains a portion of the CIL

for the DoEcho method of the Echo component.

Example Error! No text of specified style in document.-5. Beginning of the Echo component’s DoEcho

method in CIL

.method /*06000007*/ public hidebysig newslot virtual final

 instance void DoEcho([out] valuetype SampleEcho.EchoValue/*02000003*/[]&

resultingEcho) cil managed

 {

 // Code size 203 (0xcb)

 .maxstack 3

 .locals /*11000002*/ init (int8 V_0,

 bool V_1,

 int8 V_2)

 IL_0000: nop

 IL_0001: ldarg.0

 IL_0002: ldfld string SampleEcho.Echo/*02000005*/::toEcho /* 04000008 */

 IL_0007: ldnull

 IL_0008: ceq

 IL_000a: ldc.i4.0

 IL_000b: ceq

 IL_000d: stloc.1

 IL_000e: ldloc.1

 IL_000f: brtrue.s IL_001d

 IL_0011: nop

 IL_0012: ldstr "Alas, there is nothing to echo!" /* 70000001 */

 IL_0017: newobj instance void

[mscorlib/*23000001*/]System.Exception/*0100000D*/::.ctor(string) /* 0A000008 */

 IL_001c: throw

 IL_001d: ldarg.1

 IL_001e: ldc.i4.3

 IL_001f: newarr SampleEcho.EchoValue/*02000003*/

 IL_0024: stind.ref

 IL_0025: ldc.i4.0

 // etc.

Chapter 3: Using Types to Describe Components | 51

The CIL in Example 3-5 is printed using the assembler format introduced in the ECMA specification and

generated using ildasm with the /tokens switch to display the value of metadata tokens. In this snippet,

the tokens are printed as comments of the form /* 0n0000nn */ (in which the character n is meant to

represent nonzero numeric digits). It shows just how many metadata tokens are typically embedded into

CIL by language compilers. The loading of type-dependent information is completely data-driven, based on

these tokens.

Rather than compile nonportable constructs like offsets or addresses into the code, the metadata for the type

is examined by the JIT compiler when it is needed by using the tokens to navigate the in-memory table

structure. The JIT compiler decides how to map these neutral representations of the types into runtime data

structures and compiled code when the types are needed.

By deferring compilation decisions, types can safely be propagated from architecture to architecture in

dormant form. The presence of complete descriptive metadata also means that the compiled code can take

advantage of a great deal of structural information to avoid extra indirection, expense, and, most

importantly, fragility. Cross-component binding, including such arcana as alignment and ordering, can be

taken care of by the JIT compiler rather than being a packaging issue. Of course, the downside of this

approach is that the code needs to be compiled every time dormant components are brought to life—this

can be mitigated by caching, but the SSCLI does not implement such a cache.

Type Evolution Through Versioning

Type evolution is a key issue for all programmers. Although they might often want to deny it, at some point

in its lifetime, a given software component invariably breaks or ceases to be useful in a changing

environment. In time, all components must be supplemented, rewritten, or replaced.

In the face of versioning, pre-CLI environments begin to break down. Because environments like C++ or

Java have no explicit support for versioning in their formal model, developers are left to invent their own

mechanism. It begins simply, usually some form of version number embedded as a string inside of the code

in question or else as a ―version number‖ field inside of a common structure; when the class or library is

loaded, it is the developer‘s responsibility to verify that the version that was loaded was an acceptable

version. Unfortunately, no standardized behavior is specified, and developers are left to their own devices

as to what should happen if the numbers don‘t match as expected.

The story gets worse—the version number exists as part of the class, but this is static, opaque data to the

loader. For most operating systems or execution environments, the first class or executable file to match the

base criteria (the filename, usually) is what‘s loaded, even if multiple copies of the same file can be found

along the loader‘s list of directories from which to load code. This leaves the developer in an even nastier

quandary—the right file is there, but because an earlier (wrong) version is there earlier on the PATH, the

correct version is never loaded. A developer might then diagnose the problem, put the right version into the

right place, but then this breaks an older application that depends on the older version.

This problem, colloquially and accurately referred to in the Windows world as ―DLL Hell,‖ essentially

stems from a single problem: the criteria by which the operating system or execution environment loader

selects the correct component to load are too narrow and underspecified. Only limited information is

captured about one component‘s dependency on another, and because of this, when multiple

implementations are present, loaders have no ability to differentiate correctly between alternative

implementations.

Within the CLI, this problem is addressed by taking the problem of versioning (and its associated partner,

that of binding , or the process by which the criteria for loading a component is evaluated) to a more formal

and complex definition. As opposed to C++, in which versioning is nonexistent and binding is left up to the

C++ environment to handle in an ―implementation-dependent manner,‖ the CLI specifies the rules by

which a component can declare an identifying four-part tuple: a version number, locale

(internationalization) information, a ―strong name‖ that corresponds to a cryptographic public key, and the

component‘s name. In addition, as we will see in Chapter 4, the CLI provides specific rules describing the

process by which a component is evaluated as a possible candidate for loading and use by client code.

Chapter 3: Using Types to Describe Components | 52

The issue of versioning is not one that the runtime alone can solve, however—developers must still make

certain conscious decisions regarding type design and implementation. Programmer decisions are

undoubtedly the largest factor in how well a type can survive versioning.

Component Self-Description

The fact that CLI defines components via the use of metadata, thereby making these components entirely

self-describing, is the most important design point for the entire CLI. Much of the functionality and

capability provided by the CLI keys off of this ability for components to stand alone, yet provide complete

information about themselves. The ability to defer binding decisions, as discussed in the previous section,

leads to better versioning behavior and smoother evolution. The ability to defer layout and compilation

decisions is also important.

Consider, if you will, two tiny programs that do the same thing, one written in C++ and one written in C#.

Both define a Point component, presenting a traditional Cartesian (x/y) coordinate location. Code for

both is in Example 3-6 and Example 3-7.

Example Error! No text of specified style in document.-6. A C++ Point component

class Point

{

public:

 double x;

 double y;

 Point();

};

Point::Point()

 : x(0), y(0)

{ }

int main(int argc, char* argv[])

{

 Point* p = new Point;

 p->x = 12;

 p->y = 24;

 return 0;

}

Example Error! No text of specified style in document.-7. A C# Point component

public class Point

{

 public double x;

 public double y;

}

class App

{

 static void Main()

 {

 Point p = new Point();

 p.x = 12;

 p.y = 24;

 }

}

Despite their source-level similarities, the compiled formats between the two are strikingly different; a C++

compiler might emit the x86 assembly code found in Example 3-8.

Example Error! No text of specified style in document.-8. Assembly code for C++ Point class

Chapter 3: Using Types to Describe Components | 53

 // Point* p = new Point;

 // allocate the memory from ::new()

 // and call Point::Point()

push 10h

call operator new

add esp,4

mov dword ptr [ebp-0ECh],eax

mov dword ptr [ebp-4],0

cmp dword ptr [ebp-0ECh],0

je main+66h

mov ecx,dword ptr [ebp-0ECh]

call Point::Point

mov dword ptr [ebp-0F4h],eax

jmp main+70h

mov dword ptr [ebp-0F4h],0

mov eax,dword ptr [ebp-0F4h]

mov dword ptr [ebp-0E0h],eax

mov dword ptr [ebp-4],0FFFFFFFFh

mov ecx,dword ptr [ebp-0E0h]

mov dword ptr [p],ecx

 // p->x = 12;

 // x is at offset 0 (8 bytes long) from the start of p

mov eax,dword ptr [p]

mov dword ptr [eax],0

mov dword ptr [eax+4],40280000h

 // p->y = 24;

 // y is at offset 8 (8 bytes long) from the start of p

mov eax,dword ptr [p]

mov dword ptr [eax+8],0

mov dword ptr [eax+0Ch],40380000h

A C# compiler produces the CIL in Example 3-9, which looks very different.

Example Error! No text of specified style in document.-9. Synopsized CIL for the C# component in

Example 3-7

.class public auto ansi beforefieldinit Point

 extends [mscorlib]System.Object

{

 .field public float64 x

 .field public float64 y

} // end of class Point

.class private auto ansi beforefieldinit App

 extends [mscorlib]System.Object

{

 .method private hidebysig static void Main() cil managed

 {

 // Code size 38 (0x26)

 .maxstack 2

 .locals init (class Point V_0)

 IL_0000: nop

 IL_0001: newobj instance void Point::.ctor()

 IL_0006: stloc.0

 IL_0007: ldloc.0

 IL_0008: ldc.r8 12.

 IL_0011: stfld float64 Point::x

 IL_0016: ldloc.0

 IL_0017: ldc.r8 24.

 IL_0020: stfld float64 Point::y

 IL_0025: ret

 } // end of method App::Main

Chapter 3: Using Types to Describe Components | 54

} // end of class App

In particular, note that the C++ version has layout information built into the code that it produces; it

calculated the offset of x and y from the beginning of the Point object in memory, then looked up the

contents of memory at [p] plus the offset. If a later revision of the Point class were to change its

declaration so that another field were added to Point and that field happened to be placed at the top of the

class declaration rather than at the bottom, all of the offsets would change—and the client code would

suddenly break, either plugging in bad values or crashing entirely. Likewise, if this code were deployed on

a different microprocessor, it would not work. Abstract information about the Point class is compiled

away, leaving no metadata for other tools or a runtime to utilize later.

The CIL version of this code, however, doesn‘t rely on layout information being compiled into the code.

Rather than calculating the offset in memory for the stfld instruction, a metadata token is emitted

instead, in this case the metadata token for Point::x and Point::y. At load time, when the type

Point is loaded, these tokens will serve as the necessary lookup points to determine precisely where in the

layout of a Point instance the values of x and y are located. Even if Point changes its definition so that

x and y are completely reversed, because the CLI doesn‘t depend on physical offsets, but names from the

metadata, the client code can continue to function as before. In short, the brittleness introduced by C++ due

to its insistence on removing all unnecessary overhead falls away and leaves you with more robust code in

the face of changes. Because the CLI uses metadata to describe its components, types, and type members,

no hard data that could break in a subsequent revision or use needs to be introduced—the CLI represents a

significant step forward in the area of component adaptability.

More on Value Types

As has been pointed out, not everything can be a reference. Within an individual component, for example,

there must be real data—the numbers, strings, and so on that our programs manipulate to achieve some

useful result. Value types are the abstraction that the CLI component model uses to represent the real data

of a program to programmers and tools. Without value types, components would be nothing but empty

shells—without values, not much can be done. All useful computational work eventually boils down to

working with values.

Bytes, characters, integers (of all sizes), floating-point numbers, decimal numbers, enumerated values, and

booleans are all value types. A value type, by ECMA Specification definition (Partition I, 7.2.1), is

―represented as a sequence of bits‖—in other words, values are actual data rather than an address to a

location that contains data.

An instance of a value type can be used as a field of a type, as a parameter, as a method return value, or as a

variable. When allocated as part of an object or within an array, the value lives within the object on the

heap. When declared as a variable or used as a parameter, value types live on the stack. When passed as a

parameter to a method, by default, a copy, rather than the address, of the value type is created and sent to

the recipient of the method; in short, value types are passed by value. Example 3-10 shows a C# declaration

from the Echo component that uses both a reference type (string) and a value type (the

EchoVariation enumeration).

Example Error! No text of specified style in document.-10. A compound value type from the Echo

component

public struct EchoValue

{

 public string theEcho;

 public EchoVariation itsFlavor;

}

As this sample shows, value types can be grouped together into compound values—in C#, this is done

using the struct keyword. Since we are dealing with ―real data,‖ value types have features that can be

used for interop with data structures that already exist—it is possible to designate with great precision how

Chapter 3: Using Types to Describe Components | 55

to lay out a value type in memory, both in terms of ordering and alignment. In general, developers will not

want or need to do this—layout is something best left to the JIT compiler unless interop with unmanaged

code is needed, but it is definitely possible to take fine-grained control over this. (To be complete, it should

be mentioned that it is possible to do explicit layout for nonvalue types, but value types are by far and away

the most common use for this feature.)

You can define values to act as representatives from a bounded set of choices; in many programming

languages, these are called enumerated types . In practical terms, enumerated types are used to offer a

strongly typed set of values, possibly in the form of a bitmask; in the case of the Echo component in

Example 3-1, the component wishes only to provide three levels of volume: Louder, Softer, and

Indistinct (which we presume to be more quiet than Softer—we‘re assuming that it‘s not indistinct

because we‘ve gone deaf listening). While it certainly would be possible to describe the volume of the echo

using integer values (perhaps using decibels as the units of measurement?), this isn‘t always a practical or

preferred design approach. Within the CLI, enumerations are always a value type, backed by a built-in

integral (that is, non-floating point) value type for storage, which is included in an enum‘s metadata.

Working with Values

There are two principal issues with which developers working with the CLI must be acquainted: the

concept of type coercion and conversion, and the process by which a value can be given reference

semantics where necessary or desired, called boxing (and its reverse operation, unboxing).

Coercion and conversion

Frequently, when working with values, the need to ―convert‖ a value of one size or format into a value of a

different size or format arises—for example, you may want to convert a character value into a 4-byte

integer representing the Unicode character code for that character, or you may want to take a 4-byte integer

value and store it in a floating-point value, most likely in preparation for performing floating-point

arithmetic on that value.

Therefore, it‘s both desirable and necessary to provide rules by which a value of one value type can be

converted to another type: this is known as coercion. Formally, ―coercion takes a value of a particular type

and a desired type and attempts to create a value of the desired type that has equivalent meaning to the

original value.‖
2
 In more practical language, compilers insert coercion operations when a value of one type

is assigned to a storage location that has a different type, as in Example 3-11.

Example Error! No text of specified style in document.-11. Safe implicit type coercion

int x = 24;

long y;

y = x; // coercing x from 32 bits to 64 bits

In this example, the 32-bit value stored in the location named x is being extracted, a 64-bit value is created,

assigned 24, and stored back into the location named y. The two values are of different types, even though

they have equivalent meanings. (Also note that the two values are equivalent, even though they are not

identical.)

Within the CLI, two types of coercion are discussed. Widening coercion occurs when a value is assigned to

a value type that is larger than the original type, such as storing a 32-bit signed integer into a 64-bit signed

integer location. Narrowing coercion is when the reverse takes place: storing a 32-bit signed integer into a

16-bit signed integer location. The former, as in Example 3-11, is usually a benign operation—no

information is lost, since the value can be represented completely using the smaller of the two types. The

latter, in Example 3-12, is dangerous, since it might result in loss of information.

Example Error! No text of specified style in document.-12. Dangerous narrowing coercion

2 Partition I, 7.3.2.

Chapter 3: Using Types to Describe Components | 56

System.Int32 x = 32000;

System.Byte y;

y = (System.Byte)x; // coercing x from 32 bits to 8 bits, with info loss

int x2 = 32000;

byte y2;

y2 = (byte)x2; // same dangerous conversion as above; synonymous with above

Narrowing coercion will sometimes result in a loss of information—if the 32-bit integer stores a value that

cannot be represented in 8 bits of information, for example, then the assignment will result in a different

value than the original. For this reason, narrowing coercion operations are usually required to be explicitly

coded by the programmer (usually through a cast or similar operation), whereas widening coercions can be

implicitly (and safely) done by the language itself. The CLI provides the ability to check for narrowing

coercions that lose information and throw a System.OverflowException at runtime when they

occur.

Boxing/Unboxing

By default, when an instance of a value type is passed from one location to another as a method parameter,

it is copied in its entirety. At times, however, developers will want or need to take the value type and use it

in a manner consistent with reference types. In these situations, the value type can be boxed: a reference

type instance will be created whose data is the value type, and a reference to that instance is passed instead.

Naturally, the reverse is also possible: taking the boxed value type and dereferencing it back into a value

type—this is called unboxing.

CIL‘s box instruction is a typesafe operation that converts a value type instance to an instance of a

reference type that inherits from System.Object. It does so by making a copy of the instance and

embedding it in a newly allocated object. For every value type defined, the type system defines a

corresponding reference type called the boxed type. The representation of a boxed value is a location where

a value of the value type may be stored—in essence, a single-field reference type whose field is that of the

value type. Note that this boxed type is never visible to anyone outside the CLI‘s implementation—the

boxed type is silently generated by the CLI itself, and is not accessible for programmer use. (It is purely an

implementation detail that would have no real utility were it exposed.)

In the Echo example component, there is a single place where a box instruction is generated by the C#

compiler, which is highlighted in the excerpt in Example 3-13.

Example Error! No text of specified style in document.-13. An excerpt from the Echo component

if (OnEcho != null) {

 OnEcho(System.String.Format("Echo number {0}", echoCount));

}

If you‘re hard-pressed to spot the boxing operation in this line of code, it‘s because it occurs implicitly in

C#. In fact, the operation is implicit in most languages, much as widening coercions can be. This code

snippet, deep in the DoEcho method, contains a call to String.Format, which is a method whose

implementation takes a variable number of arguments, each of unknown type. To make this work,

parameters are specified to be as generic as possible; they are typed as System.Object. When the

method is called, the parameters take on more specific types, which results in them being cast (or boxed) to

the ultimate base class, System.Object. Because echoCount is declared as an int, which is a value

type, echoCount will be boxed before being passed to the Format method. The Format method

invokes ToString on what appears to be an object, but the runtime looks up and invokes

System.Int32‘s ToString virtual method dynamically. (If you want to see the box operation for

yourself, run ildasm against the echo.dll executable and examine the CIL for this method.)

With the release of the CLI 2.0 Specification, Nullable Types entered the CLI lexicon, and nullability (if

such a word can be coined) creates some interesting changes for value types during JIT compilation. In

particular, nullable types extends the value type system allowing value types to hold the value ―null‖,

normally reserved only for reference values. Example 3-14 shows this in action:

Chapter 3: Using Types to Describe Components | 57

Example Error! No text of specified style in document.-14. Implementation of the box instruction

(simplified from clr/src/vm/jithelpers.cpp)

public void NullableExample()

{

 int exampleValue = 36;

 object nullableRef = null;

 // Do some nullable fun stuff

}

This presents some interesting complications for the type system and the JIT compiler—most notably, only

certain types are allowed to ―go null‖, as it were, and the JIT compiler must determine if a given type is

permitted to do this or not.

Example 3-15 shows how boxing is performed within the execution engine. When the JIT compiler

encounters the box instruction in the stream of opcodes currently being compiled, it first determines if the

boxed type is nullable, and follows by a call to the JIT_Box function, shown below.

Example Error! No text of specified style in document.-15. Implementation of the box instruction

(simplified from clr/src/vm/jithelpers.cpp)

Object* JIT_Box(CORINFO_CLASS_HANDLE type, void* unboxedData)

{

 TypeHandle clsHnd(type);

 MethodTable *pMT = clsHnd.AsMethodTable();

 pMT->CheckRestore();

 // You can only box things that inherit from valuetype or Enum.

 if (!pMT->IsValueType() && !pMT->IsEnum())

 COMPlusThrow(kInvalidCastException, L"Arg_ObjObj");

 newobj = pMT->FastBox(&unboxedData);

 return(OBJECTREFToObject(newobj));

}

OBJECTREF MethodTable::FastBox(void** data)

{

 if (Nullable::IsNullableType(TypeHandle(this)))

 return Nullable::Box(*data, this);

 OBJECTREF ref = Allocate();

 CopyValueClass(ref->UnBox(), *data, this, ref->GetAppDomain());

 return ref;

}

In this code, an object is allocated using FastBox, which checks to see if the value type is nullable or not.

Assuming the value type is not nullable, FastBox calls CopyValueClass, which is a simple wrapper

for CopyValueClassUnchecked, shown in Example 3-16. It is notable because it uses layout

information to copy actual values into the object instance; this layout information was computed from the

type‘s metadata when the type was loaded by the execution engine.

Example Error! No text of specified style in document.-16. Implementation of

CopyValueClassUnchecked (simplified from clr/src/vm/object.cpp)

void CopyValueClassUnchecked(void* dest, void* src, MethodTable *pMT)

{

 switch (pMT->GetNumInstanceFieldBytes())

 {

Chapter 3: Using Types to Describe Components | 58

 case 1:

 (volatile UINT8)dest = *(UINT8*)src;

 break;

 case 2:

 (volatile UINT16)dest = *(UINT16*)src;

 break;

 case 4:

 (volatile UINT32)dest = *(UINT32*)src;

 break;

 case 8:

 (volatile UINT64)dest = *(UINT64*)src;

 break;

 default:

 memcpyNoGCRefs(dest, src, pMT->GetNumInstanceFieldBytes());

 break;

 }

 // Tell the GC about any copies.

 if (pMT->ContainsPointers())

 {

 CGCDesc* map = CGCDesc::GetCGCDescFromMT(pMT);

 CGCDescSeries* cur = map->GetHighestSeries();

 CGCDescSeries* last = map->GetLowestSeries();

 DWORD size = pMT->GetBaseSize();

 do

 {

 // offset to embedded references in this series must be

 // adjusted by the VTable pointer, when in the unboxed state.

 size_t offset = cur->GetSeriesOffset() - sizeof(void*);

 OBJECTREF* srcPtr = (OBJECTREF*)(((BYTE*) src) + offset);

 OBJECTREF* destPtr = (OBJECTREF*)(((BYTE*) dest) + offset);

 OBJECTREF* srcPtrStop = (OBJECTREF*)((BYTE*) srcPtr + cur-

>GetSeriesSize() + size);

 while (srcPtr < srcPtrStop)

 {

 SetObjectReferenceUnchecked(destPtr,

ObjectToOBJECTREF(*(Object**)srcPtr));

 srcPtr++;

 destPtr++;

 }

 cur--;

 } while (cur >= last);

 }

}

The code automating the copy is fairly straightforward, thanks to the presence of metadata. Contiguous

instance data is copied from the value type into the object instance based on the number of ―instance field

bytes.‖ Note that the grungy details of garbage collection must be dealt with; this will be discussed much

more deeply in Chapter 9.

unbox is a CIL instruction that corresponds to box. It converts an object whose runtime type has been

boxed (which is possible only via the box instruction—again, it‘s impossible to directly create a boxed

type) back to an instance of a value type. Example 3-17 shows the code for the JIT_Unbox function.

Example Error! No text of specified style in document.-17. Implementation of the unbox instruction

(Simplified fromclr/src/vm/jithelpers.cpp)

LPVOID JIT_Unbox(CORINFO_CLASS_HANDLE type, Object* obj)

{

 TypeHandle typeHnd(type);

 RuntimeExceptionKind except;

 if (obj != 0) {

Chapter 3: Using Types to Describe Components | 59

 if (obj->GetMethodTable() == typeHnd.AsMethodTable())

 return(obj->GetData());

 else {

 LPVOID ret = JIT_Unbox_Helper(type, obj);

 if (ret != 0)

 return(ret);

 }

 except = kInvalidCastException;

 }

 else

 except = kNullReferenceException;

 FCThrow(except);

}

When an unbox instruction is encountered, a call to the JIT_Unbox function is emitted by the JIT

compiler. Not surprisingly, the JIT_Unbox function takes the object passed to it and unwraps the data

contained in the instance using the GetData method. JIT_Unbox_Helper is a simple function that

encapsulates conversion between primitive types and enums.

More on Reference Types

Reference types tie computational behavior directly to their heap-allocated state. There are three important

classifications of reference types within the CLI: objects, interfaces, and encapsulated pointers, each of

which can be found within the Echo component of Example 3-1. Enumerating these elements, the Echo

class itself is an object type that implements an interface, contains a delegate, and uses a managed pointer

to pass an out parameter.

CLI 2.0 introduced parameterized types into the CLI type system, meaning that now the

CLI recognizes a fourth type of reference type, the TypedReference, wherein the

reference itself is type-constrained by a type established at instantiation (rather than in the

type‘s definition). As noted above, we will have more to say on parameterized types and

generics in Chapter 6, so for now we will focus on the non-generic parts of the SSCLI.

General Principles

Recall that the definition of a value type is tied to its data, which are types that are ―represented as a

sequence of bits.‖ The location of the value‘s data is directly embedded into a value type instance.

Conversely, a reference type ―describes values that are represented in the location of a sequence of bits,‖

according to the ECMA specification. A reference type‘s value data is never manipulated directly by clients

but is always accessed indirectly, through a proxy that has certain type safety properties around it, also

known as a reference.

A reference is essentially a small piece of memory that points to the actual location of the reference type—

in many ways, it‘s fair to think of the reference as a pointer. However, references have several advantages

over pointers in the classic C/C++ sense:

References are strongly-typed

An object instance cannot be assigned to a reference unless it is assignment-compatible; this means a

programmer cannot assign a Person object to a Department reference unless the type Person

inherits from Department (an unlikely scenario).

References cannot be incorrectly assigned

A reference cannot point to a memory location that is not occupied by an object of that specific (or

compatible) type; similarly, a reference cannot be ―manufactured‖ to point to an arbitrary location in

memory.

Chapter 3: Using Types to Describe Components | 60

References cannot dangle

As long as a reference points to an object, that object cannot be deallocated. Therefore, a reference will

always either be good or null, which is a reference literal value that points nowhere.

These tie into another aspect that separates reference types from value types. With a value type, because the

instance of the value type is the data in question (remember, a value type is ―represented as a sequence of

bits‖), allocation of a value type occurs as soon as the value type is declared within the code:

struct Size

{

 public int x;

 public int y;

}

class App

{

 static void Main()

 {

 Size s1, s2;

 int diff;

 diff = s1.x - s2.x;

 }

}

As soon as s1 and s2 are needed for the computation of diff, the compiler allocates enough memory to

represent them, in this case on the method‘s stack. On the other hand, in many programming languages,

objects (instances of reference types), must be allocated in a distinct operation using object-specific syntax.

For example, the code below creates only a reference for s, without creating an object instance for it:

class Size

{

 public int x;

 public int y;

}

class App

{

 static void Main()

 {

 Size s;

 }

}

Creating the actual object would require the explicit use of the new operator:

class App

{

 static void Main()

 {

 Size s = new Size();

 }

}

Similarly, in this code, only one object exists, even if it is referenced by two references:

 class App

 {

 static void Main()

 {

 Size s = new Size();

 Size t = s;

 }

Chapter 3: Using Types to Describe Components | 61

 }

Observant readers will notice that in none of these code samples is there any mention of deallocation of the

object pointed to by s. This is because, as we have seen, the CLI is a garbage-collected system—the CLI

itself takes responsibility for the deallocation and destruction of objects allocated during the CLI‘s lifetime.

This is also how the CLI guarantees that a reference will never dangle—it ensures that as long as one

reference to an object exists from reachable code, the object will continue to exist, as well. (How this works

will be explored in Chapter 9.)

Interfaces

An interface, unlike other reference types, is simply a contract, guaranteeing that certain behavior must be

present on any type that implements it. It provides a strongly typed definition, stipulating that if the type is

to be usable, the interface‘s entire promised contractual behavior will be completely implemented on any

concrete object instance whose type claims to implement it, or else either compilation would have failed, or

in the rare case where the compiler can be hookwinked, the runtime will. For example, the Echo

component defines an interface, IEchoer, which promises, in this case, that the component will

implement a single method called DoEcho which returns void and sets the output parameter

resultingEcho to some value:

public interface IEchoer

{

 void DoEcho(out EchoValue[] resultingEcho);

}

Any implementation of IEchoer must therefore have a DoEcho method that matches this signature.

Should a type implement IEchoer and fail to provide a DoEcho method, that type must be marked abstract

(indicating that it cannot be instantiated) or compilation fails.

The use of interfaces is at once both obvious and subtle. On the surface, an interface provides a simple

mechanism to guarantee that implementers will provide known methods and a known IS-A relationship

chain. More subtly, an interface provides the ability to partition types into categories of related

functionality—of all types in the system, those that can echo messages should in turn implement the

IEchoer interface, all types that can compare instances of themselves against other instances of other

types should implement the IComparable interface, and so on.

Interfaces can define any member type, including properties, methods, and events:

interface IPerson

{

 string FirstName

 {

 get; set;

 }

 string LastName

 {

 get; set;

 }

 void Eat();

}

This interface specifies that any type that wishes to provide ―person-like‖ behavior must provide two string

properties—one called FirstName, one called LastName—and a method matching the Eat signature.

The fact that the CLI provides the ability to specify interfaces as more than just methods is a very useful

semantic detail and is worth examining in more detail. Historically, interfaces in other languages

(specifically, C++ and Java) have provided contracts for all three elements as method declarations on an

interface—that is, state is represented as accessor and mutator, also known as getter and setter methods;

behavior is represented as nonstate-related methods; and notification involves a callback interface that

interested client components must implement somehow. In code, this can be boiled down as such:

Chapter 3: Using Types to Describe Components | 62

/*

 * Fictitious C++ RS-232 Serial Port component class; to make

 * this an "interface" in C++, these would be pure virtual

 */

class SerialPort

{

public:

 SerialPort();

 ~SerialPort();

 // State methods

 //

public:

 // Getter/setter for the baud rate on the serial port

 //

 int getBaud();

 void setBaud(int newBaudValue);

 // Flow control state

 //

 bool getFlowControl();

 void setFlowControl(int newFlowControlValue);

 // Behavior methods

 //

public:

 void send(int data);

 int read();

 // Notification methods

 //

public:

 class Callback

 {

 public:

 // Called when data is ready to be read

 //

 virtual void onDataReady() = 0;

 };

 void registerListener(const Callback& listener);

 void removeListener(const Callback& listener);

};

Java code can be similarly imagined. The key here is that the interface‘s contract can be expressed using

only method declarations and definitions, even though the method calls aren‘t particularly expressive of the

intent. The state methods, for example, are reflected as nothing more than methods in the metadata, as are

the behavioral methods and the notification methods. In short, only by examining the naming patterns

(―getters and setters‖, as they are colloquially known in Java) of the method names can you ascertain what

the intent of the interface is.

Within the CLI (again, using C# as the language), the interface can be coded more clearly and intentionally:

public interface SerialPort

{

 public int Baud

 {

 get;

 set;

 }

 public bool FlowControl

Chapter 3: Using Types to Describe Components | 63

 {

 get;

 set;

 }

 public void send(int data);

 public int read();

 public delegate void DataReadyDelegate();

 public event DataReadyDelegate OnDataReady;

}

Here, the intent of each is much clearer, but more importantly, the intent is fully captured in metadata,

again making SerialPort entirely self-descriptive: any tool, from a compiler to a code-generation tool,

will have full awareness of the fact that Baud and DataReadyDelegate are state of the serial port

component, while things like send and OnDataReady are behavioral—no convention involving method

names is required.

Delegates and Managed Pointers

Delegates and managed pointers are both encapsulated pointers, which are reference types that augment an

internal reference with additional information to enable unique CLI features. Take, for example, the

references to code that are called function pointers.

Function pointers are supported as a first-class construct by the CLI. However, function pointers, used to

refer to a method of an object, are not enough to capture the locations of both the method code and the

object‘s instance data. Because the need to capture both locations together is very common in object-

oriented code, to represent events and for the purpose of passing callback functions as method parameters,

the designers of the CLI invented delegates for this purpose.

Delegates are essentially the object-oriented equivalent of function pointers (more specifically, they are a

special kind of closure), and as you can see from Example 3-18, they bundle a method pointer and a

reference to a specific object instance, into a single type.

Example Error! No text of specified style in document.-18. The elements of a delegate (defined in

clr/src/bcl/system/delegate.cs)

public abstract class Delegate : ICloneable, ISerializable

{

 // _method is the MethodInfo representing the target

 private IntPtr _methodPtr;

 // _target is the object we will invoke on

 private Object _target;

 // In the case of a static method passed to a delegate, this field stores

 // whatever _methodPtr would have stored: and _methodPtr points to a

 // small thunk which removes the "this" pointer before going on

 // to _methodPtrAux.

 internal IntPtr _methodPtrAux;

 // additional implementation omitted

Because the delegate contains an object reference, it can rely on the metadata for this object to maintain

typesafety at runtime. Note that the class is abstract—the Delegate class is used to derive other delegate

types, most notably the MulticastDelegate that is used to implement events in the CLI.

Managed pointers might be a little harder to understand than delegates, although they work under a similar

principle. (And unless you are one of the lucky readers who are building compilers, you‘ll probably never

need to understand the details.) There are a number of places where compilers and development tools need

to work with pointers directly—for example, when they are allocating new chunks of memory. However,

Chapter 3: Using Types to Describe Components | 64

the execution engine needs to preserve typesafety at all times and, because of this, cannot pass pointers

directly to the compiler. To solve this problem, a mechanism similar to delegates is used—a ―raw‖ pointer

is stored alongside type information that enables the JIT to verify that the pointer will be used properly and

to create code accordingly.

There are a number of CIL instructions that result in pointer manipulation that are informed by metadata in

this way, including the box.any and unbox.any instructions, allocation-related instructions such as

newarr and newobj, and more esoteric instructions such as mkrefany.

An implementation that shows this technique is the value type TypedReference, seen in Example 3-19.

Note that both the pointer (which is somewhat confusingly called Value in this code) and the type

information are stored generically in integers. At this level of implementation, the execution engine has no

abstractions to fall back on—the ugly details of mapping are exposed directly.

Example Error! No text of specified style in document.-19. The elements of a typed reference (from

clr/src/bcl/system/typedreference.cs)

public struct TypedReference

{

 private IntPtr Value;

 private IntPtr Type;

 // additional implementation omitted

A managed pointer is used in the Echo component in Example 3-1 to represent the ―out‖ parameter to the

DoEcho method. If you examine the CIL and the metadata for the component, you will find that a stack

location is allocated, into which the newarr opcode places a newly allocated instance of an array of value

types. This array is then filled with return values and is available on the heap until all references to it are

dropped, at which point it becomes available for garbage collection.

The key to managed pointers, delegates, and all other encapsulated pointers is that they are opaque. Since

their inner data contents are not accessible, and since their implementations are completely contained

within the code implementing the CLI, the execution engine can guarantee that their use is safe despite the

fact that their use equates to manipulating addresses directly.

Identity and Equality for Reference and Value Types

As part of a discussion of type, we should examine the difference between object identity and object

equality. Tests for both identity and equality are used throughout the Rotor CLI implementation. Of the

two, identity is particularly important, being found in many of the runtime services such as code access

security and garbage collection.

Identity is a property of an object‘s location—the memory address at which the object‘s data is located

describes the value‘s identity, rather than the data contained at that address. Equality, on the other hand, is a

measure of the value‘s contents—the data for two objects, rather than their locations, determines whether

they are equal. This implies that two values that are identical must also be equal, but the reverse does not

necessarily hold. For example, consider this snippet of C#:

System.Object A, B, C, D;

A = "A string";

B = A;

C = "A string";

D = "A different string";

Figure 3-1 shows the results schematically.

Chapter 3: Using Types to Describe Components | 65

Figure Error! No text of specified style in document.-5. Identity versus equality

A and B, since their data share the same location, are identical, as well as equal. A and C, although their

data are in different locations, both contain bitwise matching data, and therefore they are equal, even

though they aren‘t identical. Finally, A and D, having unmatched data in different locations, are neither

identical nor equal.

Within the CLI, the properties of identity and equality are provided via two methods on the base

System.Object type: ReferenceEquals, which provides identity comparison capabilities, and

Equals, which provides equality comparison. Since the Equals operation is heavily dependent on the

semantics of a given component, it is not unusual for its behavior to be replaced or augmented in derived

types. Identity, on the other hand, is a simple test that rarely needs to be overridden. Both Equals and

ReferenceEquals may sometimes be mapped to operators in programming languages, although this is

purely in the hands of the language‘s designers.

The code used to implement Equals and ReferenceEquals for System.Object should help drive

home the difference between equality and identity. First, Example 3-20 is the simple, one-line C# method

that compares two references to determine whether they represent the identical object.

Example Error! No text of specified style in document.-20. ReferenceEquals tests for identity (defined in

clr/src/bcl/system/object.cs)

public static bool ReferenceEquals (Object objA, Object objB) {

 return objA == objB;

}

Identity is easy to test for! (Assuming that no sneaky programmer has overridden the equality operator...)

Equality, on the other hand, is trickier. Example 3-21 shows the generic test that is the default behavior for

managed objects in the CLI. (Note that the implementation of this object method is C++ code rather than

C#.)

Example Error! No text of specified style in document.-21. Object’s equality test (simplified from

clr/src/vm/comobject.cpp “internal call” implementation)

BOOL ObjectNative::Equals(Object *pThisRef, Object *pCompareRef)

{

 if (pThisRef == pCompareRef)

 return TRUE;

 // Since we are in FCALL, we must handle NULL specially.

 if (pThisRef == NULL || pCompareRef == NULL)

 return FALSE;

 MethodTable *pThisMT = pThisRef->GetMethodTable();

Chapter 3: Using Types to Describe Components | 66

 // If it's not a value class, don't compare by value

 if (!pThisMT->IsValueClass())

 return FALSE;

 // Make sure they are the same type.

 if (pThisMT != pCompareRef->GetMethodTable())

 return FALSE;

 // Compare the contents (size - vtable - sink block index).

 BOOL ret = memcmp(

 (void *) (pThisRef+1),

 (void *) (pCompareRef+1),

 pThisRef->GetMethodTable()->GetBaseSize() - sizeof(Object) - sizeof(int)) ==

0;

 return ret; ;

}

The code first checks for identity—if the two object references passed as arguments are identical, they will

always be equal. If they are not identical, additional tests are performed to make sure that the objects being

compared are values of the same type, since values of differing types cannot equal each other. As stated

previously, reference types can certainly test for equality, but to do this, a type must replace the default

implementation found in Object, which implements equality only for value types. Eventually, if all tests

are passed, the contents of the two objects are compared directly, and if they match, the two values are

determined to be equal.

Type Interoperability

Because the CLI type system regards interoperability with native code as an important goal, CLI consumers

can expose their own component frameworks or unique features of an underlying operating system without

compromise. Unlike execution environments that claim to provide ―write once, run anywhere‖ facilities,

the CLI was designed to augment existing system abstractions with its type system rather than fully

duplicate such facilities in a new layer. To implement this approach, it follows that CLI types must not only

be consistent among themselves, but must also be capable of representing the complete set of native

constructs provided by the underlying system and microprocessor, and of using these constructs within its

component model.

Built-in Types

Built-in types are perhaps the simplest form of type interoperability to understand: they are directly

understood by the CLI execution engine, and have obvious value type equivalents. For example, the built-

in type System.Int32 represents a 4-byte signed integer. These types are commonly mapped directly to

types that the microprocessor implements in hardware by a given CLI implementation. In the ECMA

specification, these mappings and the semantics associated with them are termed the ―virtual execution

system.‖

The actual constants used to represent built-in types within the JIT compiler are shown in Example 3-22.

Example Error! No text of specified style in document.-22. The map used to convert abstract CLI types

into processor-specific types (defined in clr/src/vm/jitinterface.cpp)

static const BYTE map[] = {

 CORINFO_TYPE_UNDEF,

 CORINFO_TYPE_VOID,

 CORINFO_TYPE_BOOL,

 CORINFO_TYPE_CHAR,

 CORINFO_TYPE_BYTE,

 CORINFO_TYPE_UBYTE,

Chapter 3: Using Types to Describe Components | 67

 CORINFO_TYPE_SHORT,

 CORINFO_TYPE_USHORT,

 CORINFO_TYPE_INT,

 CORINFO_TYPE_UINT,

 CORINFO_TYPE_LONG,

 CORINFO_TYPE_ULONG,

 CORINFO_TYPE_FLOAT,

 CORINFO_TYPE_DOUBLE,

 CORINFO_TYPE_STRING,

 CORINFO_TYPE_PTR, // PTR

 CORINFO_TYPE_BYREF,

 CORINFO_TYPE_VALUECLASS,

 CORINFO_TYPE_CLASS,

 CORINFO_TYPE_VAR, // VAR (type variable)

 CORINFO_TYPE_CLASS, // ARRAY

 CORINFO_TYPE_CLASS, // WITH

 CORINFO_TYPE_REFANY,

 CORINFO_TYPE_VALUECLASS, // VALUEARRAY

 CORINFO_TYPE_NATIVEINT, // I

 CORINFO_TYPE_NATIVEUINT, // U

 CORINFO_TYPE_DOUBLE, // R

 // put the correct type when we know our implementation

 CORINFO_TYPE_PTR, // FNPTR

 CORINFO_TYPE_CLASS, // OBJECT

 CORINFO_TYPE_CLASS, // SZARRAY

 CORINFO_TYPE_VAR, // MVAR

 CORINFO_TYPE_UNDEF, // CMOD_REQD

 CORINFO_TYPE_UNDEF, // CMOD_OPT

 CORINFO_TYPE_UNDEF, // INTERNAL

};

In addition to the basic types one would expect to see in this list, void, bool, char, and various sizes of

floating-point and integral numbers, the CLI also defines several other built-in types that carry additional

structure or semantics. OBJECT, arrays, strings, and VALUECLASS aren‘t too surprising, along with the

several flavors of CLASS, since these are important fundamentals for the component model. The natively

sized flavors of integers, and floating-point numbers that take on whatever word size the underlying

hardware‘s CPU uses, are also to be expected.

More interestingly, there are several varieties of pointer that show up in this map: function pointers,

BYREF, PTR, and REFANY. Pointer types are fully supported by the CLI, despite the fact that they can

cripple the advantages of typesafety. The CLI both provides a broad set of types to work with and the rules

of engagement—in this case, ―don‘t use pointers unless you understand that your code will not be

verifiably typesafe, and because of this, you will be completely responsible for maintaining typesafety in

place of the CLI execution engine.‖ To use trusted code within the CLI implementation that manipulates

addresses and interoperates with unmanaged code, pointers must be called out as a special case or else

represented like any other primitive type. The designers of the CLI opted for the single mapping, which had

the side effect of greatly enhancing interoperability—in many cases, well-defined pointers can be used

within typesafe code. For example, function pointers to methods are used extensively and exposed as

delegates. Typed references and managed pointers are additional typesafe constructs that are available to

compiler writers.

All of the types in Example 3-22 form the backbone of the CLI type system, since to be useful, the CLI

must ultimately translate abstract types and their behavior into native instructions, datatypes, and data

layouts represented by addresses and offsets. This list is used by the internals of the CLI and is never

exposed directly to consumers, who see CLI runtime services, CIL and metadata, or interoperability

facilities in their place.

Chapter 3: Using Types to Describe Components | 68

Wrapper Classes, Marshaling, and Interop

An interoperability requirement that makes a good sample case is the use of opaque handles in APIs.

Opaque handles are forms of names. They are pointers or indexes to data whose structure is not meant to be

visible to the clients of a programming API, but is important internally to that API. Handles are dispensed

to clients to track resources that belong to the API‘s implementation; they are stored and returned to other

runtime routines as parameters by clients when they need to programmatically refer to the original

resource. Because handles are often used to represent operating-system entities, the CLI needs to be able to

interact with and use them without intrinsic knowledge of the structure of the resources that they represent.

In this case, how should typed abstractions like handles (or semaphores, or ...) be represented in the CLI?

The usual approach has been to enable call-level interop so that API calls can be embedded directly into

―wrapper classes,‖ which themselves can be managed code. This kind of use places additional requirements

on the runtime services used by components—explicit layout of memory regions must be possible,

finalization becomes important during garbage collection for cleanup, exception mechanisms need to

coexist peacefully, threading and thread sensitivity must be recognized... the list goes on and on. A

discussion of this kind of interop will be found in the chapters on extending the SSCLI. From the

perspective of types, low-level resources can be represented as managed pointers, callbacks, or components

themselves. Much more will be said about these techniques later.

Wrapped APIs and value types are clearly essential for programming languages that do

not support components. A major design point for the CLI is enabling a language

agnostic approach—just because this book concentrates on the component model, this

point should not be lost. Classes that are not instantiable and have only static methods,

for example, make great wrappers; the component model can accommodate these cases.

The ECMA specification has an extensive and more formal discussion of its typesystem

in its sections on the Common Language Specification and the Common Type System.

Using Types in Data-Driven Code

Earlier, in the section entitled ―Type, Object, and Component‖, we saw how the loading and compilation

process of the CLI is data-driven, with many decisions made by examining embedded metadata tokens at

the last possible moment. This technique is not limited to the JIT compiler—it can be used by custom

programs as well. The use of type information to drive program decisions is called introspection or

reflection—the component‘s code is reflecting on its own structure and making decisions based on this

information.

Programs with sufficient permissions can create, manipulate, and examine type metadata, either from

managed code (using the System.Reflection family of types) or from unmanaged code (using the

unmanaged APIs described in clr/src/inc/metadata.h that are outside the CLI specification). Type

descriptions can be used to defer decisions until runtime, enabling looser linkages between components and

more robust load-time adaptations.

This last point deserves a bit more in the way of explanation—specifically, the idea of using component

metadata to promote looser coupling between components may be a new concept for many. Consider, for a

moment, a desire to take an existing in-memory object instance and save its current state to some secondary

storage stream (e.g., the filesystem, or sent as part of an HTTP request, or even to a binary field in a

database.) Under formal, object-oriented approaches, this is common behavior across types and therefore

should be represented as a base type from which derived types inherit this functionality.

On closer examination, however, serious problems begin to creep in. To begin with, this base type knows

absolutely nothing of the derived type‘s data, yet it‘s the derived type‘s data that needs to be stored (along

with any further derived types that in turn derive from the derived type). In addition, because we also look

to use inheritance as a mechanism for unifying commonality among domain types (Employee is a

Person, whereas Department is not), this in turn begs the argument for multiple inheritance within the

system, a road the C++ community already went down and discovered significant issues with.

Chapter 3: Using Types to Describe Components | 69

Within a single-inheritance environment, like Java, one possible solution is to create an interface that serves

as a well-understood ―flag‖ to components that indicate that this type wants to participate in this ―object-to-

disk‖ behavior. A type inherits this ―marker interface,‖ which has no methods, and when instances of this

type are passed to the ―object-to-disk‖ APIs, this flag is checked to ensure that this type does, in fact, want

to be stored.

In turn, this approach has some significant flaws. For starters, the level of granularity on an interface is

again centered on methods. If the component wants or needs to indicate some additional information about

its desire to be stored to disk, it needs to specify a method in the interface, called by the storing APIs, to

obtain that information. This in turn means the components wishing to be stored must implement those

methods, making this an intrusive operation—in essence, it ―pollutes‖ the API of the component with code

that isn‘t domain-related.

What we really want for this system, at this point, is the ability to place information at the type level into

the code, available to interested parties, but otherwise a non-intrusive (and non-polluting) specification.

Custom attributes were designed exactly for this purpose. Attributes are metadata that is attached to various

facets of types, using either special language syntax or tools that enable after-the-fact type annotation. The

Serializable attribute, for example, could be attached to the Echo component with the very simple

one-line declaration shown in Example 3-23, creating a capability for this component simply by the act of

annotating it.

Example Error! No text of specified style in document.-143. C# syntax of the serializable attribute

[Serializable()]

public class Echo : IEchoer

{

 // Rest of component declaration would follow

}

At runtime, when the now-serializable component is asked to serialize its state, a serialization engine can

use the component‘s metadata to determine exactly how to read and write the values of the type to or from

an external representation. The state of the component can be freeze-dried using such a technique and then

reloaded later. Note that like component assemblies, serialized component state can persist across runtime

incarnations of the component itself; serialized state information saved by Version 1 of a component may

very well be reloaded into Version 3 of the same type. By making the process data-driven, a well-designed

component can adapt to this eventuality.

Example 3-24 contains the code from the SSCLI that implements serialization.

Example Error! No text of specified style in document.-154. Code from the serialization engine (defined

in clr/src/bcl/system/runtime/serialization/formatter.cs)

protected virtual void WriteMember(String memberName, Object data)

{

 BCLDebug.Trace("SER", "[Formatter.WriteMember]data: ", data);

 if (data==null) {

 WriteObjectRef(data, memberName, typeof(Object));

 return;

 }

 Type varType = data.GetType();

 BCLDebug.Trace("SER", "[Formatter.WriteMember]data is of type: " , varType);

 if (varType==typeof(Boolean)) {

 WriteBoolean(Convert.ToBoolean(data, CultureInfo.InvariantCulture),

memberName);

 } else if (varType==typeof(Char)) {

 WriteChar(Convert.ToChar(data, CultureInfo.InvariantCulture), memberName);

Chapter 3: Using Types to Describe Components | 70

 } else if (varType==typeof(SByte)) {

 WriteSByte(Convert.ToSByte(data, CultureInfo.InvariantCulture), memberName);

 } else if (varType==typeof(Byte)) {

 WriteByte(Convert.ToByte(data, CultureInfo.InvariantCulture), memberName);

 } else if (varType==typeof(Int16)) {

 WriteInt16(Convert.ToInt16(data, CultureInfo.InvariantCulture), memberName);

 } else if (varType==typeof(Int32)) {

 WriteInt32(Convert.ToInt32(data, CultureInfo.InvariantCulture), memberName);

 } else if (varType==typeof(Int64)) {

 WriteInt64(Convert.ToInt64(data, CultureInfo.InvariantCulture), memberName);

 } else if (varType==typeof(Single)) {

 WriteSingle(Convert.ToSingle(data, CultureInfo.InvariantCulture),

memberName);

 } else if (varType==typeof(Double)) {

 WriteDouble(Convert.ToDouble(data, CultureInfo.InvariantCulture),

memberName);

 } else if (varType==typeof(DateTime)) {

 WriteDateTime(Convert.ToDateTime(data, CultureInfo.InvariantCulture),

memberName);

 } else if (varType==typeof(Decimal)) {

 WriteDecimal(Convert.ToDecimal(data, CultureInfo.InvariantCulture),

memberName);

 } else if (varType==typeof(UInt16)) {

 WriteUInt16(Convert.ToUInt16(data, CultureInfo.InvariantCulture),

memberName);

 } else if (varType==typeof(UInt32)) {

 WriteUInt32(Convert.ToUInt32(data, CultureInfo.InvariantCulture),

memberName);

 } else if (varType==typeof(UInt64)) {

 WriteUInt64(Convert.ToUInt64(data, CultureInfo.InvariantCulture),

memberName);

 } else {

 if (varType.IsArray) {

 WriteArray(data, memberName, varType);

 } else if (varType.IsValueType) {

 WriteValueType(data, memberName, varType);

 } else {

 WriteObjectRef(data, memberName, varType);

 }

 }

}

Because the metadata for any object instance is available through the reflection APIs, the code to

implement the writing out of values is nearly trivial. If the serialization engine wants to provide additional

services later, like the ability to optionally encrypt the serialized data, then the attribute could be enhanced

to include a boolean Encrypt flag, defaulted to false. But because this is not an intrusive part of the

client wishing to be serialized, the client component suffers no substantive changes to its own

implementation—a change to the metadata attribute would be the worst required.

Summary

We will have much more to say about the data-driven approach to execution used in the CLI in later

chapters. For now, it is important to note that metadata-rich types are the abstraction that makes this

approach possible.

The type system of the CLI is designed to promote maximal flexibility in a language-agnostic approach to

component integration. By creating completely self-descriptive components and preserving their metadata

as the executable representation, no intrinsic binding to the underlying platform is created until the JIT

compiler is run. Using this approach, a single executable can adapt to a variety of platforms, environments,

and system versions over time. Armed with more intimate knowledge about how this is possible in the type

Chapter 3: Using Types to Describe Components | 71

system of the CLI, we can now turn our attention to how types are packaged and distributed as stored

component assemblies.

Chapter 4: Extracting Types from Assemblies | 72

4. Extracting Types from Assemblies

Types attain their full power as an integration mechanism when they are packaged in a form that can be

easily transported from machine to machine and reconstituted safely. The CLI devotes a great deal of its

design to enabling exactly this scenario, using a packaging approach based on assemblies. Assemblies are

central to understanding components, since as we saw in the discussion of metadata, the component

architecture of the CLI is data-driven: the data found in assemblies is a blueprint for all of the types that

will populate the execution engine at runtime. Although such metadata can be synthesized directly at

runtime, it is far more common to find it in the form of a file on disk, in which form it can propagate from

machine to machine and from microprocessor to microprocessor, via traditional disk-to-disk copy or via

network download.

Type Packaging

Assemblies are the basic unit of packaging and code security for the CLI runtime. The requirement that

most influenced their design was the need for packaging that would allow self-contained components to be

moved easily from location to location and yet still interoperate with high fidelity. To accommodate this,

assemblies took on the following characteristics , which will serve to guide us further in our examination of

the CLI:

Assemblies are self-describing

Assemblies, to enable data-driven execution, are completely self-descriptive and preserve full-fidelity

metadata.

Assemblies are platform-independent

The CLI achieves a good measure of platform independence by ensuring a well-known, standard

format for assemblies.

Assemblies are bound by name

Clients locate assemblies by querying for a four-part tuple that consists of a human-friendly name, an

international culture, a multipart version number, and a public key token.

Assembly loading is sensitive to version and policy

Assemblies are loaded using tunable binding rules, which allow programmers and administrators to

contribute policy to assembly-loading behavior.

Assemblies are validated

Each time an assembly is loaded, it is subjected to a series of checks to ensure the assembly‘s integrity.

We‘ll examine each of these concepts in turn.

Assemblies Are Self-Describing

Assemblies contain blueprints for types in the form of metadata and CIL, which are referred to as modules .

A module is a single file containing the structure and behavior for some or all of the types and/or resources

found in the assembly. An assembly always contains at least one module but has the capacity to include

multiple modules if desired, usually to gain packaging and performance flexibility.

Chapter 4: Extracting Types from Assemblies | 73

The types exposed by an assembly are actually represented in the metadata as redirections to the modules

that contain the types; it is not possible to expose types without modules. Allowing multiple modules in a

single assembly makes it easier to isolate changes as requirements evolve. In particular, resources or types

that are either infrequently accessed or are frequently changed can be contained in separate files.

As you can see from Figure 4-1, the modules in an assembly can also contain resources, which is a squishy

term for passive data (meaning anything that isn‘t intended as executable code or metadata). Resources are

typically packaged as part of the assembly to take advantage of its namespace, as well as the locality and

trust that come from being within, rather than outside, its logical boundaries. Both types and resources are

optional; assemblies that contain types with no resources are common, while assemblies that contain

resources can be useful only for tasks such as localization.

Like the type-describing modules that they contain, assemblies themselves have metadata that describe

their structure. This metadata takes the form of a manifest that itemizes the contents of the assembly,

contains the compound name for the assembly, describes public types that the assembly exports, and

describes types that the assembly will import from other

Figure Error! No text of specified style in document.-5. Assemblies can use one or more

modules, but only one contains a manifest

assemblies. Manifests are built using the same metadata table mechanisms that are used to describe types—

to see this in action, look in assembly.cpp and assemblymd.cpp in the sscli/clr/src/vm and

sscli/clr/src/md/compiler directories.

As we‘ve already seen, there are several tools that are part of the SSCLI distribution

whose implementation can help illuminate the structure of modules and assemblies. The

first of these is ildasm.exe, the CIL disassembler, whose code can be found in

sscli20/clr/src/ildasm. The job of ildasm is fairly simple: take a file and disassemble it

into its component parts. All source is displayed as CIL, and complete metadata tables

can be dumped. As a development and diagnostic tool, ildasm is peerless. More

importantly, however, to the Rotor experimenter, ildasm provides the ability to examine

CLI metadata from both a black-box and white-box perspective; developers can use it to

examine the metadata of compiled assemblies, as well as use the code that comprises

ildasm as a template from which to build their own unmanaged applications and tools that

examine CLI executables. Another useful tool to examine is al.exe, the assembly linker,

which is used to piece together different modules into a single assembly and whose code

can be found in sscli20/csharp/alink.

Chapter 4: Extracting Types from Assemblies | 74

Usually, the assembly manifest is built when the source is compiled; to see this in action, take the Echo

component from Chapter 3 and compile it into a library using the C# compiler. After it has successfully

compiled, run the metainfo tool against the single-module assembly contained in echo.dll by typing:

 > metainfo /assem echo.dll

The /assem switch restricts the output of metainfo to show only assembly metadata, which means that

you‘ll see something similar to the following:

Microsoft (R) Shared Source CLI Runtime Meta Data Dump Utility Version 2.0.50826.0

Copyright (c) Microsoft Corporation. All rights reserved.

//

File echo.dll:

Assembly

 Token: 0x20000001

 Name : echo

 Public Key :

 Hash Algorithm : 0x00008004

 Version: 0.0.0.0

 Major Version: 0x00000000

 Minor Version: 0x00000000

 Build Number: 0x00000000

 Revision Number: 0x00000000

 Locale: <null>

 Flags : [none] (00000000)

 CustomAttribute #1 (0c000001)

 CustomAttribute Type: 0a000001

 CustomAttributeName: System.Diagnostics.DebuggableAttribute :: instance

void .ctor(value class DebuggingModes)

 Length: 8

 Value : 01 00 07 01 00 00 00 00

 ctor args: (<can not decode>)

 CustomAttribute #2 (0c000002)

 CustomAttribute Type: 0a000002

 CustomAttributeName:

System.Runtime.CompilerServices.CompilationRelaxationsAttribute :: instance void

.ctor(int32)

 Length: 8

 Value : 01 00 08 00 00 00 00 00

 ctor args: (8))

This dump shows the values of the assembly‘s attributes. If you instead run the following against the

component, you‘ll see a great deal more of the metadata:

 > ildasm /metainfo echo.dll

The results are too lengthy to include here, but in the ildasm output, you‘ll be able to see assembly

versioning and dependency information, in addition to imported and exported types. If this were a

multimodule assembly spread out over several files, you would get information for every module.

The ildasm program provides a superset of the functionality found in metainfo. As is the

case with many small utility programs, each has its role, and this role is governed by

programmer taste. Some think that the /assem switch, for example, is the easiest way to

get to assembly attributes. Playing with each is a fine way to fritter away a few moments

of free time.

Chapter 4: Extracting Types from Assemblies | 75

Assemblies are, at their core, the metadata that comprises their manifests (which, of course, transitively

include type metadata and behavior, as well as resources). The distinction between an assembly and a

module is important; in particular, it must be stressed that ―assembly‖ and ―file‖ are not equivalent terms.

The CLI is built on top of abstractions that can be used in many different situations on many different

platforms, and because of this, there are cornerstone concepts that do not correspond directly to common

operating system abstractions. Since assemblies can be made up of multiple files, one cannot always point

to a file that corresponds to the assembly. In our example, Echo.dll happens to be a file that comprises the

entire assembly and contains both the singleton module and the assembly manifest, but this will not always

be the case. You might decide to split the implementation into two modules, one for backward

compatibility and one containing new code, for example. Or you might decide to localize using a separate

module to contain resources. The important thing to remember is that assemblies and their manifests

always refer to modules.

Assemblies Are Location-Agnostic

On-disk assemblies can be successfully loaded on many different machine architectures. This isn‘t magic,

but it is fundamental to portability. An easy-to-try experiment is to compile an assembly using the SSCLI

and examine or run it using the .NET Framework SDK tools, or the Ximian/Novell ―Mono‖ CLI

implementation. Using a shared format is a venerable and well-understood way to begin a quest for

interoperability.

The persistent structure for an assembly and its types is very different than what it will eventually become

in memory. In the Chapter 2 tutorial, we briefly saw that the file format is based on the PE/COFF

executable format, but most of the interesting structure is entirely contained within a single opaque .text

section. Because of this, the ECMA format does not rely heavily on the PE/COFF headers and file

structure.

The Microsoft Portable Executable (PE) file format is the format used by Microsoft

Win32-based operating systems for storing executable resources (DLLs and EXEs). PE

depends, in turn, on the Common Object File Format (COFF) , which is an even older

executable format. A complete description of the PE/COFF format, besides being

excruciatingly dull, is beyond the scope of this book; however, the segmented format is

well-documented in a specification that can be found on Microsoft‘s MSDN web site.

Within the Rotor code base, the task of loading, parsing, and verifying the PE file structure falls to a single

class called (cleverly enough) PEFile , located in sscli20/clr/src/vm/pefile.h and pefile.cpp. A PEFile

instance is a C++ class wrapper around a Portable Executable image. This image doesn‘t have to exist on

disk; it can in fact be created around an image that the program hosting the execution engine has mapped

into memory already or created directly. The PEFile itself is fairly simple: once created, the PEFile

provides an easy way to obtain various headers—the Win32 headers (an instance of an

IMAGE_NT_HEADERS struct), the COR headers (an instance of an IMAGE_COR20_HEADERS struct),

and instances to metadata objects (an instance of an IMDInternalImport interface).

Examining the PEFile class doesn‘t take long; there‘s not much to PEFile beyond verifying the

structural integrity of the file and then using it to obtain the sections of a file to be picked apart further by

hand. Within Rotor, the principal aim is to get at the part of the PE file where the

IMAGE_COR20_HEADER lives, as shown in Example 4-1 (which is defined in clr/src/inc/corhdr.h).

Example Error! No text of specified style in document.-1. The IMAGE_COR20_HEADER

typedef struct IMAGE_COR20_HEADER

{

 // Header versioning

 DWORD cb;

 WORD MajorRuntimeVersion;

 WORD MinorRuntimeVersion;

Chapter 4: Extracting Types from Assemblies | 76

 // Symbol table and startup information

 IMAGE_DATA_DIRECTORY MetaData;

 DWORD Flags;

 // If COMIMAGE_FLAGS_NATIVE_ENTRYPOINT is not set, EntryPointToken represents a

 // managed entrypoint.

 // If COMIMAGE_FLAGS_NATIVE_ENTRYPOINT is set, EntryPointRVA represents an RVA

 // to a native entrypoint.

 union {

 DWORD EntryPointToken;

 DWORD EntryPointRVA;

 };

 // Binding information

 IMAGE_DATA_DIRECTORY Resources;

 IMAGE_DATA_DIRECTORY StrongNameSignature;

 // Regular fixup and binding information

 IMAGE_DATA_DIRECTORY CodeManagerTable;

 IMAGE_DATA_DIRECTORY VTableFixups;

 IMAGE_DATA_DIRECTORY ExportAddressTableJumps;

 IMAGE_DATA_DIRECTORY ManagedNativeHeader;

} IMAGE_COR20_HEADER, *PIMAGE_COR20_HEADER;

Important fields include the version numbers and the entry point, as well as the segment addresses for the

metadata, the resources, and the digital signature, if present. Note that there is no segment address for the

code itself; the entrypoint token will be resolved like every other metadata token, via the metadata segment,

by the ExecuteMainMethod method of Assembly. The token is resolved to a MethodDef, its calling

convention and signature are verified, and, eventually, the method is given control by the execution engine.

Loading Assemblies by Name

 Assemblies are as self-contained as possible to impart independence and maximize their chances at being

versionable. The types in an assembly are exposed as public or are purely internal to the assembly; there are

no friend constructs to complicate binding relationships. To ensure adaptability, they attach to their

surrounding environment at runtime by binding to names, rather than addresses or offsets.

Types are the universal abstraction that drives execution in the CLI, and types use other types by referring

to them by name. Fully qualified type names combine the assembly name and the base type name, plus an

optional namespace prefix, if present. The name of the type is scoped by the assembly, and types are joined

together (or bound) by name.

Although the namespaces that components populate appear to be hierarchically

structured, they are not. (This differs, in particular, from Java, in which package structure

is mapped directly to the filesystem.) The namespace prefix in a fully qualified name is

just an optional string that can precede a type‘s name and typically follows a hierarchal

naming convention used by developer tools to group types together. They are purely

conventional, and they are not isolated; multiple assemblies can contribute to the same

namespace.

The loose coupling that comes from name-based binding is consistent with adaptability over time. To

remain viable over time, the assembly must be capable of propagating itself through future generations, no

matter how harsh conditions become. The best way to do this robustly in the face of changing conditions is

to meticulously describe all parts of the system and develop ways to make small changes, while still

remaining compatible with the overall system. It is precisely this ability to make small changes

transparently and swap component implementations in and out behind names that enables clever

programmers to ensure good release-to-release binary compatibility.

Chapter 4: Extracting Types from Assemblies | 77

 Example 4-2 shows how assembly names are represented in the System.Reflection namespace.

Example Error! No text of specified style in document.-2. The elements of assembly names (simplified

from clr/src/bcl/system/reflection/assemblyname.cs)

public sealed class AssemblyName : _AssemblyName, ICloneable, ISerializable,

IDeserializationCallback

{

 private String _Name; // Name

 private byte[] _PublicKey;

 private byte[] _PublicKeyToken;

 private CultureInfo _CultureInfo;

 private String _CodeBase; // Potential location to get the

file

 private Version _Version;

 private StrongNameKeyPair _StrongNameKeyPair;

 private SerializationInfo m_siInfo; // A temp variable which we need during

deserialization.

 private byte[] _HashForControl;

 private AssemblyHashAlgorithm _HashAlgorithm;

 private AssemblyHashAlgorithm _HashAlgorithmForControl;

 private AssemblyVersionCompatibility _VersionCompatibility;

 private AssemblyNameFlags _Flags;

}

The full name of an assembly includes four parts; all but the base name itself are optional. A full assembly

name typically consists of the filename minus its extension plus version information in a format that

concatenates major version, minor version, build number, and revision number into a dot-separated string.

After this, the localized culture of the assembly can be referenced by including a two-character

abbreviation (dictated by IETF RFC-1766). Culture information is particularly important when resources or

localizable strings are included as part of the assembly. Finally, a public key or a public key token (an

abbreviated form of the public key formed using a cryptographic hash) that identifies the developer of the

assembly can be included. This is used when exploiting the CLI‘s support for cryptographic strongnames .

When the parts of the full name are combined in a canonical way, the result is called the displayname of the

assembly. Displaynames can be either complete or partial. Strongnames are optional, and if they are used,

they have a radical effect on the binding regimen used; the rules for finding strongnamed libraries

supplement the rules for finding libraries without strongnames, and enable sharing scenarios that wouldn‘t

otherwise exist.

An assembly‘s display name can be seen within managed code by interrogating the FullName property of

the System.Reflection.Assembly instance for the assembly. Printed, it appears as ―assembly-

name, Version=x.x.x.x, Culture=culture, PublicKeyToken=token‖; the assembly for the Echo component,

for example appears as:

 echo, Version=0.0.0.0, Culture=neutral, PublicKeyToken=null

when displayed. As you can see, the assembly is unsigned, and no version number has been assigned to it.

To set the other three parts of the assembly name, the SSCLI uses assembly-level custom attributes to

directly emit the values into the assembly manifest.

The implementation of assembly-level attributes is strictly a compiler convention, and

can be found in assemblyattributes.cs in the bcl/system/reflection directory. Assembly-

level attributes are not implemented in the same way as custom attributes, which is a

shortcoming of the current CLI specification. It is possible to use the more general

Chapter 4: Extracting Types from Assemblies | 78

custom attribute mechanism for module-level attributes, but not for assembly level

attributes.

So to set the version and strongname signature of the Echo component, you could use the following

attributes at the top of the Echo.cs file:

 [assembly: AssemblyVersion("1.0.0.0")]

 [assembly: AssemblyKeyFile("echo.snk")]

in which echo.snk is a file containing a cryptographic public key/private key pair generated by the

sn.exe utility. This would then change the display name of Echo to:

 echo, Version=1.0.0.0, Culture=neutral, PublicKeyToken=fcd14a8abe06f0d2

Of course, the value of PublicKeyToken will vary given unless readers use the exact same public

key/private key token file used to generate the example. Throughout this chapter, whenever we show a

public key token, you should assume that your own will differ.

Assembly names were constructed with as many parts as they have to support versioning and side-by-side

loading. Embedding the version number into the name permits the CLI to highlight dependencies as part of

its component-to-component contract.

Alternatively, public key tokens allow two assemblies of the same name from different parties to coexist.

There are repercussions to this technique, however; in the presence of many versions of a single assembly,

name resolution and binding rules become quite complex.

Binding to Versioned Assemblies

Of course, it is possible to manually load assemblies from code using the Load or LoadFrom methods of

the Assembly type, but the more normal case is that assemblies are loaded as they are needed. The

assembly loading code, like so many of the other portions of the CLI, follows the principle of deferred

actions: by deferring a costly action until it is actually needed, you can avoid performing it unnecessarily. If

an application rarely calls a method or rarely accesses a named resource, the assembly will rarely be

loaded. In fact, an application can be built to run successfully with assemblies that are referenced, but not

deployed. Debugging code, or optional features, might benefit from this treatment.

Once a call is made to a method in an assembly, the first step in binding is to decide what version of the

assembly, containing the type, should be used. To determine this, the execution engine consults the

manifest of the assembly that made the call, where it can find an exact version specifier in the table of

external references. Once this version number is procured, the CLI hunts down a file that corresponds to it,

using the loosely-defined runtime service referred to in the SSCLI code base as fusion.

―Fusion‖ was the codename for the assembly loader at the development of the Microsoft

.NET Framework, and because of this, you will see many comments and variable names

that contain the word. There is also a directory in the SSCLI distribution, named

sscli20/clr/src/fusion, in which you‘ll find some of the code used during assembly

loadtime. (This code is deployed as the fusion.dll shared library that is dynamically

loaded by the SSCLI at runtime.) However, the configuration and loading code that can

be found in this library is augmented by a fair amount of code that resides in the

execution engine directory (sscli20/clr/src/vm). Like many projects, the SSCLI has

accreted partial layers of imperfectly factored subsystems over time. When searching for

implementation details, one way to approach the division of code between fusion and the

execution engine is to remember that the CLI is concerned with loading types from

assemblies, while fusion is concerned with locating and loading files.<< JOEL : Resolve

the ambiguity here—I think Fusion was part of the OS that had to be backported into

Rotor v1, but I don‘t have the historical perspective here. Help? >>

Chapter 4: Extracting Types from Assemblies | 79

The execution engine checks to see whether the appropriate assembly is already loaded, since once an

assembly is loaded, it can never be reloaded within a given application domain. (Application domains will

be discussed later in this chapter.) If the assembly is not loaded, but is strongly named and fully qualified, a

machine-wide cache, called the Global Assembly Cache (GAC), is checked. Details about the GAC are, for

the moment, irrelevant—just recognize it as a common place for assemblies to live. If the assembly is

found in the GAC, it is loaded; otherwise, the execution engine then searches for codebase elements in

configuration files, which specify locations from which assemblies can be loaded. If no codebase

locations are provided, the execution engine will look in the appbase as a last resort, which is a variety of

likely locations in the filesystem. By default, the appbase is the relative root directory from which the

application was executed.

Key-Based Binding to Assemblies

The CLI supports the use of cryptographic signatures as a way to uniquely identify assemblies. The

presence of the AssemblyKeyFileAttribute in an assembly‘s metadata denotes that it is strongly

named, and that this attribute will be used as a part of the loading process to verify that the assembly being

loaded is identical to the referenced assembly. It is possible to turn off this verification, and during

development, this is an important configuration option, since code under development is usually both

trusted and broken at the same time, and the time spent signing and verifying strongnames could almost

certainly be better spent fixing bugs!

The verification mechanism for strongnames requires the build process to have access to both the public

and private elements of a cryptographic key pair at the time that it builds an assembly. The public key

becomes part of the assembly name, and a cryptographic hash of the metadata of the assembly is calculated

using the private key and is inserted into the assembly. At load time, the execution engine uses the public

key to extract a hash value for the assembly being verified that is then compared against a direct

cryptographic hash of the metadata, proving that the producer of the assembly had access to the private key.

The implementation of the strongname crypto code can be found in strongname.cpp in the clr/src/vm

directory. It is used by the execution engine from files such as assembly.cpp.

The Shared Source CLI is not intended for use as a secure environment, although the

source code does provide a good example of how a secure execution environment might

be built. For example, strongname verification is turned off by default in the SSCLI for

several important public keys, which means that no assembly built as part of the SSCLI

can be trusted with respect to origin. Since you have control of access to the Rotor source

code on your machine, you are the only person who understands the level of trust to

impart to your own build output. If you want to make Rotor secure, you will need to audit

source code modifications, restrict access to keypairs used to build the execution engine,

do the work necessary to establish trust relationships between the execution engine and

its assemblies, and, in general, pay a lot of attention to the process used to build and

deploy the executables that comprise the built output of the distribution.

The GAC, as mentioned previously, is part of the extended search path for assemblies. To be found in the

GAC, an assembly must have a public key. Public keys are normally attached by dropping an

AssemblyKeyFile attribute into a C# source file and compiling; the C# compiler will extract the key

pair from the key file and sign the assembly. (An assembly with a public key does not have to be signed to

be in the GAC, although such a delay signed assembly must still have a public key attached. Since it cannot

be safely loaded, it can be used only with verification turned off.) In the commercial implementation, which

supports running many different versions of the CLI on a single machine, the GAC is implemented as a

subdirectory under the Windows installation directory (typically C:\WINDOWS\Assembly); in the SSCLI,

the GAC is tied to the directory structure of the particular version of sscoree.dll that is being used.

Chapter 4: Extracting Types from Assemblies | 80

Sharing Assemblies on a Computer

The GAC essentially represents a machine-wide library of assemblies for use by any CLI process. It is, in

essence, the communal pool of shared assemblies. Like any communal resource, there are strict rules for

use, to protect the peace and to ensure correct behavior. If a programmer doesn‘t wish to play by these rules

or has no need to share an assembly, then she may simply place her assembly in the same directory as the

managed executable that needs it, and it will be found and loaded from there.

Within the Rotor source base, as mentioned previously, the GAC is implemented as a subdirectory of the

build tree. In particular, the Rotor binaries will be in a directory named something like

binaries.x86chk.rotor (with the directory name changing according to version, platform, and the kind of

build being used). The GAC_MSIL subdirectory will be in the rotor/assembly subdirectory underneath that

location. Exploring this subdirectory reveals that each assembly is placed into further subdirectories, first

separated by the assembly name as a subdirectory, then the assembly‘s version number and public key

token. For example, the GAC_MSIL directory looks something like the following on Windows:

 Directory of C:\sscli20\binaries.x86chk.rotor\rotor\assembly\GAC_MSIL

 <DIR> ISymWrapper

 <DIR> Microsoft.JScript

 <DIR> Microsoft.Vsa

 <DIR> System

 <DIR> System.Configuration

 <DIR> System.Data.SqlXml

 <DIR> System.Runtime.Remoting

 <DIR> System.Runtime.Serialization.Formatters.Soap

 <DIR> System.Xml.Xml

These are the assemblies that ship with Rotor out of the box. Drilling down into the System directory,

you‘ll find something like this:

 Directory of C:\sscli20\binaries.x86chk.rotor\rotor\assembly\GAC_MSIL\System

 <DIR> 2.0.0.0__b77a5c561934e089

Drilling down one level further:

 Directory of

C:\sscli20\binaries.x86chk.rotor\rotor\assembly\GAC_MSIL\System\2.0.0.0__b77a5c56193

4e089

 1,949,696 System.dll

And, sure enough, running ildasm on the System.dll contained in this directory reveals that the version

number of System.dll is 2.0.0.0, and its public key token matches that of the other half of the subdirectory

name.

Having demonstrated this implementation detail, however, it is important to once again note that the GAC

is communal property, and dropping compiled assemblies into this GAC subdirectory without using the

proper utility program is strongly discouraged; the mechanism chosen by a CLI implementer is entirely in

that implementer‘s hands and is almost guaranteed to vary from one platform to the next.

To manage moving assemblies in and out of the GAC, the Rotor code base ships with a utility that eases

management details, known creatively as gacutil. (The source for gacutil can be found in the directory

Factoring Assemblies by Culture
Another way to factor assemblies is to centralize the parts that are not locale-dependent and break

locale-specific parts into files that can be loaded on demand. Assemblies that use this technique

are referred to as culture neutral.

Chapter 4: Extracting Types from Assemblies | 81

For those who wish to build ―culture neutral‖ assemblies, the Shared Source CLI provides

command-line utilities, including the resgen.exe program for building managed resources and

resourcecompiler.exe for building unmanaged string resources. See the tools documentation in the

SSCLI distribution for details of how to use these tools to build resource-only assemblies.

Managed code that is designed to be global can be built in a way that leverages the infrastructure

for finding and binding to assemblies that already exist in the CLI. Because of this, most of the

advantages that come from the use of this infrastructure (such as loosely coupled, strongly

versioned, configurable binding) also accrue to the code being globalized.

The globalization support that is part of the SSCLI is a hidden gem and comprises a very complete

set of components that can be found in sscli20/clr/src/bcl/system/globalization. It is not only

interesting to consider the implementation of these components on their own, but also to notice

how they are tied into the low-level implementation of the execution engine and the frameworks.

Because of their role, they relate directly to resource loading, to the implementation of datatypes

such as strings, and to marshaling mechanisms. Unfortunately, covering the details of the

globalization code is outside of the scope of this book, but it is definitely worth browsing.

sscli20/clr/src/tools/gac; examining the source reveals that it is actually a thin wrapper around fusion API‘s

(IAssemblyCache and IAssemblyEnum interfaces.) This utility provides the ability to install,

remove, and enumerate the various assemblies stored in the GAC, as well as the ability to manage traced

reference counts, which keep assemblies from being accidentally uninstalled. Example 4-3 is an example of

how to enumerate the assemblies currently in the GAC by using its -l option.

Example Error! No text of specified style in document.-3. Using gacutil to examine the default shared

assemblies in the SSCLI

C:\sscli20> gacutil -l

Microsoft (R) Shared Source CLI Global Assembly Cache Utility. Version 2.0.50826.0

Copyright (c) Microsoft Corporation. All rights reserved.

The Global Assembly Cache contains the following assemblies:

 ISymWrapper, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a,

processorArchitecture=MSIL

 Microsoft.JScript, Version=8.0.0.0, Culture=neutral,

PublicKeyToken=b03f5f7f11d50a3a, processorArchitecture=MSIL

 Microsoft.Vsa, Version=8.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a,

processorArchitecture=MSIL

 System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089,

processorArchitecture=MSIL

 System.Configuration, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=b03f5f7f11d50a3a, processorArchitecture=MSIL

 System.Data.SqlXml, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=b77a5c561934e089, processorArchitecture=MSIL

 System.Runtime.Remoting, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=b77a5c561934e089, processorArchitecture=MSIL

 System.Runtime.Serialization.Formatters.Soap, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=b03f5f7f11d50a3a, processorArchitecture=MSIL

 System.Xml, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089,

processorArchitecture=MSIL

 ISymWrapper, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a

 Microsoft.JScript, Version=8.0.0.0, Culture=neutral,

PublicKeyToken=b03f5f7f11d50a3a

 Microsoft.Vsa, Version=8.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a

 System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

 System.Configuration, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=b03f5f7f11d50a3a

 System.Data.SqlXml, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=b77a5c561934e089

 System.Runtime.Remoting, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=b77a5c561934e089

Chapter 4: Extracting Types from Assemblies | 82

 System.Runtime.Serialization.Formatters.Soap, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=b03f5f7f11d50a3a

 System.Xml, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

Custom=null

Binding Scenarios

For many programmers, strict versioning, strongnames, the GAC, and domain-based isolation are

unfamiliar ground. Many developers are still living the ―good ol‘ days‖ of C++, in which the results of

running any given program are configuration-dependent and, as a result, trying to make sense of the CLI

approach to management, deployment, and loading policies is bewildering. Using the Echo component

that we‘ve been developing so far as an example will help demonstrate how versioning the GAC and the

loading policies of the CLI can serve useful and beneficial purposes.

Step one: Baseline

The first step is, of course, to establish the baseline functionality with which most programmers are

familiar. In this case, this is the standard ―everything-in-one-directory‖ scenario used up until this point for

all code examples. Echo.cs is compiled into Echo.dll and rests in the current directory:

 using System;

 namespace SampleEcho {

 public enum EchoVariation { Louder, Softer, Indistinct }

 public struct EchoValue {

 public string theEcho;

 public EchoVariation itsFlavor;

 }

 public interface Echoer {

 void DoEcho(out EchoValue[] resultingEcho);

 }

 public class Echo : Echoer {

 private string toEcho = null;

 private static int echoCount = 0;

 private const System.Int16 echoRepetitions = 3;

 public delegate void EchoEventHandler(string echoInfo);

 public event EchoEventHandler OnEcho;

 public Echo(string initialEcho) {

 toEcho = initialEcho;

 }

 public string EchoString {

 get { return toEcho; }

 set { toEcho = value; }

 }

 public void DoEcho(out EchoValue[] resultingEcho) {

 if (toEcho == null) {

 throw(new Exception("Alas, there is nothing to echo!"));

 }

 resultingEcho = new EchoValue[echoRepetitions];

 for (sbyte i = 0; i < echoRepetitions; i++) {

 resultingEcho[i].theEcho = toEcho;

 switch (i) {

 case 0: resultingEcho[i].itsFlavor = EchoVariation.Louder; break;

 case 1: resultingEcho[i].itsFlavor = EchoVariation.Softer; break;

 default: resultingEcho[i].itsFlavor = EchoVariation.Indistinct;

 break;

 }

 }

Chapter 4: Extracting Types from Assemblies | 83

 if (OnEcho != null) {

 OnEcho(System.String.Format("Echo number {0}", echoCount));

 }

 echoCount++;

 return;

 }

 }

 }

MainProgram.cs is compiled, referencing Echo.dll as part of the compilation step, and also resides in the

current directory:

 using System;

 using SampleEcho;

 namespace MainSampleProgram {

 class EchoProgram {

 static void Main(string[] args) {

 SampleEcho.Echo myEcho;

 SampleEcho.EchoValue[] result;

 if (args.Length > 0)

 myEcho = new SampleEcho.Echo(args[0].ToString());

 else

 myEcho = new SampleEcho.Echo("Hi mom!");

 // Set up an event handler and hook to component

 SampleEcho.Echo.EchoEventHandler handler =

 new SampleEcho.Echo.EchoEventHandler(CallMe);

 myEcho.OnEcho += handler;

 try {

 myEcho.DoEcho(out result);

 System.Console.WriteLine("Main program received echo!");

 for (int i = 0; i < result.Length; i++)

 Console.WriteLine("{0}: {1}, {2}", i,

 result[i].theEcho, result[i].itsFlavor);

 }

 catch (System.Exception e) {

 System.Console.WriteLine("Caught exception: {0}", e.Message);

 }

 }

 static void CallMe(string msg) {

 System.Console.WriteLine(msg);

 }

 }

 }

Executing MainProgram.exe produces what we‘d expect:

 C:\sscli20> clix mainprogram

 Echo number 0

 Main program received echo!

 0: Hi mom!, Louder

 1: Hi mom!, Softer

 2: Hi mom!, Indistinct

The Echo.dll assembly could also be placed into a subdirectory whose name is the same as the assembly

(minus extension), from which it would also be successfully loaded.

Chapter 4: Extracting Types from Assemblies | 84

Step two: The GAC

The Echo component has turned out to be an extremely useful component, so much so that Echo needs to

be shared with other assemblies that also desire echoing behavior. Echo could be copied into private code

bases for each application, but this loses a large part of the benefit of shared libraries; instead, we want to

share it from a single place, the GAC. To do this, Echo needs to be installed into the GAC:

 C:\sscli20> gacutil -i echo.dll

 Microsoft (R) Shared Source CLI Global Assembly Cache Utility. Version

2.0.50826.0

 Copyright (c) Microsoft Corporation. All rights reserved.

 Failure adding assembly to the cache: Attempt to install an assembly

 without a strong name

Recall that in order for an assembly to be stored into the GAC, it needs to be either strongly named or

partially signed with verification turned off. Both of these options are most easily accomplished by creating

a keypair using the sn utility and compiling in the key file using the C# compiler. Generate a key with sn

-k echo.snk and recompile the file using the following C# compiler switch:

C:\sscli20>csc /target:library /keyfile:echo.snk echo.cs

Microsoft (R) Shared Source CLI C# Compiler version 2.0.0001

for Microsoft (R) Shared Source CLI version 2.0.0

Copyright (C) Microsoft Corporation. All rights reserved.

Gacutil will now accept the assembly as installable. Unfortunately, running MainProgram yields an

exception, since the assembly it was compiled against was ―echo, Version=0.0.0.0, Culture=neutral,

PublicKeyToken=null,‖ and there is no assembly that matches that criteria. MainProgram needs to be

recompiled against the new, strongly named Echo.

Once that‘s done, to prove that MainProgram will in fact pull the component out of the GAC, try deleting

Echo.dll from the current directory; MainProgram should still run. In fact, once the assembly has been put

into the GAC, it will be preferentially loaded from the GAC rather than from the local directory.

Step three: Versioning

Having deployed the Echo component into the public arena, however, another concern arises—what

happens if and when Echo needs to support new functionality? This is precisely what versioning and

versioning-aware load policies are for. Create a new file called AssemblyInfo.cs add the following:

 // AssemblyInfo.cs

 using System.Reflection;

 [assembly: AssemblyVersion("1.0.0.0")]

and recompile the Echo program adding AssemblyInfo.cs to the csc command line parameters. This will

include the AssemblyInfo file and the resulting assembly attribute to the echo.dll file. To test versioning-

bound load policies, it‘s helpful to make sure the version (which will be changing in just a moment to

illustrate the side-by-side capabilities of the CLI) is what‘s expected; to do this, MainProgram will display

the complete display name of the Echo assembly when it first references Echo:

 // MainProgram.cs, in class EchoProgram

 static void Main(string[] args) {

 Console.WriteLine("Echo assembly: " +

 typeof(SampleEcho.Echo).Assembly.FullName);

 // . . . as before . . .

Chapter 4: Extracting Types from Assemblies | 85

 }

Recompile MainProgram, install echo v1.0.0.0 into the GAC, delete the local Echo.dll, and run

MainProgram. It works as expected.

Step four: Side-by-side versioning

Echo has reached a state where it needs to be versioned; it now looks to echo messages back five times,

instead of the previous version‘s three (the echoRepetitions field, a constant, has been changed from

3 to 5). To do this, the AssemblyVersion attribute changes its value:

 // AssemblyInfo.cs

 using System.Reflection;

 [assembly: AssemblyVersion("2.0.0.0")]

 // Echo.cs

 public class Echo : Echoer {

 // ...

 private const System.Int16 echoRepetitions = 5;

 // ...

 }

 // rest as before

Again, recompile Echo.cs and install the new echo component into the GAC.

As a point of experimentation, before moving on, consider what‘s just taken place: there are now two

entirely different (as far as the CLI is concerned) versions of the same component now living in the GAC;

running gacutil -l proves this. And, if the CLI supports version-aware binding, then MainProgram, which

was originally compiled against v1.0.0.0 of the Echo component, should still load and run against the still-

installed echo.dll v1.0.0.0 version, which it will.

Don‘t forget to run MainProgram.exe and MainProgramv1.exe under clix. In many cases,

you can run SSCLI assemblies at the Windows command prompt without clix (this runs

them using the .NET CLR). However, the examples in this chapter need to bind against

assemblies that can only be found in the SSCLI‘s GAC, and if you run them with the

.NET CLR, it will not find them. This also raises the question of which version of gacutil

you‘re running. If you see ―Shared Source CLI Global Assembly Cache Utility‖ in the

banner when you run it, you‘ve got the right one. If not, run env.bat to make sure your

environment is properly set up for the SSCLI.

Save the current MainProgram to MainProgramv1.exe or something similar, and recompile MainProgram

against v2 of echo.dll. Delete echo.dll out of the current directory, and each version of MainProgram in

turn binds to the current version of echo stored in the GAC. It should be noted before moving on that

versioning the main program and its libraries, as shown here, does not need to be done at the same time; it

is also certainly possible to version them one at a time, in an uncoordinated fashion.

Configuring How Assemblies Load

In addition to the very complete versioning scheme detailed previously, administrators and developers can

add their own configuration guidance into the mix. The policy used when binding to an assembly can be

specified on a per-application, per-assembly, or per-machine basis.

The need for this is obvious. Frequently, developers won‘t make the final determination about which

component version an application needs to work correctly. Service packs, bug fix releases, and product

upgrades all occur long after the developer has shipped the product to manufacturing for release. One of the

key weaknesses, in fact, that most shared library systems have is the evolutionary nature of the machines on

Chapter 4: Extracting Types from Assemblies | 86

which they exist. On Windows platforms, this phenomenon is known by the unpleasant name ―DLL Hell,‖

but it exists quietly in every software environment that relies on shared, dynamically loaded libraries.

Developers, administrators, and users must all occasionally influence how their assemblies load. They need

the ability to not only upgrade an assembly to a later version, but also to revert from an upgraded assembly

back to the original version (due to unworkable bugs found in the new release, or even just incomplete

backwards incompatibility).

When components are loaded from their dormant state, the loading process takes local environmental

information into account, as well as information provided by the programmer and by the administrator of

the system. Because the CLI doesn‘t mandate any specific mechanism, different CLI implementations are

left up to their own devices. By default, the SSCLI examines the runtime version number that has been

placed in the metadata header by the compiler, and uses this hint to first load the correct version of the CLI,

and then load the assembly into it.

Rotor expects to find v2.0.0 (or v1.0.0 if you‘re using the original version of Rotor) in the

assembly‘s metadata header, which is a special number that should also be supported by

other CLI implementations. If this number isn‘t supported, executables that run on the

SSCLI won‘t load into other CLI implementations. This is because other CLI

implementations will first attempt to match the assembly to their execution engine. Only

after this fails will they fall back to using v2.0.0.

The simplest form of configuration in Rotor takes the form of XML configuration files . There are also

many settings of interest to developers that can be configured by using either XML files or environment

variables; these are listed in Rotor‘s online documentation. The XML files are the most important of the

two mechanisms because they allow an administrator or developer to influence binding policy in a

structured way.

Configuration files are named, by convention, using the same name as the entry point assembly that they

configure, with the extension ―.config‖. For example, a configuration file for the MainProgram.exe

assembly from the previous example would be MainProgram.exe.config. In addition, the SSCLI offers the

ability to provide publisher policy configuration information on a per-assembly basis and machine policy

configuration information that applies to the entire machine.

Because there can be multiple versions of the SSCLI running side-by-side, machine-wide

policy is per-installation, and the configuration file for machine policy is stored in the

machine.config file in the config subdirectory of the version-specific SSCLI build

directory.

The basic format of the part of a configuration file used to configure binding parameters looks something

like the following:

 <configuration>

 <runtime>

 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

 <!-- assembly-related configuration goes here -->

 </assemblyBinding>

 </runtime>

 </configuration>

Other sections (such as system.runtime.remoting configuration elements) appear as children of the

configuration root element. Note that the namespace declaration on the assemblyBinding

element is crucial, since Microsoft CLI implementations look specifically for assembly-related

configuration elements that use this namespace.

Services and applications are also free to store their own private information within configuration files,

much as .properties files are used in Java or .ini files are used in Windows.

Chapter 4: Extracting Types from Assemblies | 87

Influencing binding policy

Users and administrators can drive the assembly-binding policy in a configuration file by creating

dependentAssembly elements as children of the assemblyBinding element that in turn contain

assemblyIdentity elements to identify which assembly they wish to influence and

bindingRedirect elements to indicate the versioning redirection. Multiple dependentAssembly

elements can be declared as children of the assemblyBinding element, but each

dependentAssembly element can describe only one assembly.

To see this in action, recall that the MainProgram.exe application from the previous example currently uses

Version 2.0.0.0 of the Echo component. Unfortunately, Version 2.0.0.0 has a horrible bug within it, and

the developer of MainProgram cannot (or will not) release a version of MainProgram that depends on

Version 1.0.0.0 of Echo. The administrator or user needs to essentially redirect MainProgram‘s load-

request for 2.0.0.0 of Echo back to Version 1.0.0.0. To do so, the administrator writes

MainProgram.exe.config, similar to the following:

 <configuration>

 <runtime>

 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

 <dependentAssembly>

 <assemblyIdentity name="echo"

 publicKeyToken="fcd14a8abe06f0d2"

 culture="neutral" />

 <bindingRedirect oldVersion="2.0.0.0"

 newVersion="1.0.0.0" />

 </dependentAssembly>

 </assemblyBinding>

 </runtime>

 </configuration>

Once again, remember that public key tokens will differ from what is printed.

When run, MainProgram, even though its assembly reference indicates that it requires the use of ―echo,

Version=2.0.0.0, ...‖ will in fact load and run ―echo, Version=1.0.0.0,‖ and only echo three times instead of

five (which was version 2‘s behavior):

C:\sscli20> ildasm MainProgram.exe

// Microsoft (R) Shared Source CLI IL Disassembler. Version 2.0.50826.0

// Copyright (c) Microsoft Corporation. All rights reserved.

.assembly extern mscorlib

{

 .publickeytoken = (B7 7A 5C 56 19 34 E0 89)

 .ver 2:0:0:0

}

.assembly extern echo

{

 .publickeytoken = (FC D1 4A 8A BE 06 F0 D2)

 .ver 2:0:0:0

}

.assembly MainProgram

{

 .hash algorithm 0x00008004

 .ver 0:0:0:0

}

 (dump elided for clarity)

> clix MainProgram.exe

Echo assembly: echo, Version=1.0.0.0, Culture=neutral,

Chapter 4: Extracting Types from Assemblies | 88

PublicKeyToken=fcd14a8abe06f0d2

Echo number 0

Main program received echo!

0: Hi mom!, Louder

1: Hi mom!, Softer

2: Hi mom!, Indistinct

This is powerful and is important to the successful evolution of a system over time. Versioning is a constant

balancing act between the robust, conservative policy of always binding to the original versus the

―politically correct‖ policy of binding to a version that contains fixes (such as security patches) or new

features. Unfortunately, no one has discovered how to make this choice automatic; the best that can be done

is to offer control over the configuration of the binding process.

Validating Assemblies for Consistency

Since the CLI uses a data-driven architecture for its services, there are many codepaths in the SSCLI that

perform consistency checks on data. When we examine JIT compilation, for example, we will see how the

metadata for individual types is validated and how the CIL is verified. Each layer of data that drives the

execution engine must be loaded and checked before it is used so that the next layer can be guaranteed a

good-clean life.

Keeping with this principle, assemblies are loaded from disk in a way that guards against changes,

malicious or unintentional, made while the assembly has lain dormant. While they are loaded, they are

checked for consistency by the PEDecoder class, the code for which is shown in Example 4-4.

Example Error! No text of specified style in document.-4. PE validation (from

clr/src/utilcode/pedecoder.cpp)

 CHECK PEDecoder::CheckFormat() const

 {

 CONTRACT_CHECK

 {

 INSTANCE_CHECK;

 NOTHROW;

 GC_NOTRIGGER;

 }

 CONTRACT_CHECK_END;

 CHECK(HasContents());

 if (HasNTHeaders())

 {

 CHECK(CheckNTHeaders());

 if (HasCorHeader())

 {

 CHECK(CheckCorHeader());

 if (IsILOnly())

 CHECK(CheckILOnly());

 if (HasNativeHeader())

 CHECK(CheckNativeHeader());

 CHECK(CheckWillCreateGuardPage());

 }

 }

 CHECK_OK;

 }

Chapter 4: Extracting Types from Assemblies | 89

The CHECK macro in this code simply results in calls to segment-specific verification functions, all of

which are found in Check.h. They each encode very specific rules, depending on the segment; this is a

useful file to read if you are looking for specifics of the CLI format.

PE validation, which is what PEDecoder does, is distinct from metadata validation, which is also very

important. Metadata tokens are essentially a form of indirect addressing, and because they are directly

embedded into both CIL and attribute values for assemblies, they must be consistent with the tokens found

in their assemblies to be valid. CIL and the metadata tables themselves are checked for consistency in

several stages. We will take a careful look at how this is done in Chapter 5.

Application Domains

Application domains (also frequently called ―app domains‖) are critical to understanding assembly loading

within the execution engine. They tend to be a bit mysterious and are often described in terms of their

similarity to process address spaces, since they scope the visibility of components and resource handles, as

well as provide a security and fault isolation barrier. But from our component model implementation point

of view, they are not mysterious at all; application domains are the architectural elements that are

responsible for loading and unloading assemblies into the execution engine. In addition, while assemblies

are resident in memory, application domains provide for isolation on their behalf.

Although the isolation provided by application domains may bear some passing similarities to an operating

system address space, they actually coexist within a single address space for a process. Because of this, all

domains in a process share execution engine services such as the garbage collector. Application domains

provide the means for externalizing references to their components, which means that their components can

set up channels of communication between one another under a programmer‘s control. Because component

instances can pass such externalized references among themselves, threads of execution can traverse app

domain boundaries; the execution engine carefully monitors these transitions to maintain isolation.

Assemblies are always loaded within the context of an app domain. All communication to and from

external processes or components in other domains is mediated by the presence of a component‘s domain;

the execution engine has remoting and marshaling machinery that enforces isolation under the control of

the app domain. When the cost of using this machinery is too high or when it is unnecessary, managed

processes have the alternative of caching their assemblies in a domain that is reserved for the purpose of

sharing assemblies. This is a special case, and it should be used only when necessary, since it compromises

the protection afforded by domain isolation.

There are three well-known domains in every SSCLI process. The first is called the system domain, which

is essentially a bootloader for types that are integral to the loading process, such as System.AppDomain

and System.Exception. The system domain loads and maintains a single assembly, named

mscorlib, which contains only trusted types and is not available for use for any other purpose. The

system domain provides programmers with a way to root their searches for assemblies—there is a closure

across all loaded types, which emanates from the system domain.

For nonsystem types that need to be shared, there is another special domain called the shared domain.

Assemblies loaded in the shared domain are said to be domain-neutral, and their types are made directly

available within every domain in the process. To be eligible for loading within this domain, an assembly

must be strongly named and highly trusted. Advantages to being domain-neutral include resource savings

in load time and memory consumption, and possibly lower marshaling costs. Note that not everything in

the shared domain is shared; even when assemblies use it to cache their execution engine data structures

and JIT-compiled code, individual domains still maintain private instances of the statics needed by the

assembly‘s types.

Normal types, such as your own unshared executables and shared libraries, load into a default domain.

However, programmers may also choose to partition and isolate application-defined boundaries by creating

their own application domains programmatically, either directly from managed code or else from

unmanaged code hosting the execution engine. When multiple domains are used in this way, if a single type

is loaded into more than one domain, each domain will contain an independent set of execution engine data

Chapter 4: Extracting Types from Assemblies | 90

structures to represent the type. This is necessary because the loading parameters may vary from domain to

domain. Both class loaders and the security engine, which we will learn about in later chapters, are in

cahoots with the implementation of app domains.

See appdomain.cpp in sscli20/clr/src/vm for the implementation of AppDomain and the

two special domains, SystemDomain and SharedDomain. All three C++ classes

share a common superclass named BaseDomain, which implements many of their basic

mechanisms.

One of the most important features of application domains is that they provide the only way to unload types

(and the dependent resources of these types) from the execution engine. When a domain is unloaded, it

carefully reclaims all of the resources associated with it before removing itself from service. A domain

tracks both managed and unmanaged object instances and resources, and to clean these up and implement

unloading, load activity for these entities must be carefully tracked and contained in the first place.

Agile Components

Despite all of these precautions, in some very special cases, it is both permissible and desirable to leak

object state across app domain boundaries. Components that behave in this way are called agile, since they

can effectively move from domain to domain. Some important agile components include:

Strings

These are both common and have immutable state once loaded. This means that performance gains can

be had by copying and caching their state across domains.

Generics

While Generics are not shared in Rotor, they are heavily shared in the commercial CLR

implementation. See the various footnotes and sidebars in Chapter 6 for more information on Generics

and its sharing mechanisms on the commercial platform.

Type Handles

The runtime data structures that encapsulate Reflection based information about types are cached and

shared between domains. An all too common anti-pattern is to try and take a lock on a

System.Type, only to wait forever while other code in another domain greedily locks on to it.

Security objects

These are part of the execution engine infrastructure even though they are implemented as managed

code. Security objects are backed by the global state of the execution engine itself, and because they

can get to their state from within any domain, they qualify as agile.

Localization tables

These are very large, and duplicating them on a per-domain basis would be expensive, so they are

implemented as agile.

Components that are part of the remoting infrastructure

These components must, by the nature of the service that they provide, be able to cross domain

boundaries. They too are part of the execution engine infrastructure and are implemented as managed

components.

The set of agile components is important but limited. They are often loaded into the system domain, since

this domain can act as a home for trusted components that need to be available in every context. The

complexities of implementing agile components, which include limits such as a strict ban on holding any

references to non-agile components, restrict their representational possibilities.

Chapter 4: Extracting Types from Assemblies | 91

Bootstrapping the Assembly Load Process

Executing the code stored within an assembly is a chicken-and-egg scenario. The assembly cannot execute

until it has been resolved, loaded into the CLI, verified, and JIT-compiled. The CLI itself is simply a body

of code, contained in assemblies that must be loaded into the process space and run. Fortunately, this is a

classic bootstrapping problem, and implementation solutions abound. For the SSCLI implementation, a

special entry point into the primary assembly is all that is needed, along with some initial security

conditions, which are attached to the assembly as data.

The bootstrap API makes hosting the CLI a simple thing to do, as evinced by Rotor‘s program launcher,

clix.exe, whose code can be found in sscli20/clr/src/tools/clix, and whose main function, Launch, appears

without error handling in Example 4-5.

Example Error! No text of specified style in document.-5. The Launch function of clix.exe

DWORD Launch(WCHAR* pFileName, WCHAR* pCmdLine)

{

 WCHAR exeFileName[MAX_PATH + 1];

 DWORD dwAttrs;

 DWORD dwError;

 DWORD nExitCode;

 dwAttrs = ::GetFileAttributesW(pFileName);

 if (dwAttrs == INVALID_FILE_ATTRIBUTES)

 {

 dwError = ::GetLastError();

 }

 else if ((dwAttrs & FILE_ATTRIBUTE_DIRECTORY) != 0)

 {

 dwError = ERROR_FILE_NOT_FOUND;

 }

 else

 {

 dwError = ERROR_SUCCESS;

 }

 if (dwError == ERROR_FILE_NOT_FOUND)

 {

 // If the file doesn't exist, append a '.exe' extension and

 // try again.

 const WCHAR *exeExtension = L".exe";

 if (wcslen(pFileName) + wcslen(exeExtension) <

 sizeof(exeFileName) / sizeof(WCHAR))

 {

 wcscpy(exeFileName, pFileName);

 wcscat(exeFileName, exeExtension);

 dwAttrs = ::GetFileAttributesW(exeFileName);

 if (dwAttrs == INVALID_FILE_ATTRIBUTES)

 {

 dwError = ::GetLastError();

 }

 else if ((dwAttrs & FILE_ATTRIBUTE_DIRECTORY) != 0)

 {

 dwError = ERROR_FILE_NOT_FOUND;

 }

 else

 {

 pFileName = exeFileName;

Chapter 4: Extracting Types from Assemblies | 92

 dwError = ERROR_SUCCESS;

 }

 }

 }

 if (dwError != ERROR_SUCCESS)

 {

 // We can't find the file, or there's some other problem. Exit with an

error.

 fwprintf(stderr, L"%s: ", pFileName);

 DisplayMessageFromSystem(dwError);

 return 1; // error

 }

 nExitCode = _CorExeMain2(NULL, 0, pFileName, NULL, pCmdLine);

 // _CorExeMain2 never returns with success

 _ASSERTE(nExitCode != 0);

 DisplayMessageFromSystem(::GetLastError());

 return nExitCode;

}

With this code, an assembly is loaded, fed to the CLI, executed, and the return code is fed back to the

operating system.

Why is clix necessary? On Windows, the commercial .NET Framework uses a tiny

executable entrypoint to launch managed executables directly, without the need for a

helper program. This executable stub consists of a jmp instruction that transfers control

to _CorExeMain and is defined as part of the image‘s file format.

There are two reasons that Rotor doesn‘t do this. First, such a mechanism cannot be done

portably (although platform-specific code could certainly be written for the purpose).

Second, and more importantly, to enable many versions of the CLI to easily run side-by-

side, the Rotor team opted use a simple and configurable helper program that is tied to

the version being run, rather than more complex launch mechanisms.

clix performs the following steps when hosting the runtime:

1. Registers the rotor_palrt library using PAL_RegisterLibrary. The rotor_pal and rotor_palrt

libraries combine to provide the PAL implementation that is needed to run the SSCLI.

2. Obtains the assembly name to feed to the CLI as the executing assembly. Within clix, this is obtained

from the command line.

3. Obtains the name of the execution engine to be loaded. In the case of clix, this is obtained by working

from the full path to clix.exe and stripping out the program name.

4. Loads the sscoree library and obtains the function pointer for _CorExeMain2. A host could of

course choose to bind directly against the CLI library but would then be unable to take advantage of

running against newer versions of the CLI.

5. Call _CorExeMain2 with the mapped file for the assembly to be loaded, and let the CLI execution

engine take over.

Having loaded the CLI into the process space, the call from clix to _CorExeMain2 will cause the CLI to

initialize itself, through a call to CoInitializeEE, to create the system and default domains and other

necessary internal bookkeeping constructs, then calls the ExecuteMainMethod method, which

ultimately calls RunMain on the ClassLoader instance for the assembly.

Chapter 4: Extracting Types from Assemblies | 93

Example Error! No text of specified style in document.-6. Bootstrap assembly loading (from

appdomain.cpp)

void SystemDomain::ExecuteMainMethod(HMODULE hMod, __in LPWSTR path /*=NULL*/)

{

 Thread *pThread = GetThread();

 _ASSERTE(pThread);

 FrameWithCookie<ContextTransitionFrame> frame;

 pThread->EnterContextRestricted(

 SystemDomain::System()->DefaultDomain()->GetDefaultContext(), &frame);

 _ASSERTE(pThread->GetDomain());

 {

 AppDomain *pDomain = GetAppDomain();

 PEImageHolder pTempImage(PEImage::OpenImage(path));

 if (!pTempImage->CheckILFormat())

 {

 ThrowHR(COR_E_BADIMAGEFORMAT);

 }

 PEFileHolder pTempFile(PEFile::Open(pTempImage.Extract()));

 // Check for CustomAttributes - Set up the DefaultDomain and the main thread

 // Note that this has to be done before ExplicitBind() as it

 // affects the bind

 mdToken tkEntryPoint = pTempFile->GetEntryPointToken();

 ReleaseHolder<IMDInternalImport> scope(pTempFile->GetMDImportWithRef());

 // This can potentially run managed code.

 InitializeDefaultDomain(FALSE);

 if((!IsNilToken(tkEntryPoint)) && (TypeFromToken(tkEntryPoint) ==

mdtMethodDef))

 SystemDomain::SetDefaultDomainAttributes(scope, tkEntryPoint);

 NewHolder<PEFileSecurityDescriptor> pSecDesc(

 new PEFileSecurityDescriptor(pDomain, pTempFile));

 Security::Resolve(pSecDesc);

 if (Security::AllowBindingRedirects(pSecDesc))

 pDomain->TurnOnBindingRedirects();

 PEAssemblyHolder pFile(PEAssembly::Open(pFusionAssembly, NULL, pFusionLog));

 pDomain->m_pRootAssembly = GetAppDomain()->LoadAssembly(NULL, pFile,

FILE_ACTIVE);

 if (CorCommandLine::m_pwszAppFullName == NULL) {

 StackSString friendlyName;

 StackSString assemblyPath = pFile->GetPath();

 SString::Iterator i = assemblyPath.End();

 if (PEAssembly::FindLastPathSeparator(assemblyPath, i)) {

 i++;

 friendlyName.Set(assemblyPath, i, assemblyPath.End());

 }

 else

 friendlyName.Set(assemblyPath);

 pDomain->SetFriendlyName(friendlyName, TRUE);

 }

 }

Chapter 4: Extracting Types from Assemblies | 94

}

Notice how the code in Example 4-6 demonstrates the use of metadata tokens. The entrypoint for an

executable assembly is stored as a method metadata token. Note the use of the PEImageHolder in

Example 4-6 to retrieve the entrypoint token. As we saw in Example 4-4, this class is a wrapper that yields

the location of important data about disk layout. Also note the operational details: a garbage collection pass

should not be happening when the main entrypoint is called, and the thread that the code will be running on

must not be marked as ―background,‖ since background threads do not keep the execution engine alive.

Example Error! No text of specified style in document.-7. Bootstrap assembly loading (from clsload.cpp)

HRESULT ClassLoader::RunMain(MethodDesc *pFD ,

 short numSkipArgs,

 INT32 *piRetVal,

 PTRARRAYREF *stringArgs /*=NULL*/)

{

 STATIC_CONTRACT_THROWS;

 _ASSERTE(piRetVal);

 DWORD cCommandArgs = 0; // count of args on command line

 DWORD arg = 0;

 LPWSTR *wzArgs = NULL; // command line args

 HRESULT hr = S_OK;

 *piRetVal = -1;

 if (!pFD) {

 _ASSERTE(!"Must have a function to call!");

 return E_FAIL;

 }

 CorEntryPointType EntryType = EntryManagedMain;

 ValidateMainMethod(pFD, &EntryType);

 if ((EntryType == EntryManagedMain) &&

 (stringArgs == NULL)) {

 wzArgs = CorCommandLine::GetArgvW(&cCommandArgs);

 if (cCommandArgs > 0) {

 if (!wzArgs)

 return E_INVALIDARG;

 }

 }

 EX_TRY_NOCATCH

 {

 MethodDescCallSite threadStart(pFD);

 PTRARRAYREF StrArgArray = NULL;

 GCPROTECT_BEGIN(StrArgArray);

 // Build the parameter array and invoke the method.

 if (EntryType == EntryManagedMain) {

 if (stringArgs == NULL) {

 // Allocate a COM Array object with enough slots for cCommandArgs -

1

 StrArgArray = (PTRARRAYREF) AllocateObjectArray(

 (cCommandArgs - numSkipArgs), g_pStringClass);

Chapter 4: Extracting Types from Assemblies | 95

 // Create Stringrefs for each of the args

 for(arg = numSkipArgs; arg < cCommandArgs; arg++) {

 STRINGREF sref = COMString::NewString(wzArgs[arg]);

 StrArgArray->SetAt(arg-numSkipArgs, (OBJECTREF) sref);

 }

 }

 else

 StrArgArray = *stringArgs;

 }

 ARG_SLOT stackVar = ObjToArgSlot(StrArgArray);

 if (pFD->IsVoid())

 {

 // Set the return value to 0 instead of returning random junk

 *piRetVal = 0;

 threadStart.Call(&stackVar);

 }

 else

 {

 *piRetVal = (INT32)threadStart.Call_RetArgSlot(&stackVar);

 if (stringArgs == NULL)

 {

 SetLatchedExitCode(*piRetVal);

 }

 }

 fflush(stdout);

 fflush(stderr);

 }

 return hr;

}

Notice how the code in Example 4-7 demonstrates the use of a MethodDesc token. The entrypoint for an

executable assembly is stored as a method metadata token and the predecessor in the call stack

(ExecuteMainMethod, found in Example 4-6), which converts the metadata token of the Main method

in to a MethodDesc handle. Invocation of the Main method is done through a MethodDescCallSite

instance, which wraps the Main method.

 threadStart.Call(&stackVar);

Securing Against Harmful Assemblies

The SSCLI supports Code Access Security (CAS) , which is a component-aware approach to security that

extends traditional OS security concepts. The goal for the SSCLI is to provide a level playing field for the

components themselves, to enable code from many sources to be combined into applications. Since

programs run under the control of the execution engine, and since component code is verified when it is JIT

compiled, it is possible for the CLI execution engine to intervene when components misbehave. Because

this is possible, the runtime enforcement mechanisms of code access security have real teeth. They would

not be possible without managed execution as their foundation.

Code access security combines permissions with evidence and policy. There are two parts to CAS: the

assembly load phase and the runtime enforcement phase. We will talk briefly about the load phase at this

point and defer the discussion of how runtime enforcement is achieved until Chapter 8.

Permissions represent specific capabilities, such as the ability to read a file. Permissions are used in

permission grants and permission demands, which are runtime actions that are tracked and enforced by the

CAS service within the execution engine. A permission grant (henceforth referred to as just a ―grant‖) is an

Chapter 4: Extracting Types from Assemblies | 96

authorization based on some combination of policy and evidence; a demand is a check for the

corresponding grant.

Within an assembly, permissions may be associated with resources, code identity, or user identity, and are

granted to code on a per-assembly basis rather than on a per-user or per-process basis. Permissions are

applied to code either declaratively, in which case custom attributes specify behavior in conjunction with

policy, or imperatively, in which case code is written to manipulate the CAS service directly to specify

behavior. There are numerous resource permissions built into the SSCLI, such as the

FileIOPermission, the EnvironmentPermission, and the UIPermission. There is also

support for code identity permissions based on strongname. Finally, there is very basic skeletal support for

generic user identities and authorization, as well as role-based identities. To see how these are implemented

and to learn about others, look in the sscli20/clr/src/bcl/system/security/permissions directory.

The programmer responsible for an assembly provides the nucleus around which the CAS service operates.

In the assembly‘s code, either as attributes or as direct API calls, security requirements are specified

through grants and demands. On top of this nucleus, the user or administrator who is responsible for the

runtime well-being of its applications must also have a say in specifying security requirements and

behaviors. In the CAS service, this is referred to as policy and is implemented as a set of XML

configuration files (much like the versioning configurations that we examined earlier in this chapter).

Evidence is information about the assembly to be loaded and is used by the CLI in conjunction with policy

to make binding decisions about which permissions to grant and which to deny. Evidence is implicitly

trusted information, and the execution engine has built-in support for certain types of evidence, such as

digital signatures or the directory from which an assembly is loaded. Assemblies can also provide

additional evidence in the form of permission set requests, which are useful because they allow

programmers who create components to provide evidence on their own behalf. The evidence to support

permission set requests can be put into an assembly in serialized form, to be deserialized when the CAS

engine prepares to audit the evidence at runtime.

An assembly‘s set of grants is determined by combining evidence, assembly demands, and policy at

runtime. In order for this to be secure, a careful loading sequence must be followed, during which evidence

and policy are created in preparation for their interpretation. One of the great advantages of the CLI‘s data-

driven model is that the persistent representation of assemblies can accommodate this carefully specified

mechanism in a way that allows new or custom data to be added after the fact. Evidence is an example of

the sort of annotation for which this capability is important, since the runtime conditions under which a

component is used may change drastically over the years.

Evidence attached to code is itself represented as components, and is extensible. Of course, custom

evidence will be taken into consideration only if the policy being applied looks for it during the loading

process, but the execution engine has been designed to allow for this kind of extension. Assemblies can

contain custom evidence directly as serialized data or can provide it programmatically.

Summary

In many ways, assemblies are what programmers think of as components. In their on-disk form, they are

durable atoms that can move, as needed, from CLI to CLI and from application version to application

version. As a key element of the CLI component model, they are the packages within which types are

named and implemented, and from which types are extracted. Assemblies also define the unit of isolation

for the code access security model, which facilitates safe interactions between independently developed

components by enforcing isolation (in conjunction with the execution engine).

Binding to disk-based assemblies is usually name-based, and the namespace used to bind to assemblies

provides scoping flexibility as systems evolve over time. While the common path is to load from disk, it is

also important for compilers and tools to have the ability to create assemblies on the fly, and dynamic

assemblies are supported for this purpose. Dynamic assemblies can be used to create new on-disk

assemblies programmatically or create new in-memory assemblies that can be run immediately.

Chapter 4: Extracting Types from Assemblies | 97

Once an assembly has been loaded into the CLI either dynamically or by using an application domain, its

types and security data are ready to be converted from their passive PE format into the runtime structures

that drive the CLI. Each type will be loaded and compiled in turn from the assembly on demand, which is

the subject of the next two chapters.

Chapter 5: Synthesizing Components | 98

5. Synthesizing Components

In CLI component-based applications, references between types are represented symbolically using names,

as we saw in Chapter 4. This chapter investigates how a set of running components can be synthesized just-

in-time by following these symbolic names. Just-in-time synthesis customizes component structure and

behavior to a local environment. Using this technique, the execution engine can create optimizations and

adaptation wrappers for the benefit of the component.

A gap exists between the CLI‘s logical representation of a component, expressed as assembly metadata and

CIL, and the physical structure and machine instructions needed to execute on an actual microprocessor. To

create components and run the behaviors associated with them, the execution engine must bridge this gap

and convert the logical representation into data types and instructions that the underlying CPU can

understand. CIL must be transformed into opcodes and operands; component metadata must be realized as

in-memory data structures that fit both the microprocessor‘s conventions and any constraints imposed by

the host operating system. In short, the execution engine must play by the rules imposed by the hardware

and operating system at runtime.

In a traditional approach to compilation, a compiler frontend parses high-level type descriptions and

converts them into an intermediate representation, performing data layout at the same time. The back-end

then converts the CIL to a flow graph, optimizes it, and produces relocatable native code along with two

sets of symbols: imports, which will be used to locate foreign addresses during linkage, and exports, whose

addresses will likewise be provided for the use of other modules. At link time, multiple modules are

combined into a single executable image, addresses and offsets contained within their code are recalculated

as necessary, and symbolic names are resolved by patching these recalculated addresses into the compiled

code. Once the linker has produced a complete executable image, a loader is responsible for placing it into

virtual memory with execution permissions, as well as performing any remaining relocations (such as

taking care of dynamically loadable libraries).

While this approach has proven to be effective for many years, it has weaknesses when it comes to

deployment. In particular, at the moment that code is generated, data structures are laid out, names are

bound to addresses, or the implementation is tied to processor-specific details. This approach is more brittle

than it needs to be, especially when components must adapt within systems that change over time. The

designers of the CLI wanted to alleviate this brittleness by allowing compilation, layout, and linkage to be

deferred until the last possible moment, totally sidestepping many of the issues that come from changes in

the execution environment. To do this, the jobs performed by compiler, linker, and loader had to be

redistributed. Although compilers still produce intermediate language in the form of CIL, the execution

engine has become responsible for all other tasks. In addition, CLI metadata is not thrown away as it is

used by these compilers, but is instead kept for later use by runtime services. (We will see some of the

ways that they use it in Chapter 9 and Chapter 10.) Many gains result from this approach, including

improved security and reduced on-disk code size. We will discuss these as we discuss how compilation and

linkage happen within the SSCLI.

The Anatomy of a Component

Given an instance of a managed component, how is it concretely represented within the CLI‘s execution

engine? We know that we can get a detailed look at the logical structure of a component by running ildasm

and viewing the metadata for its type members; however, this tool shows logical structure only. This is not

enough; the decision process used by the execution engine to turn these elements into actual memory

Chapter 5: Synthesizing Components | 99

locations that contain processor instructions or data cannot be predicted by examining metadata alone

(except for rare cases in which explicit layout information has been provided by the programmer).

The physical way in which Rotor maintains an object instance and its related type information is quite

complex, and the elements that compose its parts are split across many different regions of memory. Figure

5-1 shows the anatomical detail, in gruesome detail. We will spend most of this and the next two chapters

dissecting the parts contained in this diagram.

Figure Error! No text of specified style in document.-6. The structure of an object and

its type is complex

To understand how the execution engine augments CLI metadata through the application of environment-

specific layout rules, we will examine the elements of an object instance, and work our way backwards

through the data structures that represent its type and their creation. Although this might seem like putting

the cart before the horse, it gives us a chance to appreciate the large differences between the abstract world

of the CLI and its concrete realization within a specific operating system/processor pair.

Component Instance Structure

Object instances, although they appear to be tightly consolidated units in high-level programming

languages, are actually not represented as monolithic chunks of contiguous memory within the SSCLI. Of

course, an object can be represented with a single, pointer-sized reference in memory, as anyone who has

looked at the parameters associated with CIL‘s opcodes can attest. Given that component references of this

form are the only tangible manifestation for managed objects, it stands to reason that it is possible to find

and navigate the important data structures associated with such instances by starting from references to

them.

As we saw in the first chapter, component instances are created within the CLI‘s garbage-collected heap by

CIL instructions such as newobj or newarr. (Chapter 9, which covers memory management, will cover

this heap in detail; however, to talk about runtime representation, we will present a basic understanding of

internal layout without delving into how the memory is allocated or managed.) Every component instance

created in this way contains a reference to a table of function pointers called a MethodTable, whose

entries point to code for method implementations. (In many ways, MethodTable is an imprecise name

Chapter 5: Synthesizing Components | 100

for this structure, because it will end up holding far more than just methods when all is said and done.) The

MethodTable, since it contains per-type data, can be shared by all instances of a given type; all

component instances contain a reference to a MethodTable in their first available memory location.

When you are holding a reference to a component, you are actually holding a pointer to its

MethodTable. While instance-specific data resides in the garbage collector‘s heap, or on a thread‘s

stack, all of the type description information, compiled code, and execution engine context that goes along

with that instance data resides in memory belonging to the execution engine. All of it is accessed by using

the object‘s MethodTable pointer, behind which lives the bewildering maze of type information shown

in Figure 5-1.

Before diving into this type information, however, we should examine the structure of the instance data.

Recall that reference types have a small amount of overhead associated with each object instance (for

synchronization support, for example). Intuitively, one would expect to find that overhead clearly

delineated in a core C++ class somewhere, perhaps in the CLI implementation of System.Object.

Unfortunately, it‘s not quite that easy.

Looking in clr/src/vm/object.h, which represents the structure and implementation of the most generic type,

System.Object, only one field, the MethodTable pointer mentioned earlier, is defined in the C++

Object class, as shown in Example 5-1.

Example Error! No text of specified style in document.-1. The C++ class that represents objects within

the execution engine

class Object

{

 protected:

 MethodTable *m_pMethTab;

 // many method declarations follow

};

The impression given by this C++ class—that there is a single, pointer-sized field shared by every object—

is wrong because not all of the data for a given instance of every component lies in the heap. There is an

additional ―invisible‖ field in every component instance that is used for memory bookkeeping, and the

minimum size of an object is actually larger than 8 bytes, as we will find out in our discussion of heap

traversal in the ―Reclaiming Memory‖ section of Chapter 9. These implementation factoids aside, the

simple case holds true in many situations: an instance can often be found completely on the heap. If the

instance does not use execution engine services that tack on additional state, the instance data will be a

simple single block of memory. However, any instance, once it has been created, may use execution engine

services (such as automatic thread synchronization) that dynamically allocate control structures and then

associate them with an instance. These structures are allocated in memory that is private to the execution

engine rather than in the garbage collector‘s heap, making matters more complex. To solve this problem,

instance data and instance control structures are split, and the control structures are accessed using what is

called the instance‘s sync block index. The name is something of a misnomer, since the sync block can

contain many things besides synchronization data, but like the MethodTable pointer, it is a field that is

contained in every component instance.

To ―see‖ the sync block index, look at the implementation of the GetHeader method of Object, shown

below (again, from clr/src/vm/object.h):

 // Access the ObjHeader which is at a negative offset on the object (because of

 // cache lines)

 ObjHeader *GetHeader()

 {

 return PTR_ObjHeader(PTR_HOST_TO_TADDR(this) - sizeof(ObjHeader));

 }

If this construct is unfamiliar, don‘t panic. It is an approach that is sometimes used in C/C++, in which

there is an anonymous slot before the MethodTable reference that can be cast to an ObjHeader. This

Chapter 5: Synthesizing Components | 101

allows every object reference to carry information that‘s not formally part of the Object class. C++

compilers often put vtable references in front of the object‘s address for similar reasons: given a pointer to

user-visible data, the internal implementation of the language knows where to find associated

administrative data very quickly (in this sample case, the vtable for virtual method dispatch). Pictorially,

the technique looks something like Figure 5-2.

The PTR_HOST_TO_ADDR macro is a part of a general widespread cleanup that took

place with the Whidbey source base after the release of the first version of the CLR.

Because pointers will need to be marshaled and unmarshaled during debugging scenarios

from remote (where ―remote‖ here means anything outside this process) debuggers, like

WinDbg, cbd, ntsd, or Visual Studio, Microsoft created a library (the Data Access

Component, or DAC) that would handle the process of preparing pointer-based data for

transport across these boundaries. In order to simplify the usage of the DAC library, all

access to it is done through macros like the above.

Looking at clr/src/vm/syncblk.h, the class definition of ObjHeader reads as follows:

 class ObjHeader

 {

 private:

 DWORD m_SyncBlockValue; // the Index and the Bits

 public:

 // Access to the Sync Block Index, by masking the Value.

 DWORD GetHeaderSyncBlockIndex()

 {

 LEAF_CONTRACT;

 // pull the value out before checking it to avoid race condition

 DWORD value = m_SyncBlockValue;

 if ((value & (BIT_SBLK_IS_HASH_OR_SYNCBLKINDEX | BIT_SBLK_IS_HASHCODE))

!=

 BIT_SBLK_IS_HASH_OR_SYNCBLKINDEX)

 return 0;

 return value & MASK_SYNCBLOCKINDEX;

 };

 // Ditto for setting the index, which is careful not to disturb the

underlying

 // bit field -- even in the presence of threaded access.

Chapter 5: Synthesizing Components | 102

 //

 // This service can only be used to transition from a 0 index to a non-0

index.

 void SetIndex(DWORD indx)

 {

 LONG newValue;

 LONG oldValue;

 while (TRUE) {

 oldValue = *(volatile LONG*)&m_SyncBlockValue;

 _ASSERTE(GetHeaderSyncBlockIndex() == 0);

 // or in the old value except any index that is there -

 // note that indx could be carrying the

 // BIT_SBLK_IS_HASH_OR_SYNCBLKINDEX bit that we need to preserve

 newValue = (indx |

 (oldValue & ~(BIT_SBLK_IS_HASH_OR_SYNCBLKINDEX |

 BIT_SBLK_IS_HASHCODE |

 MASK_SYNCBLOCKINDEX)));

 if (FastInterlockCompareExchange((LONG*)&m_SyncBlockValue,

 newValue,

 oldValue)

 == oldValue)

 {

 return;

 }

 }

 }

}

Figure Error! No text of specified style in document.-7. The ObjHeader and Object for

instances lie back-to-back in the heap

ObjHeader and Object, although they are distinct C++ classes, are actually allocated as a pair and

located back-to-back at the beginning of every component instance. In the code for ObjHeader note that

the field m_syncBlockValue is a compound value that can contain a number of different things: a

LONG value used as an index, some bitflags and a bit used as a spinlock (which is a lock that can be taken

by actively looping until the bit becomes available using an atomic test-and-set opcode). Because of this, it

is important to be careful when changing the value contained in the field—the call to

FastInterlockCompareExchange guards against race conditions.

Additional instance state is accessed by using the index portion of m_syncBlockValue; if it is 0, there

is no additional state. If it has a nonzero value, then there will be an entry at the corresponding offset in the

table contained in the global variable named g_pSyncTable. For more details as to how this lazy

initialization works and the things that it can contain, such as locks and hash values, see the comments in

clr/src/vm/syncblk.h.

ArrayBase and other derived types such as StringObject or StringBufferObject will contain

additional fields tacked onto the instance, such as lowerbound or length, and, in general, component

instances will include storage for the instance data that they encapsulate. Do note, however, that JIT-

compiled components make no guarantees about ordering of the layout within an object instance; the

compiler is free to make optimal choices. We will see how type members such as fields are created by the

JIT compiler later in this chapter.

The Hierarchy of Runtime Metadata

Besides the instance data itself, it is important to have an instance‘s type information available at runtime;

this information can be explicitly queried by the programmer using methods of System.Object, and it

is also needed for the normal workings of the execution engine during compilation, garbage collection,

virtual dispatch, and other runtime services.

Assembly loading in the SSCLI, as we‘ve seen, is the first step in the process of converting type

descriptions from their original format (which is designed to be used for persistent storage) into in-memory

Chapter 5: Synthesizing Components | 103

structures and opcode sequences. Once an assembly has been loaded in this way, its type metadata becomes

available in a different, pointer-based format, which can easily be combined with information about the

ambient execution environment to plan the layout of types in memory. This layout format is described

below; it is divided into two different structures, one of which contains ―hot‖ data that needs to be quickly

available during program execution (such as method pointers or information used by the garbage collector),

and the other which contains ―cold‖ data such as structural information about sizes and members that is

typically needed only by compilers or by the CLI reflection APIs. MethodTable, which we‘ve already

seen, contains the hot data, while EEClass contains the cold. These structures are split to achieve better

locality of reference and take advantage of processor caches, when possible.

More about MethodTables

MethodTable is a complex data structure that consists of a header followed by the variable-length table

of method and interface pointers that is the origin of its name. It also has a companion class, named

GCDesc, which optionally lives before the header at a negative offset and, if it is needed, is allocated with

the MethodTable as a pair. (GCDesc will be discussed in Chapter 7, since it is an important piece in the

garbage-collection puzzle.) The header portion of MethodTable is shown in Example 5-2, and Figure 5-

1 shows the back-to-back relationship of the MethodTable and the GCDesc.

Example Error! No text of specified style in document.-2. The header portion of MethodTable (defined in

clr/src/vm/methodtable.h)

class MethodTable

{

 // Low WORD is component size for array and string types, zero otherwise

 DWORD m_wFlags;

 // Base size of instance of this class when allocated on the heap

 DWORD m_BaseSize;

 WORD m_wFlags2;

 WORD m_wNumMethods;

 WORD m_wNumVirtuals;

 WORD m_wNumInterfaces;

 PTR_MethodTable m_pParentMethodTable;

 PTR_Module m_pLoaderModule;

 PTR_MethodTableWriteableData m_pWriteableData;

 PTR_EEClass m_pEEClass;

 DPTR(PTR_Dictionary) m_pPerInstInfo;

 static MetaSig *s_cctorSig;

 DispatchMap *m_pDispatchMap;

};

The MethodTable has two roles: it uniquely identifies a type at runtime, and is a fast and efficient way

of navigating object layout at runtime, whether to dispatch to methods or fetch instance data. As a result,

MethodTable is a data structure that has been optimized for high performance. Note that the

m_pEEClass pointer links the hot data of the MethodTable to the cold data stored in an EEClass

instance associated with the type. Also note the kind of information that is in this header: sizes, slot counts,

Chapter 5: Synthesizing Components | 104

―maps,‖ and various indexes. Indexes, maps, and pointers are effectively computed shortcuts that enable

fast traversal of important type data structures.

Type Identity
Version 1.0 of the SSCLI used the EEClass as the representation of type uniqueness. With the

introduction of Generics in Version 2.0, MethodTable was refactored to be used as the strongest

form of type identity as EEClasses became shared across Generic types.

Example Error! No text of specified style in document.-3-1. The GetVTable method of MethodTable

(defined in clr/src/vm/methodtable.h)

 inline PTR_SLOT GetVtable()

 {

 return PTR_SLOT((PTR_HOST_TO_TADDR(this) + TADDR(GetVtableOffset())));

 }

 static inline DWORD GetVtableOffset()

 {

 return (sizeof(MethodTable));

 }

Example 5-2-1 shows vtable accessor methods declared in MethodTable. When the MethodTable is

allocated, an array of SLOTs will be placed at the end of the MethodTable instance. Pictorially, this

looks like the diagram in Figure 5-3.

Figure Error! No text of specified style in document.-8. A MethodTable in memory has

its length customized to the type that it represents

The reason for using this technique is performance, just as it was for ObjHeader in the object instance. In

both cases, lookup needs to be as fast as possible, since the MethodTable stores frequently accessed

data. While the obvious thing to do would be to allocate the SLOT array using a separate dynamic

allocation and then store the pointer in the MethodTable object, this would require an extra pointer

indirection; this implementation requires no such indirection, since the beginning of the table lies at a fixed

offset from the beginning of the object.

The order of the vtable slots is carefully computed, as we will see below. Each slot contains a pointer to an

executable piece of code in the form of a function that follows the standard CIL calling convention (more

on that to follow). There are three sections in the array of slots: the static methods for the type being

described, followed by any inherited methods that it has, followed by any introduced methods, which are

methods defined by the type directly. Embedded within any or all of these three subsections are ranges of

the table that constitute interface implementations. How this table is built will be covered in detail in the

Chapter 5: Synthesizing Components | 105

later section ―Laying Out Method and Interface Tables‖; it is a somewhat complex process. The

DispatchMap object also hangs off the MethodTable - this is used to execute a version 2.0 feature

called Virtual Stub Dispatch, which is a dispatch mechanism for interface calls. This feature is further

explained in the section ―Virtual Stub Dispatch‖.

The final thing to note at this point is the MetaSig for the class constructor, found in s_cctorSig. This

will be used to start up the managed type once it is loaded and an instance of the type has been requested.

EEClasses

Compared to MethodTable, EEClass is quite large, but it is also more straightforward. Near the top of

the class definition, we find a number of struct definitions that begin with the prefix bmt, which stands for

BuildMethodTable; these are used, along with a few of the EEClass fields, when constructing the

type‘s MethodTable in the function of that name. Further down in the definition is the heart of the data

structure, which contains the following fields, as shown in Example 5-3.

Example Error! No text of specified style in document.-4. Some of the fields in the EEClass used by the

execution engine. (defined in clr/src/vm/class.h)

PTR_Module m_pModule;

mdTypeDef m_cl;

PTR_MethodTable m_pMethodTable;

WORD m_wCCtorSlot;

WORD m_wDefaultCtorSlot;

BYTE m_NormType;

WORD m_wNumInstanceFields;

WORD m_wNumStaticFields;

WORD m_wNumHandleStatics;

WORD m_wNumBoxedStatics;

WORD m_wNumGCPointerSeries;

DWORD m_cbModuleDynamicID;

DWORD m_cbNonGCStaticFieldBytes;

DWORD m_dwNumInstanceFieldBytes;

FieldDesc *m_pFieldDescList;

DWORD m_dwAttrClass;

volatile DWORD m_VMFlags;

SecurityProperties m_SecProps;

PTR_MethodDescChunk m_pChunks;

BitMask m_classDependencies;

DWORD m_dwReliabilityContract;

Again, we find a number of fields that contain structural information for the type: not only things like

counts of instance fields (m_wNumInstanceFields) and static fields (m_wNumStaticFields), but

also less obvious, but highly important, things like m_wNumGCPointerSeries, which will contain the

number of places where the object references can be found in an instance of this type. (This instance is used

by the JIT compiler when it computes the contents of the GCDesc structure.)

The list of FieldDesc entries (m_pFieldDescList) contains complete information about fields that

are declared by the type represented by this EEClass. To find inherited fields, you must visit the parent

EEClass instances by walking the chain of superclasses, starting with the parent class (obtained by calling

m_pMethodTable->GetParentMethodTable()->GetClass(); in Rotor v1, this was given by

Chapter 5: Synthesizing Components | 106

the field m_parentClass). The FieldDesc structure itself (defined in clr/src/vm/field.h) is quite

compact; Example 5-4 shows its two data fields.

Example Error! No text of specified style in document.-5. The FieldDesc class (defined in

clr/src/vm/field.h)

class FieldDesc

{

 friend class MethodTableBuilder;

 protected:

 PTR_MethodTable m_pMTOfEnclosingClass;

 unsigned m_mb : 24;

 unsigned m_isStatic : 1;

 unsigned m_isThreadLocal : 1;

 unsigned m_isContextLocal : 1;

 unsigned m_isRVA : 1;

 unsigned m_prot : 3;

 unsigned m_isDangerousAppDomainAgileField : 1;

 unsigned m_dwOffset : 27;

 unsigned m_type : 5;

 // ...

}

Again, because of efficiency concerns (remember, there will be one of these for every field of every type

throughout the entire CLI), FieldDesc is as compact as it can possibly be. As a result, key administrative

information (such as whether it is a static field, whether it is thread-local or class-local, and so on) is kept in

bitfields, sharing with fields that can spare the room.

Method information is also stored in the EEClass, in batched form, using MethodDescChunk

structures that are chained together; a single MethodDescChunk is, as its name implies, a ―chunk‖ of

MethodDesc entries strung together for rapid access. As with fields, finding MethodDesc information

introduced by superclasses requires walking the inheritance chain. As with FieldDesc, MethodDesc is

a compact structure marked with few data fields and many accessor methods to manipulate those fields.

Consider the (very brief and heavily edited) definition of MethodDesc in Example 5-5, edited from

clr\src\vm\method.hpp.

Example Error! No text of specified style in document.-6. The MethodDesc structure (defined in

clr/src/vm/method.hpp)

UINT16 m_wTokenRemainder;

BYTE m_chunkIndex;

enum {

 // enum_flag2_HasPrecode implies that enum_flag2_HasStableEntryPoint is set.

 enum_flag2_HasStableEntryPoint = 0x01,

 // The method entrypoint is stable (either precode or actual code)

 enum_flag2_HasPrecode = 0x02,

 // Precode has been allocated for this method

 enum_flag2_IsUnboxingStub = 0x04,

 enum_flag2_MayHaveNativeCode = 0x08,

 // May have jitted code, ngened code or fcall entrypoint.

};

BYTE m_bFlags2;

// The slot number of this MethodDesc in the vtable array.

Chapter 5: Synthesizing Components | 107

WORD m_wSlotNumber;

// Flags.

WORD m_wFlags;;

ARG_SLOT CallOnInterfaceWorker (const BYTE* pUNUSED, MetaSig* pMetaSig,

 const ARG_SLOT* pArguments

 DEBUG_ARG(BOOL fPermitValueTypes));

ARG_SLOT CallTransparentProxyWorker (const BYTE* pUNUSED, MetaSig* pMetaSig,

 const ARG_SLOT* pArguments

 DEBUG_ARG(BOOL fPermitValueTypes));

ARG_SLOT CallTargetWorker (const BYTE* pTarget, MetaSig* pMetaSig,

 const ARG_SLOT* pArguments, BOOL fCriticalCall

 DEBUG_ARG(BOOL fPermitValueTypes));

ARG_SLOT CallDescr(const BYTE *pTarget, MetaSig* pMetaSig, const ARG_SLOT

*pArguments,

 BOOL fIsStatic, BOOL fCriticalCall

 DEBUG_ARG(BOOL fPermitValueTypes));

There is an additional hidden field that precedes the MethodDesc at a negative offset. This field, which

contains a thunk, is a critical and interesting piece of the SSCLI‘s runtime plumbing. It is discussed in the

later section entitled ―Verifying and Compiling CIL‖.

Within MethodDesc, the Call* methods are of paramount interest, since they represent the path that the

execution engine will use to execute a method on a type—for example, during reflection-based invocation,

or at the point that an assembly‘s .entrypoint method is called during startup, the

CallTargetWorker method will be executed. Note that this does not imply that all method calls will

come through the relevant Call* methods. In fact, most JIT-compiled code will call an actual method

body and bypass the MethodDesc entirely. When a method is invoked by name, the call must be made

explicitly using the MethodDesc.

The SecurityProperties that will be used when loading the class can be also be seen in this

structure, as well as a pointer to a ClassLoader, which plays a critical role in the loading process; it

synthesizes the runtime structures for the type, including this EEClass, from the assembly.

Readers familiar with Java may wonder about the relationship between this

ClassLoader and Java‘s ClassLoader architecture; even worse, they may draw

dangerous inferences based on the similarity of the names. In point of fact, there is no

relationship beyond their shared name. Both entities load classes in their respective

execution environments—from there, however, all details wildly diverge.

To summarize, component instances always contain a MethodTable pointer, which references a

MethodTable that itself always contains a pointer to an EEClass. Although these two structures are

separated for runtime efficiency, both are logically part of the same runtime data. The EEClass and the

MethodTable (along with the optional SyncTable entry in some cases) define the structural properties

of a class at runtime, and are initialized from the metadata found in a component‘s assembly. Referring

once again to Figure 5-1, the MethodTable pointer, the one-to-many relationship between EEClass

and MethodTable, and the optional SyncTable entry can all be seen.

Viewing the Type, Method, and Interface Tables

Having taken a quick tour of the elements that comprise the runtime structures used to describe types, it‘s

time to examine how they are created and populated during the load of an assembly.

Chapter 5: Synthesizing Components | 108

The Echo component, viewed from the debugger, will act as our concrete example of the class structure at

runtime. Besides the physical layout of its structs, statics, and fields, the component has an interface,

inherited methods, and introduced methods to deal with. Virtual methods are represented by contiguous

chunks of method SLOTs, called vtables, a term that is borrowed from C++ that refers to the table of

function pointers used to implement dispatch tables for virtual method calls. Interfaces are also defined in

the vtable, but have a special semantic for dispatch – this is explained in the section titled ―Interface Layout

and Virtual Stub Dispatch‖. The Echoer interface, as an example, contains a single virtual method, and so

its vtable will have a single corresponding SLOT. The Echo class, on the other hand, has a constructor, a

class constructor, a property (which will have two method SLOTs, one for the get implementation and

another for the set implementation), an event handler (which will also have two method SLOTs), and

finally, an introduced method named DoEcho. Echo also inherits all of the fields and methods of its

superclass, which is System.Object. Taking these into account, Echo will have an inherited vtable for

System.Object, and six new SLOTs added to the end of the MethodTable to hold its introduced

methods and constructors. Thus, the final vtable for the Echo class will look, schematically, like Figure 5-

4.

Figure Error! No text of specified style in document.-9. Method and interface layout for

the Echo component

Consider the code that exercises the Echo component, shown in Example 5-6.

Example Error! No text of specified style in document.-7. Exercising the Echo component

using System;

using SampleEcho;

namespace MainSampleProgram

{

 class EchoProgram

 {

 static void Main(string[] args)

 {

 Echo myEcho;

 EchoValue[] result;

 if (args.Length > 0) {

 myEcho = new Echo(args[0].ToString());

 } else {

 myEcho = new Echo("Hi, mom!");

 }

 // Set up an event handler and hook to component

 Echo.EchoEventHandler handler =

 new Echo.EchoEventHandler(CallMe);

 myEcho.OnEcho += handler;

Chapter 5: Synthesizing Components | 109

 try {

 System.Console.WriteLine();

 myEcho.DoEcho(out result);

 System.Console.WriteLine("Main program received echo!");

 for (int i = 0; i < result.Length; i++) {

 Console.WriteLine("{0}: {1}, {2}", i,

 result[i].theEcho, result[i].itsFlavor);

 }

 }

 catch (System.Exception e) {

 System.Console.WriteLine("Caught exception: {0}", e.Message);

 }

 }

 static void CallMe(string msg) {

 System.Console.WriteLine(msg);

 }

 }

}

Using the Windows windbg debugger, for which the SSCLI distribution contains a managed code

extension, you can easily view the EEClass, MethodTable, and MethodDesc structures allocated by

Rotor as part of executing EchoProgram. This debugger extension is written in such a way that can be

used from other debuggers as well (such as NTSD—this is covered in docs/debugging/sos.html); the

sources for it can be found in sscli20\clr\src\toolbox\sos. While it would certainly be possible to do the kind

of spelunking that we are about to undertake in a debugger that didn‘t use these extensions, it would

involve manually walking data structures and would be considerably less easy.

Since we are dealing with translations to native microprocessor instructions, a few

samples will be shown in assembler. Readers unfamiliar with x86 assembly language

may be feeling a bit uncomfortable at this point, since this seems to imply that an in-

depth understanding of x86 is a core requirement to understanding the chapter. As it turns

out, however, only a passing familiarity with x86 is needed, and it‘s entirely possible that

readers familiar with just the concepts of an assembly language will still be able to carry

through with flying colors. In fact, one of the authors proudly claims never to have

written any sort of x86 assembly language program except as a final assignment in

college, while another author is really fluent only in assembly languages that were

popular before many readers of this book were born. Fear not!

Besides debugger extensions, there are two configuration file settings that may be useful for watching the

construction of runtime type descriptions: BreakOnClassBuild and BreakOnClassLoad. By

specifying a type name as the parameter for these configuration variables, you can cause the execution

engine to drop into the debugger when a particular class is built or loaded. (These settings work only in

debug-enabled builds; see the documentation on logging that accompanies the Rotor distribution for

details.)

Using WinDbg and the SOS debugger extension

At this point, a minitutorial on debugging seems as though it would be useful. We will illustrate techniques

using the latest windbg debugger (Version 6.7.5.1) from Microsoft, which can be downloaded from

Microsoft‘s Platform SDK download area on http://msdn.microsoft.com. Recent Windows operating

systems ship with a copy of the ntsd debugger as part of the standard distribution, which is the original

command-line program on which windbg is based (and with which it is command-compatible). Which one

you choose to use is purely a matter of GUI versus command line.

The obvious first step is to fire up the debugger. The easiest way to do this is to make sure that windbg.exe

is on your path, and fire it up from the command line:

Chapter 5: Synthesizing Components | 110

 > windbg clix.exe MainProgram.exe

A few things need to be done before you can get to spelunking—most notably, you need to tell windbg

about Rotor-specific extensions and where to find debug symbols. (You did remember to build the SSCLI

checked build, to enable all of those debugging hooks, right? The fast checked build is the default, but to

really experience debugging paradise, checked is the way to go.)

In SSCLI version 2.0, there is a requirement to copy the sos.dll.manifest file over to be

the debugger exe manifest in order to load the sos extensions properly. An example of

this follows:

C:\sscli20\binaries.x86chk.rotor\> copy sos.dll.manifest

c:\debuggers\windbg.exe.manifest

For more information on this operation, please see sscli20/docs/debugging/sos.html.

To set the extension into motion in a command window that has been prepared using the env script for the

SSCLI, you should be able to type:

 0:000> !sos.help

If the extension is loaded, this will return help on all the commands available in the extension:

 0:000> !sos.help

 SOS is a debugger extension DLL designed to aid in the debugging of managed

 programs. Functions are listed by category, then roughly in order of

 importance. Shortcut names for popular functions are listed in parenthesis.

 Type "!help <functionname>" for detailed info on that function.

 // list of commands continues

The output from this command has been truncated. It is summarized in Table 5-1.

Table Error! No text of specified style in document.-3. Commands in the SOS debugger

extension

Command Description

IP2MD <addr> Converts an instruction pointer address into the

corresponding MethodDesc (used to move from

JIT-compiled code into the execution engine‘s data

structures)

DumpMD <addr> Dumps the contents of a MethodDesc

DumpMT [-MD] <addr> Dumps a MethodTable (use-MD to see

MethodDescs for each method)

DumpClass <addr> Dumps the contents of a type

DumpModule <addr> Dumps the contents of a module

DumpObj <addr> Dumps the contents of an object

u [<MD>] [IP] Disassembles code, showing managed symbols

where possible (this is especially useful for

examining JIT-compiled code)

Threads Listsmanaged threads

ThreadPool Lists stats about the threadpool

DumpStack [-EE] [top stack [bottom Dumps the stack, showing information about JIT-

Chapter 5: Synthesizing Components | 111

stack]] compiled code

DumpStackObjects [top stack [bottom

stack]]
Finds object references on the stack and lists them

EEStack [-short] [-EE] Listsstacks

SyncBlk [-all|#] Dumps the syncblock table

DumpDomain [<addr>] Lists stats for an application domain, along with the

assemblies and modules that it contains

Token2EE Finds EE info for token

Name2EE Finds EE info about name (expressed in C# form)

If the extension is not loaded, or if you are not using an SSCLI command window, the same thing can be

done by using the .load command to load the extension DLL into WinDbg‘s process space, as follows:

 0:000> .load C:\sscli20\binaries.x86chk.rotor\sos.dll

 0:000> !sos.help

The fully qualified pathname is necessary unless sos.dll is on what‘s called the debugger extension

path, which is read from an environment variable called _NT_DEBUGGER_EXTENSION_PATH at the

time the debugger starts up; this is one of the things that the standard Rotor environment prompt sets up for

you automatically.

If you see an error ―Failed to find runtime DLL (mscorwks.dll), 0x80004005‖, you

should force the load of the SSCLI runtime by running a piece of managed code, then

breaking after the runtime has loaded. Once you‘ve completed this, you can use the

following command to load up sos:

!loadby sos mscorwks

As you can see, there are a large number of commands available; we won‘t go over all of them, but a little

experimentation will reveal their usage and purpose in short order.

Loading the executable for debugging

At this point, the executable is not yet loaded. Furthermore, since clix.exe dynamically loads the PAL and

the SSCLI execution engine as shared libraries (you will remember that this is how versioning of the

execution engine can be accomplished), there is not yet a way to actually view any PAL or execution

engine routines. Instead, a couple of options are open to us. One is to set a deferred breakpoint on a

common routine, execute the program, and wait:

 0:000> bp rotor_pal!pal_writefile

 0:000> g

When new modules are loaded (in this case, the rotor_pal module), the debugger will look to see whether

there are breakpoints that should be set. Once it has set them, the breakpoints will function as expected.

Alternatively, you can single-step through the clix code, and once you see a message that sscoree.dll is

loaded, you can set a breakpoint or step into the _CorExeMain2 routine. A third technique is to use an

environment variable from the set shown in Table 5-2 to trigger a break from within the execution engine

code itself; this is probably the simplest method and is very convenient to use against debug-enabled builds.

Whichever technique you choose, you should at this point be able to view and manipulate SSCLI routines

directly.

Table Error! No text of specified style in document.-4. Environment variables can be

used to trigger breakpoints

Configuration setting Values Comment

Chapter 5: Synthesizing Components | 112

COMPlus_BreakOnEELoad 0 or 1 Break on startup

COMPlus_BreakOnEEShutdown 0 or 1 Break on shutdown

COMPlus_BreakOnClassBuild Classname Break when loading

classname

COMPlus_JitBreak class::method Break before compiling

method

COMPlus_JitHalt class::method Break when method

executes

If windbg complains of an inability to see source files, either set the _NT_SOURCE_PATH environment

variable before starting it, or add a directory using the FileSource File Path menu item. At a minimum,

you should add the SSCLI source directory. In a similar vein, symbols must be on the

_NT_SYMBOL_PATH (or else defined using the FileSymbol File Path menu item). Again, this is

something the Rotor env.bat script will establish for you automatically when it is run.

Halting execution

At this point, you could set a breakpoint on ClassLoader::LoadTypeHandleThrowIfFailed

and watch each and every type get loaded into Rotor, but you are likely to find that this becomes slightly

tedious after the tenth or twentieth type to be loaded, particularly in view of the fact that there are still

hundreds of types left to go before you get to Echo, the type we‘re interested in seeing. Again, there are a

couple of ways to go about this.

A quick-and-dirty way would be to set a breakpoint on SystemDomain::ExecuteMainMethod (in

appdomain.cpp). Since this method is the entrypoint for MainProgram.cs, you know that when Echo and

its related types are loaded, this function will be called. A better approach is to use the environment

variable configuration tactic to inform the execution engine specifically which type you would like to

examine. Referring to Table 5-2, note that by setting COMPlus_JitBreak to EchoProgram::Main

(remembering that CLR environment variable names are case-sensitive) and then running the program

under the debugger, the debugger will return control to exactly where you want to poke around.

Viewing internal structures

Once the Echo type has been loaded, you can view the internal implementation details for the loaded type

using the SOS DumpClass command. DumpClass, however, requires the address of an EEClass

instance to dump, and we don‘t happen to have one of those handy. Fortunately, it is possible to get class

pointers from a number of other SOS commands; for example, Name2EE can be used, after which it is

simple to pass it to DumpClass:

 0:000> !sos.Name2EE Echo3.dll SampleEcho.Echo

 Module: 00a42f80 (echo.dll)

 Token: 0x02000005

 MethodTable: 00a43658

 EEClass: 036f11ec

 Name: SampleEcho.Echo

 0:000> !sos.DumpClass 0x036f11ec

 Class Name: SampleEcho.Echo

 mdToken: 02000005 (C:\sscli20\binaries.x86chk.rotor\echo.dll)

 Parent Class: 034adc88

 Module: 00a42f80

 Method Table: 00a43658

 Vtable Slots: 5

 Total Method Slots: b

 Class Attributes: 100001

 NumInstanceFields: 2

Chapter 5: Synthesizing Components | 113

 NumStaticFields: 1

 MT Field Offset Type VT Attr Value Name

 034c57ec 4000008 4 System.String 0 instance toEcho

 00a43f58 400000a 8 ...+EchoEventHandler 0 instance OnEcho

 0369adec 4000009 24 System.Int32 0 static 0 echoCount

As you can see, quite a lot of information is available here; of the most interest is verification of what you

wrote earlier, that static fields occupy their own slot in the MethodTable (see the last line in the

DumpClass output). Note also that this isn‘t the complete MethodTable; to see that, use the DumpMT

command with the -MD switch to see a summary of each of the MethodDesc structures in the table:

 0:000> !sos.DumpMT -MD 0x00a43658

 EEClass: 036f11ec

 Module: 00a42f80

 Name: SampleEcho.Echo

 mdToken: 02000005 (C:\sscli20\binaries.x86chk.rotor\echo.dll)

 BaseSize: 0x10

 ComponentSize: 0x0

 Number of IFaces in IFaceMap: 1

 Slots in VTable: 11

 MethodDesc Table

 Entry MethodDesc JIT Name

 00a65d7d 00a65838 NONE System.Object.ToString()

 03757118 00a65860 JIT System.Object.Equals(System.Object)

 03755e78 00a658d8 JIT System.Object.GetHashCode()

 00a65d91 00a65900 NONE System.Object.Finalize()

 00a43869 00a435e8 NONE SampleEcho.Echo.DoEcho(SampleEcho.EchoValue[]

ByRef)

 00a43855 00a43520 NONE SampleEcho.Echo.add_OnEcho(EchoEventHandler)

 00a43859 00a43548 NONE SampleEcho.Echo.remove_OnEcho(EchoEventHandler)

 00a4385d 00a43570 NONE SampleEcho.Echo..ctor(System.String)

 00a43861 00a43598 NONE SampleEcho.Echo.get_EchoString()

 00a43865 00a435c0 NONE SampleEcho.Echo.set_EchoString(System.String)

 00a4386d 00a43610 NONE SampleEcho.Echo..cctor()

And there, in glowing detail, is the Echo class MethodTable—constructors, property methods, event

methods, the ―whole nine yards,‖ as they say. From here, we could follow each of the MethodDesc

structures and poke around further, but we‘ll leave that as an exercise you can do on your own. Enjoy!

Laying Out Method Tables

Building up the runtime layout (including vtables) described by the MethodTable and the EEClass for

a component is a complex process, with much attention paid to optimization. Most of the work is done by

the ClassLoader and MethodTableBuilder classes. The ClassLoader class starts by

determining the number and types of fields and methods on the component; this information will be used to

allocate memory and dictate offsets when creating instances. The ClassLoader then traces the

relationship of the component description being loaded to its parent (because parents contribute their own

member types) and resolves ambiguities or plumbing details such as method overrides. Layout is done in

clsload.cpp, class.cpp, and method.cpp (all in the clr/src/vm subdirectory) and is controlled by a central

ClassLoader method named CreateTypeHandleForTypeDefThrowing. This method begins

with a module and a metadata token for the type being loaded, along with any Generic argument

information needed (Generics and their impact on the runtime is described in the Chapter 6 ―Generics‖) and

returns a TypeHandle which is another unique representation of the type:

TypeHandle ClassLoader::CreateTypeHandleForTypeDefThrowing(

 Module *pModule,

 mdTypeDef cl,

 TypeHandle *genericArgs,

 AllocMemTracker *pamTracker)

Chapter 5: Synthesizing Components | 114

 {

 EEClass *pClass = NULL;

 size_t dwAllocRequestSize = 0;

 MethodTable *pParentMethodTable = NULL;

 PCCOR_SIGNATURE parentInst;

 mdTypeDef tdEnclosing = mdTypeDefNil;

 DWORD cInterfaces;

 BuildingInterfaceInfo_t *pInterfaceBuildInfo = NULL;

 IMDInternalImport* pInternalImport = NULL;

 LayoutRawFieldInfo *pLayoutRawFieldInfos = NULL;

 MethodTableBuilder::bmtGenericsInfo genericsInfo;;

Type handles form a core part of runtime identity, and are at the heart of the Reflection

subsystem. Type handles are explored in depth in Chapter 7 Dynamism and Code

Generation.

Note pClass and pParentMethodTable, which are the first order of business. After getting the

metadata for the module and checking to see that the type is actually defined in the module, you need to

load both the MethodTable for the type‘s parent superclass, if it has one and for the type itself.

(System.Object is the only type in the entire CLI that won‘t have a superclass.) The call to

GetEnclosingClassThrowing yields the metadata token for the type rather than the parent; the

name is a bit confusing:

 pParentMethodTable = LoadApproxParentThrowing(pModule, cl, &parentInst,

 &genericsInfo.typeContext);

 if (pParentMethodTable) {

 // Since methods on System.Array assume the layout of arrays, we can not

allow

 // subclassing of arrays, it is sealed from the users point of view.

 if (pParentMethodTable->IsSealed() || pParentMethodTable == g_pArrayClass)

 pAssembly->ThrowTypeLoadException(pInternalImport, cl,

IDS_CLASSLOAD_SEALEDPARENT);

 genericsInfo.numDicts += pParentMethodTable->GetNumDicts();

 }

 GetEnclosingClassThrowing(pInternalImport, pModule, cl, &tdEnclosing);

Verification code ensuring that the right metadata is present has been omitted from this walk-through. We

skip directly to the next important step, which is to populate the EEClasses with data:

 // Create a EEClass entry for it, filling out a few fields, such as the parent

class token

 // (and the generic type should we be creating an instantiation)

 MethodTableBuilder::CreateClass(pDomain,

 pModule,

 cl,

 fHasLayout,

 fIsAnyDelegateClass,

 fIsEnum,

 &genericsInfo,

 &pClass,

 &dwAllocRequestSize,

 pamTracker);

Chapter 5: Synthesizing Components | 115

The MethodTableBuilder essentially ―compiles‖ a type into an EEClass, MethodTable,

DispatchMap and VTable. It is generally short lived, and once the respective data structures are created

and populated, is thrown away.

After ensuring that a bogus EEClass was not created (not shown), the interfaces of the type are loaded

and resolved:

 // Now load all the interfaces

 HENUMInternalHolder hEnumInterfaceImpl(pInternalImport);

 hEnumInterfaceImpl.EnumInit(mdtInterfaceImpl, cl);

 cInterfaces = pInternalImport->EnumGetCount(&hEnumInterfaceImpl);

 if (cInterfaces != 0) {

 DWORD i;

 // Allocate the BuildingInterfaceList table

 pInterfaceBuildInfo = (BuildingInterfaceInfo_t *)

 GetThread()->m_MarshalAlloc.Alloc(cInterfaces *

sizeof(BuildingInterfaceInfo_t));

 mdInterfaceImpl ii;

 for (i = 0; pInternalImport->EnumNext(&hEnumInterfaceImpl, &ii); i++) {

 // Get properties on this interface

 mdTypeRef crInterface = pInternalImport->GetTypeOfInterfaceImpl(ii);

 // validate the token

 mdToken crIntType =

 RidFromToken(crInterface)&&pInternalImport-

>IsValidToken(crInterface) ?

 TypeFromToken(crInterface) : 0;

 switch(crIntType)

 {

 case mdtTypeDef:

 case mdtTypeRef:

 case mdtTypeSpec:

 break;

 default:

 pAssembly->ThrowTypeLoadException(pInternalImport, cl,

 IDS_CLASSLOAD_INTERFACENULL);

 }

 TypeHandle intType = LoadApproxTypeThrowing(pModule, crInterface, NULL,

 &genericsInfo.typeContext);

 pInterfaceBuildInfo[i].m_pMethodTable = intType.AsMethodTable();

 if (pInterfaceBuildInfo[i].m_pMethodTable == NULL)

 pAssembly->ThrowTypeLoadException(pInternalImport, cl,

 IDS_CLASSLOAD_INTERFACENULL);

 // Ensure this is an interface

 if (pInterfaceBuildInfo[i].m_pMethodTable->IsInterface() == FALSE)

 pAssembly->ThrowTypeLoadException(pInternalImport, cl,

 IDS_CLASSLOAD_NOTINTERFACE);

 // Check interface for use of variant type parameters

 if (genericsInfo.pVarianceInfo != NULL && TypeFromToken(crInterface) ==

mdtTypeSpec)

 {

 ULONG cSig;

 PCCOR_SIGNATURE pSig;

 pInternalImport->GetTypeSpecFromToken(crInterface, &pSig, &cSig);

Chapter 5: Synthesizing Components | 116

 // Interfaces behave covariantly

 if (!pClass->CheckVarianceInSig(genericsInfo.GetNumGenericArgs(),

 genericsInfo.pVarianceInfo,

 SigPointer(pSig),

 gpCovariant))

 {

 pAssembly->ThrowTypeLoadException(pInternalImport, cl,

IDS_CLASSLOAD_VARIANCE_IN_INTERFACE);

 }

 }

 }

 _ASSERTE(i == cInterfaces);

 }

The activity is straightforward: if there are interfaces, enumerate them, check them, and then load their

types. If they have generic parameters, then pull out the Generic type specification, the details of which is

described in more detail Chapter 6. After they‘ve been loaded, we need to remember how many were

specified.

After this, the fields of the class requiring explicit layout will be built by enumerating those fields and

accumulating metadata while the enumeration is being performed:

 if (fHasLayout ||

 /* Variant delegates should not have any instance fields of the variant.

 type parameter. For now, we just completely disallow all fields even

 if they are non-variant or static, as it is not a useful scenario.

 @TODO: A more logical place for this check would be in

 MethodTableBuilder::EnumerateClassMembers() */

 (fIsAnyDelegateClass && genericsInfo.pVarianceInfo)) {

 // check for fields and variance

 ULONG cFields;

 HENUMInternalHolder hEnumField(pInternalImport);

 hEnumField.EnumInit(mdtFieldDef, cl);

 cFields = pInternalImport->EnumGetCount(&hEnumField);

 if (cFields && fIsAnyDelegateClass && genericsInfo.pVarianceInfo)

 {

 pAssembly->ThrowTypeLoadException(pInternalImport, cl,

 IDS_CLASSLOAD_VARIANCE_IN_DELEGATE);

 }

 if (fHasLayout)

 {

 // Though we fail on this condition, we should never run into it.

 CONSISTENCY_CHECK(nstructPackingSize != 0);

 // MD Val check: PackingSize

 if((nstructPackingSize == 0) ||

 (nstructPackingSize > 128) ||

 (nstructPackingSize & (nstructPackingSize-1))) {

 THROW_BAD_FORMAT_MAYBE(!"ClassLayout:Invalid PackingSize",

 BFA_BAD_PACKING_SIZE, pClass);

 pAssembly->ThrowTypeLoadException(pInternalImport, cl,

IDS_CLASSLOAD_BADFORMAT);

 }

 pLayoutRawFieldInfos = (LayoutRawFieldInfo*)

 GetThread()->m_MarshalAlloc.Alloc((1+cFields) *

sizeof(LayoutRawFieldInfo));

 // Warning: this can load classes

 EEClassLayoutInfo::CollectLayoutFieldMetadataThrowing(pDomain,

Chapter 5: Synthesizing Components | 117

 cl,

 nstructPackingSize,

 nstructNLT,

 fExplicitOffsets,

 pParentMethodTable,

 cFields,

 &hEnumField,

 pModule,

 &genericsInfo.typeContext,

 &(((LayoutEEClass *) pClass)-

>m_LayoutInfo),

 pLayoutRawFieldInfos,

 pamTracker);

 }

 }

After this, dependencies are loaded (which is omitted here), and the piece de resistance is performed: the

construction of the method table itself:

 // Resolve this class, given that we know now that all of its dependencies are

 // loaded and resolved.

 // !!! This must be the last thing in this TRY block: if MethodTableBuilder

 // succeeds, it has published the class and there is no going back.

 MethodTableBuilder builder(pClass);

 builder.BuildMethodTableThrowing(pDomain,

 pLoaderModule,

 pModule,

 cl,

 pInterfaceBuildInfo,

 pLayoutRawFieldInfos,

 pParentMethodTable,

 &genericsInfo,

 parentInst,

 (WORD) cInterfaces,

 pamTracker);

BuildMethodTableThrowing, like CreateTypeHandleForTypeDefThrowing, is given a

module, a token, and any relevant generic type information, along with both the interface and layout

information gathered up to this point. The implementation of the method is massive, taking up much of

class.cpp, and because of this, we will only touch on highlights. It is a method of

MethodTableBuilder and has the effect of creating the MethodTable that corresponds to the

EEClass. It uses the bmt* struct definitions found in MethodTableBuilder to pass bundles of

related state from subfunction to subfunction, rather than force each subfunction to have parameter lists that

run for half a page. The structs and the subfunctions are just ways of structuring the data and the code to

make it slightly more modular; in pattern terminology, the bmt structures are parameter objects.

The method begins by resolving and gathering together all structural data about interfaces, method

implementations, and class members for the type. This is used to call PlaceMembers, which computes

where in physical memory the members will go, and gather important facts about the members, such as

how they will use the security service or what calling convention they will use.

With this member layout data in hand, work begins on the interface mappings, which uses a different

technique, known as virtual stub-based dispatch.

Virtual Stub Dispatch

Virtual stub dispatch (VSD) uses generated stubs for virtual method invocations instead of the traditional

virtual method table. As described in the first edition of this work, SSCLI version 1.0 interface dispatch

required interfaces to have process-unique identifiers, and each interface loaded by the execution engine

Chapter 5: Synthesizing Components | 118

thus was added to a global interface virtual table map. This approach required all interfaces and all

interface-implementing classes to be restored at runtime, which had significant impact on startup time and

increased the memory working set of the process. This execution time and running memory footprint ―hit‖

was much of the motivation for stub dispatching: to eliminate much of the related working set, as well as

distribute the remaining work throughout the lifetime of the process.

Although it is possible for VSD to dispatch both virtual instance and interface method calls, it is currently

used only for interface dispatch.

While startup time and working set are not traditionally important to the SSCLI

distribution, they are extremely important to the production version of the CLR. As the

SSCLI version 2.0 is closely based on the production source code, Virtual Stub Based

dispatch was included in the release. While it may be overkill for the SSCLI distribution,

it reinforces the idea that the SSCLI is born of the commercial CLR product, and stands

as an interesting optimization technique for researchers and academics to examine and

study, not to mention as good background information to those who use the commercial

CLR on a regular basis and want to know how the CLR ekes out the best performance it

can.

Virtual Stub Dispatch Design

Stub based dispatch follows the same general principles of delayed compilation and invocation as seen in

the MethodDesc prestub code. In the case of VSD, however, instead of using the classic vtable dispatch

mechanism, the runtime relies on generated stubs to resolve and invoke all interface based calls. Recall,

from version 1.0, interface method invocation went through a series of pointer indirections, lookups and

large data structures, all of which was needed to support interface invocation through the classic vtable.

VSD was introduced primarily to make interface calls faster, and lighter weight by eliminating the table

lookup entirely, and directing the method call to the actual method code directly; in essence, VSD

eliminates the table and the corresponding lookup.

Since an example almost always serves better than straight prose, we will use the following code as the

backdrop for following the VSD implementation, and it will stand as the basic framework to help

understand the various VSD data structures as well as the various stub bits that are generated along the

way.

interface IFoo

{

 void Bar();

}

class FooImpl : IFoo

{

 public void Bar() { ... }

}

public void InvokeMethod()

{

 IFoo foo = new FooImpl();

 foo.Bar();

}

When the IFoo interface is loaded for the first time, VSD code will assign the interface an AppDomain-

scoped Domain Specific ID. This ID is unique throughout the AppDomain, and serves, as its name implies,

to keep the various interfaces unique within the AppDomain. It also lays out the classic vtable for the

interface, and interface methods are assigned respective slot numbers.

When the InvokeMethod method gets JIT compiled, the JIT will ask the VSD mechanism to provide it

with callsite information for the foo.Bar() call. The Stub Dispatch manager does two things: create a

Lookup Stub (described below) if it doesn‘t currently exist for that type of callsite, and create a small

Chapter 5: Synthesizing Components | 119

thunk—called an indirect cell--which will invoke the freshly-minted the Lookup Stub. Figure 5-5 shows

this abstractly:

caller generic resolverlookup stub

dispatch stub

resolve stub

target

indirect cell

Figure 5-5. High level overview of the different types of stubs generated for stub based

dispatch.

Note that, in the figure above, ―caller‖ is JIT compiled code—in this case, the InvokeMethod code for

the foo.Bar call—and ―indirect cell‖ is a pointer to a Lookup Stub, unique to that type of callsite.

The Lookup Stub is simply code that pushes a unique callsite identifier called a dispatch token onto the

stack, then calls the Generic Resolver Stub. A dispatch token is designed to be unique to the callsite type,

and consists of the interface‘s domain-specific ID and the vtable slot index of the interface method. The

Generic Resolver Stub is a general-purpose block of code (that is, not generated per each interface), that

resolves the dispatch token to a dispatch stub and resolve stub. The goal of all of this is simple: resolve this

Interface ID and slot index to the implementing type‘s vtable slot, so that execution of the method

implementation can occur.

Once the JIT-compiled code executes (meaning, an object implementing the interface has been asked to

execute one of the interface‘s implemented methods), the Lookup Stub is invoked via the indirect cell

pointer and execution is passed on to the Generic Resolver. The Generic Resolver stub takes the dispatch

token and resolves the token to the relevant implementing type‘s vtable slot via a data structure called the

Slot Map (called the DispatchMap in code). Slot Maps are found on all MethodTable instances for

types which implement an interface, and sit directly following the vtable in memory. Figure 5-6 shows the

Slot Map for the code above:

Chapter 5: Synthesizing Components | 120

[0] Bar()

IFoo

ID for I 0 scope I 0
Slot Map

vtable

MethodTable

[0] ToString()

FooImpl

ID for I 0 virtual 4Slot Map

vtable

MethodTable

[1] Equals(Object)

[2] Equals(Object, Object)

[3] GetHashCode()

[4] IFoo.Bar()

.

Figure 5-6. MethodTable layout including Slot Map

The Slot Map for IFoo has a map of the IFoo.Bar method from a slot index of 0 to the vtable index of 0

(remembering that Interfaces don‘t inherit from System.Object, so the layout of interface methods

starts from 0).

The Slot Map for FooImpl requires a mapping from the IFoo.Bar method to the FooImpl.Bar

implementation found in the FooImpl vtable. The Slot Map data structure is simple: a row exists for each

interface method implemented, which states the Interface ID of the method, and a mapping from the

Interface ID‘s Slot Map index, to the implementing method‘s vtable index. In this case, IFoo.Bar has a

IFoo Slot Index of 0, which maps to the 5
th

 vtable slot on the FooImpl MethodTable.

If a Slot Map for an interface implementation cannot be found, the Generic Resolver will walk the parent

class hierarchy via the parents MethodTable, looking for the appropriate slot mapping. Once found, it

simply uses the superclasses mapped vtable index, which will work fine because the vtable layout of the

class hierarchy is always inherited.

There are code and algorithmic optimizations to make the Slot Map lookup super fast, yet

make the code a little less approachable. For example: the slot maps are bit-encoded and

take advantage of typical interface implementation patterns using delta values, which

significantly reduce the map size. Be careful when wandering (or, more critically,

modifying) this code, as an invariant designed to increase performance could bite at any

time!

Once the Generic Resolver has found the relevant method implementation, it generates the code for

Dispatch and Resolver stubs, and back-patches the Indirect Cell to the Dispatch Stub, essentially removing

the Lookup Stub and Generic Resolver from the equation.

Chapter 5: Synthesizing Components | 121

The Dispatch Stub is generated per call site type, and is shared app-domain wide. This means a call to

IFoo.Bar from an object of type FooImpl found at two different callsites will use the same Dispatch

Stub. The Dispatch Stub has two jobs: checking to see if the object‘s type matches what it expects, and then

dispatching to the method implementation. Checking for type equivocation is important, because the same

code path could invoke an Interface method from two different (yet polymorphically equivalent) objects.

For example:

 class FooImpl : IFoo

 {

 void IFoo.Bar() { ... }

 }

 class MyNewClass : FooImpl, IFoo

 {

 void IFoo.Bar() { ... }

 }

 void DispatchMe(FooImpl fooObject)

 {

 ((IFoo)fooObject).Bar();

 }

Upon JIT compiling DispatchMe, a Generic Resolver would resolve, and generate both a Dispatch stub

and a Resolver stub for the callsite (that is, the (IFoo)fooObject).Bar() callsite). The Dispatch

Stub would be hard coded to check to see if the callsite object was of type FooImpl, but what if we passed

in a MyNewClass instance instead? The Dispatch Stub code would inevitably fail on the type check and

would then forward the call on to the Resolver Stub to handle the failed case.

The Resolve Stub‘s job is to deal with polymorphic call sites as described in the above example. These

stubs use the method token (the IFoo.Bar token) and the type token, to try and resolve the target via the

Resolve Stub global cache. If the global cache does not contain a match for the callsite, then it asks the

Generic Resolver to resolve the call site appropriately. One key side effect of the Generic Resolver is to

insert an entry in to the Resolve Stub cache, so that subsequent Resolver Stub cache lookups to

polymorphic callsites will be resolved quickly, instead of calling on the Generic Resolver to perform the

resolution.

By way of summarization and a final step towards clarity, let‘s walk through this again:

 Interface IFoo is a simple interface consisting of one method, Bar. Upon load time, the Interface

will be assigned a unique Interface ID.

 Once a method (such as InvokeMethod) is JIT compiled, the JIT will ask the runtime for a token to

call the method. The runtime hands the JIT an indirect cell pointer, and creates a Lookup Stub for that

callsite, which will inevitably pass through a Dispatch Token unique to that callsite to the Generic

Resolver. The Lookup Stub is then shared for other instances of this callsite type.

 When the JIT compiled code is executed, the Lookup Stub is called via the Indirect Cell, and passes

through the hardcoded Dispatch Token to the Generic Resolver.

 The Generic Resolver looks inside the Dispatch Token and pulls out the Interface ID and the

Interface’s Slot Map index. It then looks up the objects Slot Map through the DispatchMap pointer,

and matches the Interface ID and Slot Map index number to the object’s vtable index.

 The Generic Resolver then creates both the Dispatch and Resolver stubs unique to that callsite. The

Dispatch Stub contains a check for type equivocation and a jump if true to the pointer that exists in the

objects vtable, and a jump if false to the Resolver stub.

 If the type equivocation test in the Dispatch Stub fails, the Resolver Stub is called. The Resolver

checks its local cache to see if it has seen this failed case before, and invokes the cached callsite

receiver if found, otherwise it calls the Generic Resolver to resolve the mapping, and generate a new

Resolver Stub cache entry.

Chapter 5: Synthesizing Components | 122

After all this is done and dusted, Interface Stub Dispatch is ready to fly, and thanks to this assembly-level

legerdemain, executes with great performance.

Not so hard after all, n’est-ce pas?

Laying out the method tables and interface stub dispatch is by far the most complex part of the whole

procedure, so pat yourself on the back, take another deep swig of your favorite caffeinated beverage, and

let‘s press on.

Verifying and Compiling CIL

After the MethodTable and its related EEClass have been laid out, all of the type information

necessary for compilation and most of the runtime structures necessary for execution are finished. At this

point, the execution engine is ready to compile and execute the code for the type. But what is it that triggers

JIT compilation?

In traditional toolchains (such as that of C++), compilation often occurs as far forward as the language can

make it—the C++ compiler wants to eliminate as much information as possible from being needed at

runtime, so as to minimize the amount of processing required. Frequently, this approach results in

situations in which the assumptions used while compiling no longer apply—methods are compiled that are

never called in a normal run of the program, for example, or precomputed layouts cannot be used against

newer libraries.

The CLI adheres to a principle of maximal deferral: compilation (along with many other activities) does not

occur until the last possible moment. In the case of method compilation, the ―last possible moment‖ is the

moment that a method is required to run. We need some kind of tripwire to inform us of this event,

something that will fire just before method execution, giving the CLI a chance to invoke the JIT compiler

on the CIL for that method. It would be possible to track all method invocations and force JIT compilation

when necessary, but this would be a naïve implementation and would perform poorly, since only a small

number of method invocations actually need to trigger compilation in a typical application.

The CLI chooses an approach that uses an indirect call to a helper function called the precode helper.

Although a type‘s MethodTable will eventually contain pointers to the native functions that implement

its method bodies, every SLOT is initially loaded with a thunk that will trigger both JIT compilation and

backpatching of the MethodTable when it is called. This tiny, method-specific piece of code is called a

prestub. With each SLOT holding a pointer to a temporary entry point, any call via the MethodTable

will set method compilation into motion via the prestub.

Thunk is a term that is used for different, but similar, concepts in systems programming.

Some refer to the use of automatic marshaling as thunking; others call nullary helper

functions thunks. We use it here according to prevailing parlance at Microsoft, in which a

thunk is a small helper function that is typically inserted automatically by a compiler,

loader, or some other piece of runtime machinery.

The prestub, which will do the actual work of compilation, is called by the precode in an unusual way.

When an as-yet-uncompiled method is called, the precode does nothing more than place the address of the

method‘s MethodDesc on the stack or into a register and then jump to the prestub helper. The

MethodDesc is needed during compilation, because it contains all of the method-specific information

needed for code generation. But rather than look up its address from within the code of the prestub helper,

Rotor actually uses the precode to record the location of the MethodDesc by attaching the code for each

precode directly to the body of its MethodDesc as a small piece of assembly code. This code is created

during the initialization of the MethodDesc, using a wrapper class called Precode and calling the

method AllocateTemporaryEntryPoints. The code can be found in clr/src/vm/precode.cpp , and

looks like this:

TADDR Precode::AllocateTemporaryEntryPoints(MethodDescChunk* pChunk,

Chapter 5: Synthesizing Components | 123

 BaseDomain* pDomain, AllocMemTracker *pamTracker)

{

 CONTRACTL {

 THROWS;

 GC_NOTRIGGER;

 } CONTRACTL_END;

 MethodDesc* pFirstMD = pChunk->GetFirstMethodDesc();

 int count = pChunk->GetCount();

 BOOL fForcedPrecode = pFirstMD->RequiresStableEntryPoint(count > 1);

 BOOL fNativeCodeSlots = fForcedPrecode && pFirstMD-

>ComputeMayHaveNativeCode(count > 1);

 PrecodeType t = PRECODE_STUB;

#if defined(HAS_FIXUP_PRECODE) && !defined(HAS_COMPACT_ENTRYPOINTS)

 // Default to faster fixup precode if possible

 if (!fForcedPrecode)

 {

 t = PRECODE_FIXUP;

 }

#endif // HAS_FIXUP_PRECODE && !HAS_COMPACT_ENTRYPOINTS

 SIZE_T oneSize = SizeOfTemporaryEntryPoint(t, fNativeCodeSlots);

 SIZE_T allSize = oneSize * count;

#ifdef HAS_COMPACT_ENTRYPOINTS

 if (!fForcedPrecode && allSize >

MethodDescChunk::SizeOfCompactEntryPoints(count))

 return NULL;

#endif

 TADDR temporaryEntryPoints = (TADDR)pamTracker->Track(pDomain->

 GetHighFrequencyHeap()->AllocAlignedMem(allSize, AlignOf(t), NULL));

 TADDR entryPoint = temporaryEntryPoints;

 for (int i = 0; i < count; i++)

 {

 MethodDesc* pMD = pChunk->GetMethodDescAt(i);

 ((Precode*)entryPoint)->Init(t, pMD, pDomain);

 _ASSERTE((Precode*)entryPoint ==

GetPrecodeForTemporaryEntryPoint(temporaryEntryPoints,

 i,

fNativeCodeSlots));

 entryPoint += oneSize;

 }

 if (fNativeCodeSlots)

 pChunk->SetHasNativeCodeSlots();

 return temporaryEntryPoints;

}

The precode is a small fragment of code used to implement both temporary entrypoints and the wrapper for

other stubs that require code generation (like Dynamic Methods, and some Generic method cases). The

basic precode that AllocateTemporaryEntryPoints would generate on x86 may look like this:

mov eax,pMethodDesc // Load MethodDesc into scratch register

Chapter 5: Synthesizing Components | 124

jmp target // Jump to a target

The target in the case of calling a method that hasn‘t been JITted yet would be the prestub. Once the code

for a method is generated by the JIT, the temporary entrypoint found in the original slot is atomically

replaced with a stable entrypoint. The stable entry point can be either the JITted native code, or the

precode. The stable entry point has to remain constant for the method lifetime. This invariant is required to

guarantee thread safety since the method slot is always accessed without any locks taken.

A method can have both native code and precode if there is a need to do a work before

the actual method body is executed. This situation happens for remoting stubs or ngen

fixups. Native code is an optional MethodDesc slot in this case. This is necessary to

recover the native code of the method in a cheap uniform way.

Figure 5-7. Overview of what the temporary entrypoint found in a MethodTable SLOT

can point to

The prestub helper function itself, which can be found in the MethodDesc::DoPrestub method in

clr/src/vm/prestub.cpp, is quite long and involved; it is worth stepping through the entire function to

understand it, although we will provide only a brief synopsis here. (One way to do this is to set the global

configuration flag PreStubHalt to true to force a debugger break, using either an environment

variable or a config file.)

All of the pre- and post-processing of method calls needed by the execution engine is set up in the prestub:

 The security engine and the remoting service are each given the opportunity to intercept calls.

 The profiler is given an opportunity to gather data and even modify the CIL of the method.

 If it is the first time that a type has been used, ensure that its constructor is called.

 The SLOT for which the method body is being created is backpatched.

There are other specialized checks performed, such as checking to see whether the method call is an

unboxing operation, in which case the appropriate unwrapping code is generated or other similar details.

All in all, the prestub mechanism is vital to JIT compilation. Understanding its interaction with the

execution engine will be very important to readers who are interested in understanding the Zen of Rotor‘s

JIT compiler.

Referring to Figure 5-1 to recap what we just went over will probably be very helpful at this point. The

MethodTable for a type initially holds pointers to temporary entry points, which points to a small

method called the precode, which will then call the prestub to do the JITted compilation. When a method

body is compiled by the prestub helper, the dispatching MethodTable SLOT temporary entrypoint is

Temporary

Entrypoint

Native code

Precode

pointing to

prestub

Precode pointing

to stub or

native code

Stable

Entrypoint

Chapter 5: Synthesizing Components | 125

backpatched to contain a pointer to a stable entrypoint, which is usually the native code generated by the

JIT compiler. Each method call dispatched via the backpatched SLOT, from this point on, will consist of a

call to the native code.

Verification and JIT Compilation

To verify that code is typesafe, the JIT compiler must walk through the CIL to ensure that every instruction

behaves according to the rules specified in the ECMA spec. This may sound strangely similar to what

needs to happen when CIL is transformed into native code—the JIT-compiler must step through, producing

native instructions that implement the abstract description. Because these two activities are basically the

same, JIT compilation and verification proceed apace, and are intermixed. And because code that is JIT

compiled is not compiled until the last possible moment, both compilation and verification are just-in-time

activities, which means that both can result in runtime exceptions. Programmers should be prepared for this

eventuality.

We‘ve already seen both PE verification and metadata verification in Chapter 4, the first checking the file

format for consistency and the second checking the integrity of the metadata tables. The third and final kind

of verification is CIL verification, which will ensure that there is a valid CIL instruction stream for each

method, and that all potential code paths through it are typesafe. The ECMA specification very carefully

describes the process of CIL verification, along with an accompanying set of verification types. Only

verification types need to be considered during the verification process, since their use covers the semantics

of all types—verification types are more basic than the set of CIL types.

Verification and compilation in the SSCLI are performed as a single-pass algorithm. As the JIT compiler

works through a section of CIL, it verifies that the operands are valid for the operations being performed

and that the stack won‘t either underflow or overflow when the code is executed. At every potential branch,

the JIT makes sure that the types on the stack will be treated consistently by each fork of the branch—no

path should interpret the type of a stack entry in a different way. To assure that this is true, the JIT uses an

internal data structure to remember the stack states associated with each branch.

The JIT compiler uses a number of different stack-structured variables internally to track

the state of a compilation while it is in progress. These stacks are of course different from

the CIL stack and the native microprocessor stack. Don‘t be confused by the presence of

so many stack-structured entities; we will be clear as to which we are referring to.

To do its verification and compilation in a single pass, the JIT compiler processes the CIL stream for a

method in an order that ensures that the state of the stack is always known rather than stepping from

beginning to end. This reordering is accomplished by deferring compilation of the parts of the CIL stream

that carry unknown state and noting those locations as ―places to come back to.‖ The data structure used to

keep these deferrals is called the split stack in the code, and it varies in size depending on the number and

type of branchpoints encountered. When both the split stack is finally empty and the working opcode

stream is exhausted, the complete method has been both verified and compiled into native instructions

successfully. (This algorithm also has the happy side effect of eliminating dead code, which is never

compiled.) To see the code that implements this verification algorithm, examine

sscli20/clr/src/fjit/fjitverifier.cpp.

The main method that performs compilation is FJit::jitCompile in clr/src/fjit/fjit.cpp. To start

compilation, the JIT sanity checks exception handling for the method by checking that no try block, filter,

or handler extends beyond the end of the method or has a size of 0. Locals are initialized to 0, or to null in

the case of references. The compiler also checks to see that no handler or filter is colocated within the

corresponding try block, and that the type tokens used in any typed catch blocks are valid. After these

checks, whenever a try block for exception handling is encountered, the compiler pushes the try address,

along with the starting offsets of matching catch, filter, finally, and/or fault blocks onto its

split stack for verification, while also remembering the stack state that will be expected at these points

(which will always consist of a lone object on the stack, thanks to the way that the exception handling

opcodes work).

Chapter 5: Synthesizing Components | 126

The compiler then begins stepping through the CIL instructions, starting at the method‘s entrypoint. As it

compiles code for a given opcode, the compiler takes care of tracking both stack contents and branching

state for the use of the verifier. When the verifier encounters a branching instruction, its next action is

dependent on the type of branch. The simplest example is an unconditional branch; the verifier will check

to see whether the target offset has already been JITted, and if it has, will make sure that the stack state

matches what is already expected. If the branch target has not been JIT-compiled, the verifier will

remember the stack state and continue at the target offset. If the split stack is empty, the compilation of the

method is finished; otherwise, a new offset is fetched and compilation resumes. Variations on this simple

formula also exist for conditional branches and for leave, throw, ret, and switch instructions—these

rules describe the overall execution of the verification algorithm.

Along with these bookkeeping and verification operations, the SSCLI compiles the CIL instructions one at

a time. Compilation is simple in the SSCLI and designed for maximum ease of portability, as well as

approachability. The compiler has a buffer into which it places its output, which consists of a stream of

native microprocessor instructions. CIL opcodes drive a switch statement whose case statements represent

the entire set of CIL opcodes; for each case, the JIT compiler emits a corresponding sequence of

instructions into its buffer. Beyond an opportunistic enregistering of top-of-stack values, there are

essentially no compiler optimizations. (To enregister a value means to place it in a machine register.)

As an example of code emission, let‘s look at a representative CIL opcode, the add.ovf instruction,

which adds two numbers from the stack, checking for overflow and leaving its result as a single entry on

the stack. For the SSCLI, all instructions are defined in a table named opcode.def that can be found in the

sscli20/clr/src/inc directory. In this file, there is an entry that looks like the following:

 OPDEF(CEE_ADD_OVF, "add.ovf", Pop1+Pop1, Push1, InlineNone, IPrimitive, 1, 0xFF,

0xD6, NEXT))

The first entry in this macro is the name that will be used in code for this instruction, followed immediately

by a human-readable string for the use of tools. This is followed by the stack behavior that the opcode will

exhibit (which in this case is two pops followed by a push), along with parameter characteristics and

implementation details, such as whether it is a primitive, and how the instruction is encoded in the CIL. The

final field categorizes the control flow implications of the instruction and is used during verification.

The information encoded by this macro is used to drive the JIT compiler, which can be found in

sscli20/clr/src/fjit/fjit.cpp. In this file, there is a large switch statement that discriminates between opcodes

and calls out to the appropriate compilation function. For our example instruction, the switch arm is quite

simple:

 switch (opcode) {

 // omitted many cases

 case CEE_ADD_OVF:

 JitResult = compileCEE_ADD_OVF();

 break;

Most of the arms have similar functions that emit opcode-specific code, along the lines of the

compileCEE_ADD_OVF function in our example. This function appears in the same file as the switch,

and looks like the following:

 FJitResult FJit::compileCEE_ADD_OVF()

 {

 OpType result_add;

 BINARY_OVERFLOW_RESULT(topOp(),topOp(1), CEE_ADD_OVF, result_add);

 TYPE_SWITCH_INT(topOp(), emit_ADD_OVF, ());

 POP_STACK(2);

 pushOp(result_add);

 return FJIT_OK;

 }

Chapter 5: Synthesizing Components | 127

The BINARY_OVERFLOW_RESULT is a verification check that is contingent on the types of operands on

the stack. It checks that the two operands match and sets the value of the result_add variable to the

expected type of the result. TYPE_SWITCH_INT then calls lower-level macros based on the types of

operands:

 #define TYPE_SWITCH_INT(type, emit, args) \

 switch (type.enum_()) { \

 case typeI4: \

 emit##_I4 args; \

 break; \

 case typeI8: \

 emit##_I8 args; \

 break; \

 default: \

 FJIT_FAIL(FJIT_INTERNALERROR); \

 }

For example, if the stack has 4 byte integers on it, the emit_ADD_OVF_I4 macro is called:

 #ifndef emit_ADD_OVF_I4

 #define emit_ADD_OVF_I4() \

 { \

 LABELSTACK((outPtr-outBuff),2); \

 callInfo.reset(); \

 emit_tos_arg(1, INTERNAL_CALL); \

 emit_tos_arg(2, INTERNAL_CALL); \

 emit_callhelper_I4I4_I4(ADD_OVF_I4_helper); \

 emit_pushresult_I4(); \

 }

The LABEL_STACK macro in this sequence captures the state of the stack during compilation, using a

StackEncoder (defined in clr/src/fjit/fjit.h), to support garbage collection. It is used whenever calls to

helper functions are used, and the operation will record the locations of object references on the stack.

(While on the subject of garbage collection, any time a backward-branching instruction is compiled, the JIT

compiler emits a call to the garbage collector‘s polling helper function. We will see how both the stack

encoding information and the polling helper are used by the garbage collector in Chapter 9.)

After recording references, callInfo, which is an accumulator used by some of the emit macros used to

support different calling conventions, is reset, and the native code to do the addition and push the result is

emitted. (The emit_tos_arg macro is sometimes used to enregister the top-of-stack value, but since in

this case the add.ovf operation is implemented using an internal function, the arguments should be

passed on the stack using the __cdecl calling convention rather than being put into registers.

INTERNAL_CALL is defined as false to cause correct behavior.) The address of the

ADD_OVF_I4_helper is placed into the instruction stream in the buffer along with an x86 call

instruction, and finally, the return value is pushed back onto the stack.

Compilation and verification for this particular opcode are complete at this point.

The JIT compiler actually has several layers of macros that are used during code emission. At the core is a

set of primitive helper functions that are designed to be easily ported, which are augmented by processor

specific macros. The simple and highly portable macros can be used while doing quick and dirty ports to

new processors, and can then be improved over time. All of the macros discussed to this point are part of

this layer that is portable across JIT implementations.

The layered approach to compilation uses file- and directory-naming conventions to define processor-

specific elements. At the top level, the sscl20i/clr/src/fjit directory contains a file named fjitcore.h, which is

the main file for the JIT compiler, and which defines the calling convention and also acts as the root of a

processor-specific tree of include files. This file, in turn, includes fjit.h, which is a key header file that

imports the opcodes defined by sscli20/clr/src/inc/openum.h and listed in opcode.def. This file also

Chapter 5: Synthesizing Components | 128

describes the linkages between the JIT compiler, the execution engine, and the code manager; declares

entry points for helper code; and defines the reduced set of data types and the stack encoding mechanism

used by the type verification process. Understanding the contents of this header is critical to understanding

the JIT compiler.

In addition to fjit.h, the fjitdef.h header file contains machine-independent code emitter macros, which are

themselves tied to the actual processor being used by a naming convention: the appropriate

<processor>def.h and <processor>fjit.h files are switched at compile-time. For example, when building

the JIT compiler for an x86 processor, the x86def.h and x86fjit.h files would be switched into the build. For

the Power PC processor, the files to use would be ppcdef.h and ppcfjit.h.

The <processor>def.h file is itself wrapped by another header, c<processor>def.h, which wraps the

macros to make them available to C++ code. (Again, for x86, the file is cx86def.h, while for Power PC it is

cppcdef.h.) This file is a low-level and machine-specific collection of macros that encapsulate details about

the processor, such as opcodes, in addition to things like special formats. Porting this file represents the

minimal amount of work that can be done to target a new processor.

As mentioned in Chapter 1, version 2.0 of the SSCLI has not been updated to support the

PowerPC. However, we have kept the code around to help those who would like to take

on the challenge of getting a port back up and running again.

It‘s also worth noting at this stage that the old Rotor JIT compiler for the PowerPC does

not implement as many low-level macros as the x86 JIT compiler does, and its more

generic nature causes it to generate code of lower quality.

One additional file rounds out the scheme: the <processor>fjit.h file. In this file, macros can be redefined

to get processor-specific performance gains. Returning to our example, although the add.ovf instruction

doesn‘t use the processor-specific macro layer, the closely related add instruction (which performs

addition without checking for overflow) does. In x86fjit.h, the emit_ADD_I4 macro is redefined to take

advantage of x86 specific instructions:

 #define emit_ADD_I4() \

 enregisterTOS; \

 x86_pop(X86_ECX); \

 x86_barith(x86OpAdd, x86Big, x86_mod_reg(X86_EAX, X86_ECX)); \

 inRegTOS = true

As you can see, this macro has intimate knowledge of the processor‘s instruction set and conventions. The

x86_pop and x86_barith macros can be found in x86def.h, and are defined in terms of the generic

cmdByte macro.

The use of processor-specific helper functions also deserves discussion. Remember that the arguments in

emit_ADD_OVF_I4 were readied for an INTERNAL_CALL; in the case of add.ovf, the call takes the

form of a C function that can be found in fjitdef.h. The emit_callhelper macro eventually bottoms

out into the x86_call_reg macro, which emits x86 microprocessor instructions to call the helper

function:

 int HELPER_CALL ADD_OVF_I4_helper(int i, int j) {

 int i4 = j + i;

 // if the signs of i and j are different, then we can never overflow

 // if the signs of i and j are the same, then the result

 // must have the same sign

 if ((j ^ i) >= 0) {

 // i and j have the same sign (the sign bit of j^i is not set)

 // ensure that the result has the same sign

 if ((i4 ^ j) < 0) {

 THROW_FROM_HELPER_RET(CORINFO_OverflowException);

 }

Chapter 5: Synthesizing Components | 129

 }

 return i4;

 }

Because the arguments for this function were pushed earlier in the CIL stream using opcodes whose

compiled behavior ―matches‖ that of the helper call, the arguments are already in the right spot on the stack

for the function invocation. As you can see, the function simply checks for the conditions that would cause

an overflow, and either throws an exception or adds the two arguments together.

For those who really enjoy gory details, the call to the helper function that is compiled

using the THROW_FROM_HELPER_RET macro must actually invoke an interpreter that

revisits the processor instruction stream, since it needs to reconstruct the structure of the

stack to find exception handlers. To see this, look in the processor-specific directories in

sscli20/clr/src/vm; the files beginning with the gms prefix contain the implementation.

The way that verification errors are returned from the verifier is interesting. It is a clean and consistent way

to back out of an uncomfortable situation and is worth a quick peek, which is shown in Example 5-7, and

defined in clr/src/fjit/fjit.cpp.

Example Error! No text of specified style in document.-8. How JIT verification exceptions are handled

FJitResult FJit::jitCompileVerificationThrow()

{

 outBuff = codeBuffer;

 outPtr = outBuff;

 *(entryAddress) = outPtr;

 inRegTOS = false;

 // Emit prolog

 unsigned int localWords = (localsFrameSize+sizeof(void*)-1)/ sizeof(void*);

 emit_prolog(localWords);

 mapInfo.prologSize = outPtr-outBuff;

 // Beginning of function code

 mapping->add(0,(unsigned)(outPtr - outBuff));

 // Jit a verification throw

 emit_verification_throw(ver_failure_offset);

 // End of the function code

 mapping->add(1, (unsigned)(outPtr-outBuff));

 // Generate the epilog

 if (!CALLER_CLEANS_STACK)

 // Callee pops args for varargs functions

 { emit_return(methodInfo->args.isVarArg() ? 0 : argsFrameSize,

mapInfo.hasRetBuff); }

 else // If __cdecl calling convention is used the caller is

responsible

 emit_return(0, mapInfo.hasRetBuff); // for clearing the arguments from

the stack

 // Fill in the intermediate IL offsets (in the body of the opcode)

 mapping->fillIn();

 mapInfo.methodSize = outPtr-outBuff;

 mapInfo.epilogSize = (outPtr - outBuff) - mapping->pcFromIL(1);

 //Set total size of the function

Chapter 5: Synthesizing Components | 130

 *(codeSize) = outPtr - outBuff;

 return FJIT_VERIFICATIONFAILED;

}

This function creates a method body that will throw a verification exception when it is called. It is a clever

use of the JIT tools that we‘ve seen already; when a verification error is detected, the compilation process

continues, but the body of the method that is returned and executed does nothing more than throw an

exception.

Calling Conventions in Managed Code

Once the CIL has been verified and compiled, the native code for the method can be safely executed. Since

the CLI, like every modern execution environment, supports programming languages that use recursion, the

stack is used to track execution state. Every method call has an activation record on this stack containing its

arguments, return value, local variables, and other bookkeeping information such as a security object

(which is used by the code access security engine). The structure of Rotor‘s activation records is shown for

the Intel x86 in Figure 5-8.

Figure Error! No text of specified style in document.-8. Elements of an SSCLI stack

frame, for the x86

As methods call other methods, the stack is maintained cooperatively using a variety of calling

conventions. All calls begin with the setup of the callsite (the stack context associated with a method call

by the caller). Parameters are always a part of the callsite, since they can clearly be pushed only by the

caller because the method being called knows nothing of them. Past this, however, different calling

conventions use different mechanisms; why they differ is often a matter of history, of small performance

gains, or of codified personal tastes, and their differences can seem quite arbitrary. Nonetheless, they exist,

and how they interoperate in the SSCLI is described in the following sections.

Chapter 5: Synthesizing Components | 131

The JIT Calling Convention

The standard calling convention used in code produced by the JIT compiler is referred to as the JIT calling

convention. From the perspective of CIL, there are four possible ways to call code: the jump instruction

(which is not verifiable, and so we won‘t cover it here) and three flavors of the call opcode: call, calli,

and callvirt. Each of these has slightly different semantics, and each can additionally be modified to be

a tailcall (which reuses the same activation record during recursive calls rather than profligately generating

new records). The call instruction is nonvirtual, executing precisely the method targeted by the

instruction, versus callvirt, which calls indirectly through a vtable. Both instructions take a token as an

argument, the lookup of the method is the only difference—in the case of callvirt, the table of method

pointers is selected at runtime instead of always being part of the component that is called in the case of

call. For indirect calls, calli, a function pointer is loaded on the stack and control is dispatched to it.

Note that once any of these have been compiled, all use the JIT calling convention.

In the JIT calling convention, all arguments, as well as the return value, are passed on the stack, and

nothing that is passed in is registered. (The CLI is an abstract stack machine, after all—there are no

registers in it.) Arguments are initially pushed in a CLI-specified order, and if the call has a variable

number of arguments, a varargs token is pushed before the arguments. After the arguments, the return

address is pushed automatically. Finally, if the call is an instance method call, the object‘s this pointer

will be the last argument pushed, and the first argument found, on the stack. If there is no this pointer, the

return buffer (which is also optional) will be the first element. Remember, neither the this pointer nor the

return buffer will always be present.

x86 as a Native Calling Convention Example

The JIT native calling convention is a variant of the fastcall calling convention typically used by C++

compilers.

Users of the SSCLI version 1.0 will notice a large change in the calling convention

generated by the JIT compiler. Version 1.0 generated an abstract calling convention

before having the processor specific code generator generate the specialized call case.

Version 2.0 has updated the calling convention to match the semantics of the production

CLR.

The JIT compiler produces code that specifically targets the local microprocessor and its native stack.

There is no separate CIL stack implementation; the CIL stack is simply an abstraction. Because of this, the

execution context for managed code coexists on the stack along with the execution context for unmanaged

code that may have run as part of the CLI implementation or as calls to external services. In order for this

to work smoothly, all code, whether JIT-compiled or natively compiled, needs to obey the same rules with

respect to local calling conventions, nonlocal returns (such as exceptions) and use of ―dangerous‖ data

types such as pointers.

In the x86 JIT compiler, when a call, calli, or callvirt instruction is encountered, the arguments

will have been pushed onto the stack by preceding CIL instructions, as discussed earlier. At this point, the

compiler will hoist arguments in a left to right order, starting with the this pointer, a return buffer (if

required) to hold the return result, then the user specified arguments. The calling convention specifies that

the first two arguments that ―fit‖ in to the native width of the registers will be placed in to the ECX and EDX

registers. All other arguments are placed on the native processor stack.

ECX and EDX registers can only be used for arguments that have the same width as the registers. These

generally include: managed and unmanaged pointers, object references, built in integer types that match the

native width of the processor, enums and some value types are allowed. The processor stack is used for all

other cases.

The return value of a method also has many rules and conditions, and is handled as follows:

Chapter 5: Synthesizing Components | 132

 Floating-point values are returned on the top of the hardware FP stack.

 Integers up to 32 bits long are returned in EAX.

 64-bit integers are passed with EAX holding the least significant 32 bits and EDX holding the

most significant 32 bits.

 All other cases require the use of a return buffer, through which the value is returned.

When the return buffer is used, there is a guarantee that there will be a value there upon method return if no

failures occurred. The callee is not allowed to use the return buffer for temporary space during execution to

make sure this invariant is not broken.

The following example may help make this clear, since it is a bit convoluted. The instance method:

void MyFunc(int32 a, int64 b, int64 c, int32 d, int32 e)

will be transformed as shown in Figure 5-9. The first two four byte quantities that are found, the this

pointer, and the ―b‖ argument, are moved to the ECX and EDX registers, while all other arguments are

placed on the processor stack.

For x86 functions with a variable number of parameters, a VarArg token is passed along with the

arguments to the function. The VarArg token is a special opaque ―handle to argument type data‖ that

provides information about the types of the arguments that have been pushed. The rules described in the

standard calling convention are followed for this type of call, however the VarArg token is pushed after

all other arguments.

this

int32 b

int64 a

int64 c

int32 d

int32 e

this

int32 b
int64 a

int64 c

int32 d

int32 e

Registers

ECX

EDX

Abstract CIL Stack

BEFORE AFTER

Figure Error! No text of specified style in document.-9. Transforming the CIL abstract

stack to the Rotor’s x86 calling convention

The location of activation records on the stack cannot be predicted in advance, but many of the important

and oft-accessed elements of the record can be determined at compile-time. To take best advantage of this,

a frame pointer is kept, and offsets into the frame are used—the security object for a frame lives at a

standard offset, for example, and the location of object references, which is tracked for use by the garbage

collector, is noted by the compiler and placed into a table. Exception tables, which are an optional part of

the frame, are also treated this way. Besides parameter values, return values, and instance pointers, things

like the security object and exception tables populate the activation frame for a method. The prolog of a call

is where these entities are managed, and where the code to move the two hoisted register values onto the

stack can be found. It also does other things, as can be seen in the x86-specific version of the prolog shown

in Example 5-8.

Chapter 5: Synthesizing Components | 133

Example Error! No text of specified style in document.-9. The x86 method prolog (Defined in

clr/src/fjit/i386/x86fjit.h)

#define x86_emit_prolog(locals) \

 x86_push(X86_EBP); \

 x86_mov_reg(x86DirTo, x86Big, x86_mod_reg(X86_EBP, X86_ESP)); \

 x86_push(X86_ESI); /* callee saved, used by newobj and calli*/ \

 x86_barith(x86OpXor, x86Big, x86_mod_reg(X86_ESI, X86_ESI)); \

 x86_push(X86_ESI); /* security obj == NULL */ \

 x86_push(X86_ECX); /* 1st enregistered arg */ \

 x86_push(X86_EDX); /* 2nd enregistered arg */ \

 if (locals) { \

 x86_mov_reg_imm(x86Big, X86_ECX, locals); \

 int emitter_scratch_i4 = (unsigned int) outPtr; \

 x86_push_imm(0); \

 x86_loop(); \

 cmdByte(emitter_scratch_i4-((unsigned int) outPtr)-1); \

 } }

This code saves the frame pointer on the stack, sets the new frame pointer, saves the ESI register (which is

used to pass back new objects from the newobj or newarr opcodes and pass the function pointer for

indirect calls in string copy operations), and then allocates a spot on the stack for the method‘s security

object, which will be populated lazily, if needed. It also places the first two arguments of the method in to

local registers as per the x86 calling convention described above, and if there are locals, it grows the stack

to accommodate them, and then initializes their values to 0.

The x86_emit_prolog macro is of course one of the processor-specific redefinitions of generic JIT

macros that were previously discussed in the compilation section. In the generic version of the prolog,

which can be found in fjitdef.h and is shown in Example 5-9, the simplest presentation of the bare bones of

the calling convention can be seen.

Example Error! No text of specified style in document.-10. The generic version of the method prolog

(defined in clr/src/fjit/fjitdef.h)

#define emit_prolog(locals) \

{ \

 setup_frame(); \

 storeEnregisteredArguments(); \

 ON_X86_ONLY(if (locals)) \

 grow(locals ON_PPC_ONLY(+1), true); \

 if (ALIGN_ARGS) \

 alignArguments(); \

}

The prolog sets up the frame, takes care of any callee-saved register, and grows the stack for locals as

needed, initializing them to 0. Each of these actions is handled by other functions or macros, such as the

x86-specific setup_frame shown in Example 5-10.

Example Error! No text of specified style in document.-11. The x86 version of setup_frame is called by

the generic version of emit_prolog (defined in clr/src/fjit/i386/x86def.h)

#define x86_setup_frame() \

{ \

 cmdByte(expNum(0x55)); /* push ebp */ \

 cmdBlock2(\

 cmdByte(expNum(0x8b)), /* mov ebp,esp */ \

 cmdByte(expNum(0xec))); \

 cmdByte(expNum(0x56)); /* push esi */ \

 cmdBlock2(\

 cmdByte(expNum(0x33)), /* xor esi,esi */ \

 cmdByte(expNum(0xf6))); \

Chapter 5: Synthesizing Components | 134

 cmdByte(expNum(0x56)); /* push esi */ \

}

The code that uses offsets in the activation record is isolated into what is called the code manager. In the

SSCLI distribution, the code manager can be found in fjit_eetwain.cpp (which roughly stands for ―FJIT

Execution Engine Technology Without An Important Name‖). The code manager knows intimate details

about stack layout, and because of this, is used whenever the stack needs to be traversed or pried open. We

will see it used in Chapter 8 and Chapter 9 in conjunction with stack walks, exception handling, and

garbage collection.

One of the functions of the code manager can be used as an example of offset-based access to the activation

record, as shown in Example 5-11.

Example Error! No text of specified style in document.-12. Relative access to stack activation records

(defined in clr/src/vm/fjit_eetwain.cpp)

OBJECTREF* Fjit_EETwain::GetAddrOfSecurityObject(CrawlFrame *pCF)

{

 REGDISPLAY* ctx = pCF->GetRegisterSet();

 LPVOID methodInfoPtr = pCF->GetJitManager()->GetGCInfo(pCF-

>GetMethodToken());

 unsigned relOffset = pCF->GetRelOffset();

 unsigned char* compressed = (unsigned char*) methodInfoPtr;

 Fjit_GCInfo hdrInfo;

 crackMethodInfoHdr(compressed, (SLOT)(size_t)relOffset, &hdrInfo);

 PVOID* pFrameBase = getInternalFP(GetRegdisplayFP(ctx));

 return GetAddrOfSecurityObjectInternal(pFrameBase);

}

Of course, the important line in this function is the last, which calls

GetAddrOfSecurityObjectInternal, which is defined as:

 inline OBJECTREF* GetAddrOfSecurityObjectInternal(PVOID * internalFP)

 {

 return (OBJECTREF*)(internalFP + offsetof(prolog_data,

security_obj)/sizeof(void *) + 1);

 }

This short function uses the current register value of the frame pointer to find the base of the activation

record. The prolog_data struct, defined in ifjitcompiler.h, is used to pull out the address of the security

object itself. This struct varies from processor to processor, based on the calling convention. For example,

the x86 version looks like this:

 struct prolog_data {

 unsigned enregisteredArg_2; //EDX

 unsigned enregisteredArg_1; //ECX

 unsigned security_obj;

 unsigned callee_saved_esi;

 };

Clearly the four elements that it contains rely heavily on specifics of the x86 compiler. Porting Rotor to

other processors requires that equal attention be paid to the specific characterizations of each of them.

Other Calling Conventions

Another thing that will be seen during compilation is the use of stubs, which are pre-built helper functions

that can be joined together using the StubLinker class to create pre- and post-processing for method

calls. Stubs are often used for performance-critical purposes and have detailed knowledge of the

Chapter 5: Synthesizing Components | 135

conventions used by a specific JIT compiler. Like the code manager, stubs are linked tightly to the

compiler. To see the collection of stubs used in the SSCLI implementation, look in the

sscli20/clr/src/vm/i386 directory. You will find templates for exception-handling stubs, security stubs,

array accessors, and marshaling stubs (used by P/Invoke), as well as even more esoteric ones used for very

implementation-specific purposes such as multicasting delegates.

In non-jitted code such as helper functions and stubs, other calling conventions are often utilized, and

because of this, you will not see a completely homogenous stack at runtime. All calls in jitted code still

obey the JIT calling convention, but calls between non-jitted components can and do obey other

conventions. The file method.hpp contains an enum that holds additional calling conventions supported by

the SSCLI execution engine for managed code:

 enum MethodClassification

 {

 mcIL = 0, // IL

 mcFCall = 1, // FCall (also includes tlbimped ctor, Delegate ctor)

 mcNDirect = 2, // N/Direct

 mcEEImpl = 3, // special method; implementation provided by EE (like

Delegate Invoke)

 mcArray = 4, // Array ECall

 mcInstantiated = 5, // Instantiated generic methods, including descriptors

 // for both shared and unshared code (see

InstantiatedMethodDesc)

 mcDynamic = 7, // for method desc with no metadata behind

 mcCount,

 };

We‘ve already seen how JIT calls use the stack, but what about the others here? The enum essentially

describes where the code for the call is coming from—each type of call differs, either because interop

dictates another calling convention or because the execution engine has a high degree of control over the

callsite and can make execution more efficient. It is interesting that all of these use the same JIT calling

convention described above, from the perspective of the JIT-compiled code; the stubs do their conversion

internally.

One of the important calling conventions in the SSCLI implementation (which appears in the enum above

as mcECall for historical purposes) is referred to within the distribution as the FCall. It is a very efficient

call to code that is internal to the execution engine and can be recognized in C# code as methods that are

marked with the MethodImplOptions.InternalCall method attribute. FCalls are mapped onto

C++ functions in the execution engine using a table that can be found in sscli/clr/src/vm/ecall.cpp. Each

entry in this table is an ECFunc struct, as follows:

struct ECFunc

{

 UINT_PTR m_dwFlags;

 LPVOID m_pImplementation;

 PTR_MethodDesc m_pMD; // for reverse mapping

 PTR_ECFunc m_pNext; // linked list for hash table

 LPCUTF8 m_wszMethodName;

 LPHARDCODEDMETASIG m_wszMethodSig; // Optional field. It is valid only if

 // HasSignature() is set.

};

The mapping is from m_wszMethodName to m_pImplementation. All functions being called are

implemented within the execution engine itself; thus, the calls do not need to perform parameter marshaling

or checks of other kinds. You will see references to ―ECalls‖ in the code base in places, such as the

ECFunc table (and in the MethodClassification enum already shown). This name is obsolete, and

all ECalls are now FCalls. The order of parameters to an FCall needs to match the JIT calling convention,

and to ensure this, FCalls are implemented using the FCDECL and FCIMPL series of macros that can be

found in fcall.h. The native code for an FCall needs to be written in a very rigorous way—it should protect

Chapter 5: Synthesizing Components | 136

against causing GC and throw exceptions only from its top-level function using special macros. FCalls,

while fast, are also expert-only territory and are very prone to bugs because of the many rules that must be

followed while masquerading as managed code; the unmanaged code in an FCall implementation must use

the same calling convention and stack management regimen as managed code.

It may be tempting to extend Rotor using the FCall convention for performance-critical

code or as an integration mechanism for already existing C++. This is almost certainly a

bad idea. The trend in Microsoft‘s commercial CLI implementation is to move away from

using this mechanism, both because implementing correct calls is difficult and because it

increases the size of the core system library.

If a call with type mcNDirect is going through the CLI P/Invoke mechanism, it can be recognized in C#

by the DllImport method attribute. (N/Direct is an obsolete code name for what became the P/Invoke

feature; readers who recognize the name from previous Microsoft products should pretend not to notice.)

The code for the method is generated by NDirect::GetNDirectMethodStub; it is code that handles

argument marshaling, as described in the discussion of P/Invoke in the ECMA Specification. Corinfo.h

contains an enum for the ―external‖ calling conventions recognized by the P/Invoke stub. These flags affect

the marshaling behavior of the stub, depending on the calling convention being matched. P/Invoke also

does parameter marshalling. The stub that marshals the arguments first adjusts the state of the execution

engine (because the execution engine needs to record whether execution is outside the scope of execution

engine control on a given thread); it then calls the method that can reside in any native DLL on the system.

The code for both mcEEImpl and mcArray type calls is generated directly: by the execution engine for

delegate multicasters in the mcEEImpl case and by GenerateArrayOpStub for multidimensional

array getters and setters in the mcArray case. The mcDynamic case is used for a fascinating version 2.0

feature called Lightweight Code Generation. More information on the calling convention and the feature

itself can be found in ―Emitting Components Dynamically‖. There are other fascinating uses of stubs in the

SSCLI, including things such as profiling. The last one that we will examine is used by the remoting

service, which provides application domain isolation. Using the EEClass for a given type, the remoting

service produces what is called a transparent proxy, which is an object that looks exactly like another type

but has a special implementation that forwards operations to a companion object of the ―real‖ type. Several

interesting functions in remoting.cpp use the runtime type information structures we have already seen to

synthesize the look alike proxy: see for example, CTPMethodTable::CreateTPOfClassForRP.

The method calls on the transparent proxy are JIT-compiled like any other method and use the TPStub,

seen in Example 5-12, to implement their behavior (and defined in clr/src/vm/i386/remotingx86.cpp).

Example Error! No text of specified style in document.-13. A stub for cross application domain access to

components

Stub *CTPMethodTable::CreateTPStub()

{

 if (s_pTPStub == NULL)

 {

 CPUSTUBLINKER sl;

 CPUSTUBLINKER* pStubLinker = &sl;

 CodeLabel *ConvMD = pStubLinker->NewCodeLabel();

 CodeLabel *UseCode = pStubLinker->NewCodeLabel();

 CodeLabel *OOContext = pStubLinker->NewCodeLabel();

 // before we setup a frame check if the method is being executed

 // in the same context in which the server was created, if true,

 // we do not set up a frame and instead jump directly to the code address.

 EmitCallToStub(pStubLinker, OOContext);

 // The contexts match. Jump to the real address and start executing...

 EmitJumpToAddressCode(pStubLinker, ConvMD, UseCode);

Chapter 5: Synthesizing Components | 137

 // label: OOContext

 pStubLinker->EmitLabel(OOContext);

 // CONTEXT MISMATCH CASE, call out to the real proxy to

 // dispatch

 // Setup the frame

 EmitSetupFrameCode(pStubLinker);

 // Finally, create the stub

 s_pTPStub = pStubLinker->Link();

 g_dwTPStubAddr = (size_t)s_pTPStub->GetEntryPoint();

 // Set the address of Out Of Context case.

 // This address is used by other stubs like interface

 // invoke to jump straight to RealProxy::PrivateInvoke

 // because they have already determined that contexts

 // don't match.

 g_dwOOContextAddr = (size_t)(s_pTPStub->GetEntryPoint() +

 pStubLinker->GetLabelOffset(OOContext));

 }

 // Initialize the stub manager which will aid the debugger in finding

 // the actual address of a call made through the vtable

 // Note: This function can throw, but we are guarded by a try..finally

 CVirtualThunkMgr::InitVirtualThunkManager((const BYTE *) s_pTPStub-

>GetEntryPoint());

 RETURN(s_pTPStub);

}

What is interesting in this stub is that its creation is entirely automatic; the stub and its EEClass are

created by interpreting metadata. A StubLinker is created, and again, knowledge of the calling

convention is used in the various emit functions to create a customized, data-driven method body.

Summary

Assemblies are loaded on demand, using the techniques outlined in Chapter 4. As new components are

called for by application domains in the execution engine, runtime specifications are built from their

metadata for in-memory layout. This information includes specifications for static and per-instance data, as

well as method-dispatching tables. The dispatch tables are constructed to initially contain thunks that will

trigger code compilation, rather than the method code for class behaviors that will eventually populate

them. By using thunks in this way, compilation is deferred until the last possible moment, reducing startup

costs.

The combination of on-demand loading and deferred compilation is called JIT compilation. Class loaders

and the SSCLI JIT compiler work in conjunction with high-level language compilers to create component

types. Source languages are parsed and converted into a combination of metadata and language-agnostic

CIL opcodes rather than being converted directly into native microprocessor instructions, and this

combination of metadata and CIL is transformed at runtime into in-memory layouts, native microprocessor

instructions, and tables for the CLI‘s garbage collector and exception-handling facility. The facilities of the

runtime that do layout and compilation are also available to programmers in the CLI‘s reflection facility.

From the perspective of the CLI component model, the stage of a component‘s lifecycle during which it is

loaded and compiled is a moment when layout and behavior are transformed from an abstract

representation into concrete, directly executable forms. To ensure that these forms continue to be safe, the

SSCLI JIT compiler intermixes type verification with compilation, using a unique one-pass algorithm. In

Chapter 5: Synthesizing Components | 138

the SSCLI, the actual implementation of the verifier and compiler is also layered for maximum portability

and simplicity.

Having converted a component into native code, addresses, and offsets, it remains to be seen how this code

can be run under the watchful eye of the execution engine without ―losing control,‖ which is the topic of

Chapter 8. But first, we must look at how generics—parametric polymorphism—changes the story of types

within the execution engine.

Chapter 6: Generics | 139

6. Generics

The biggest change to the CLI standard (and, by extension, the SSCLI and the production .NET Framework

implementations) came via an extension to the CLI type system known as parameterized types or

parametric polymorphism, also known more popularly by its colloquial name, ―generics‖. Generics were a

highly-requested feature after the initial release of the CLI and .NET 1.0 Framework, and were widely cited

as one of the compelling reasons for adoption of the 2.0 Standard.

The motivation for Generics came largely from developers‘ previous work with C++ templates. In a type-

parameterized class (such as a C++ template or CLI generic class), the component declaration contains a

type parameter, whose exact definition is deferred until declaration, instantiation, and usage. When used,

the type-parameterized type‘s code is checked against the parameterized type parameter, thereby providing

additional compile-time type-safety and error detection.

An example will perhaps serve better to demonstrate the intent of Generics:

Example 6-1. An example of a Generic type being instantiated.

class Foo<TArg>

{

 public static void WriteArgs<TMethodArg>(TMethodArg methodTypeArgument)

 {

 Console.WriteLine("Type arg: {0}, Method arg: {1}",

 typeof(TArg), methodTypeArgument.GetType());

 }

}

Foo<string>.WriteArgs<int>(42);

// When run, this outputs the following string to the Console:

// Type arg: System.String, Method arg: System.Int32

In this example, the class Foo is defined with a single type parameter, TArg, which, when used, will be

replaced with a type given by the user at point of usage. In the sample above, that parameter is the type

string, and any reference to TArg in the body of Foo will (for purposes of that usage of Foo) be

compiled against the string type definition.

The example code also demonstrates another feature of Generics, the ability to provide type parameters at a

method level, such as the TMethodArg type parameter in the definition of the WriteArgs method. The

ability to provide type arguments at both a component and a method level gives the CLI generics system a

degree of flexibility that would not be present had type parameters only been possible at the type level.

The advantages of parameterized types becomes a bit more apparent in a more complex example, below, in

which the (admittedly incomplete and oversimplified) Stack class is parameterized to include the types

allowed in the Stack, providing a guarantee at the compile-time level to ensure that an int pushed into

the Stack cannot be erroneously thought to be a string when retrieved:

Example 6-2. An example of a Generic type being instantiated.

class Stack<T>

{

 private T[] contents = new T[100];

Chapter 6: Generics | 140

 private int top = 0;

 public Stack()

 {

 }

 public void Push(T elem)

 {

 contents[top] = elem; top++;

 }

 public T Pop()

 {

 return contents[top]; top--;

 }

}

Stack<int> intStack = new Stack<int>();

intStack.Push(12);

intStack.Push(24);

string top = intStack.Pop(); // Error! Pop returns int, not string

While Generics are certainly capable of much more than just strongly-typed collection classes, usage like

the above was widely seen as the ―gateway drug‖ to more advanced use of this kind of parametric

polymorphism, and as a result, heavily influenced the call for such support in the 2.0 version of the CLI

standard.

Readers unfamiliar with the C# 2.0 language, and the Generics features of C# 2.0 in particular, are highly

encouraged to spend some time getting comfortable with the changes to the language and type system

before proceeding further—seeing the implementation of Generics will be a complicated enough subject

without adding the additional burden of learning the language features at the same time. The Microsoft

MSDN documentation has a great introductory article (http://msdn2.microsoft.com/en-

us/library/ms379564(vs.80).aspx), and many .NET 2.0 books describe the details of Generics from the

language and type system prospective. For a good background on the technical terminology and concepts

behind Generics, readers are encouraged to spend some quality time with the ECMA CLI Partition II

specification (http://msdn2.microsoft.com/en-au/netframework/Aa569283.aspx).

Design Approach

Before diving too deeply into the details of the SSCLI Generics implementation, however, it is useful to

examine some of the design approaches used in alternative languages and platforms; in particular, given

their similarities to C# and the CLI, it is helpful to spend a few moments examining the equivalent features

in C++ and Java.

In C++, one writes a template class containing one or more type parameters, along the lines of something

like the following:

Example 6-3. Another example of C++ templates.

template <typename T>

class Stack

{

private:

 T* contents;

 int size;

public:

 Stack();

 Stack(const Stack& rhs);

http://msdn2.microsoft.com/en-us/library/ms379564(vs.80).aspx)
http://msdn2.microsoft.com/en-us/library/ms379564(vs.80).aspx)
http://msdn2.microsoft.com/en-au/netframework/Aa569283.aspx

Chapter 6: Generics | 141

 ~Stack();

 operator =(const Stack& rhs);

 void Push(const T& elem);

 const T& Pop();

};

// implementation details elided for brevity

int main()

{

 Stack<int> intStack;

 intStack.Push(12);

 intStack.Pop(24);

 Stack<std::string> stringStack;

 stringStack.Push("Ted");

 stringStack.Push("Joel");

}

The syntactic similarities to C# Generics is not accidental—the C# syntax was chosen deliberately to be

similar to the C++ facility in order to minimize the learning curve for C++ programmers new to the C#

language and CLI platform. Note that C++ also permits template functions, in keeping with its backwards

compatibility to C and C‘s top-level (global) function capabilities:

Example 6-4. Another example of C++ templates.

template <typename T>

T min(T x, T y)

{

 if (x > y)

 return y;

 return x;

}

cout << min(10, 42);

cout << min(44.5, 55.9);

// When run, this outputs the following string to the console:

// 10

// 44.5

In both cases, when compiled, the C++ compiler ―expands‖ the definition of the template (class or

function) as each unique type-parameterized use is seen. Thus, in the function example above, each use of

min causes the C++ compiler to generate a new, unique definition of min, one taking T as an integer, the

other taking T as a floating-point value.

This ―expansion on usage‖ style has some compelling design capabilities (more fully explored in Andrei

Alexandrescu‘s Modern C++ Design), but it suffers two significant drawbacks. The first is that of ―code

bloat‖: as each new type-parameterized use of the template is discovered by the compiler, an entirely

separate definition of the template must be generated, forcing multiple, potentially redundant, definitions of

the template to be created. Given the relative growth of storage devices and working memory, this might be

an acceptable tradeoff for the forseeable future. The second drawback, however, is the vastly more

awkward one, from the perspective of the CLI standard (and those C++ programmers attempting to produce

runtime-linked components like DLLs): because the template is a purely compile-time artifact—no

template definition remains after compilation—all usage of that template must be seen before the compiler

finishes code generation. In a component-based metadata-centric environment like the CLI, where the

actual CPU code generation will be taking place at runtime—not compile-time—based on the runtime

linking taking place, the actual usage of a parameterized type may not be seen until long after the compiler

Chapter 6: Generics | 142

has been put away. (In the C++ environment, this meant that developers had to forward-declare the usage

of the template, so as to force the compiler to generate the type-expanded template code into the DLL or

shared library, and hope they didn‘t miss one.)

The Java implementation of Generics faced much of the same problems as the CLI implementation, in that

the Java Virtual Machine is also an execution engine much like the CLI‘s EE is, and therefore would face

the same forward-declaration problems that the CLI would face. Java also faced the rather ugly problem of

a large and complex existing legacy code base, as Java had been ―out in the wild‖ for at least a half-decade

prior to the first release of the CLI.

In order to satisfy the needs of the runtime environment, Java‘s implementers chose to generate a runtime

artifact out of the generic class, but then faced the thorny problem of what code to generate around the

actual type parameter—in other words, what should the Java compiler do with references to ―T‖? The

answer Java chose was to use type erasure—removing the actual type parameter (―T‖) from the generated

code and, in its place, substitute a most-widely-acceptable type instead. In Java‘s case, this means that all

references to ―T‖ are replaced by references to java.lang.Object, Java‘s fundamental base type and

equivalent to the CLI‘s System.Object. This meant that only one definition of the parameterized type

(Stack) needed to be generated by the compiler, but it also meant that all type-safety was lost once the

compiler was finished and put away, meaning that tools like the Reflection API could (and would) bypass

and ignore the type-safety the type parameterization was supposed to provide.

The CLI implementation of parameterized types was ambitious: it aimed to introduce Generics as a first

class citizen of the type system and the runtime. This meant full cross language interoperability through the

Common Type System, exact knowledge of generic type instantiations at runtime, full late-bound

Reflection support for analysis and invocation, and expressive ―as expected‖ semantics baked in at the C#

language level.

A more thorough discussion comparing the Java, C++ and CLI parameterized type

implementations and their respective advantages and disadvantages is beyond the subject

of this book (but would probably make for a good undergraduate college thesis or

research project).

The implementation takes advantage of the dynamic nature of the runtime, performing just-in-time

specialization techniques for efficient creation and use of runtime types. Parameter constraints

(programmer specified type constraints of the generic type parameter. e.g. Foo<T> where T is constrained

to be a sub-class of System.Object or some other type) and full verification are also supported,

allowing the programmer to be as specific as needed, while remaining well within the comfort of compile

time—and runtime—type safety.

Code sharing (the sharing of Method implementations on Generic types and via Generic

methods) was another serious motivation for having Generics baked in at the runtime

level. The SSCLI 2.0 does not support the Code Sharing feature due to the simple FJIT

implementation used in the SSCLI; however, the production .NET Framework CLR does

leverage Code Sharing where possible, which significantly reduces code bloat.

More information on Generics and Code Sharing can be found on Don Syme‘s webpage

on Microsoft Research (http://research.microsoft.com/~dsyme/papers/generics.pdf) and

Joel‘s blog (http://blogs.msdn.com/joelpob/archive/2004/11/17/259224.aspx).

In what was probably the most successful use of the SSCLI/Rotor source base as a research platform for

future CLI functionality, Rotor developers were able to get an early look at a strawman implementation of

Generics via a Microsoft Research project called Gyro (http://research.microsoft.com/projects/clrgen), a

―source patch‖ to the Rotor v1 source base that provided a working implementation of a full-reification

Generics system on top of the CLI. This gave Microsoft developers a chance to see Generics in action and

http://research.microsoft.com/~dsyme/papers/generics.pdf
http://blogs.msdn.com/joelpob/archive/2004/11/17/259224.aspx
http://research.microsoft.com/projects/clrgen

Chapter 6: Generics | 143

make sound decisions about its specification and implementation from a position of experience, rather than

supposition and inference.

Implementation

Making the CLI generics implementation a first class runtime and type system citizen meant the

implementation had to touch a lot of areas inside the SSCLI codebase, necessitating changes to metadata,

metadata tables, runtime layout, new runtime data structures, code verification, the JIT compiler, Remoting,

the Debugger, Profiler API‘s and more. It‘s probably time to get another one of your favorite caffeinated

beverages while we explore some of these changes in detail. Maybe even two.

Generics Metadata

Changes and additions to Metadata and IL were required in order for CLI languages to emit generic types

that the runtime could understand. Some of the high level changes included adding new types to the CIL

type system; additional syntax for declaration of polymorphic (generic) forms of classes, interfaces, structs

and methods; and brand new CIL instructions, along with generalized versions of existing CIL instructions

to deal with Generic types.

CIL Changes

The changes are best illustrated by walking through the CIL and metadata output for a simple C# example

that uses Generics:

 Example 6-5. An example of a Generic Stack.

class Stack<T>

{

 private T[] store;

 private int size;

 public Stack()

 {

 store=new T[10]; size=0;

 }

 public void Push(T x)

 {

 if (size>=store.Length) {

 T[] tmp = new T[size*2];

 Array.Copy(store,tmp,size);

 store = tmp;

 }

 store[size++] = x;

 }

 public T Pop() {

 return store[--size];

 }

}

static void Main(string[] args)

{

 Stack<int> stack = new Stack<int>();

 stack.Push(1);

}

Firing up ILDASM, we first take a look at some of the CIL syntax for the Generic Stack type:

.class private auto ansi beforefieldinit Stack`1<T>

Chapter 6: Generics | 144

 extends [mscorlib]System.Object

{

 .field private !T[] store

 .field private int32 size

 .method public hidebysig specialname rtspecialname

 instance void .ctor() cil managed

 {

 // Code size 30 (0x1e)

 .maxstack 8

 IL_0000: ldarg.0

 IL_0001: call instance void [mscorlib]System.Object::.ctor()

 IL_0006: nop

 IL_0007: nop

 IL_0008: ldarg.0

 IL_0009: ldc.i4.s 10

 IL_000b: newarr !T

 IL_0010: stfld !0[] class Stack`1<!T>::store

 IL_0015: ldarg.0

 IL_0016: ldc.i4.0

 IL_0017: stfld int32 class Stack`1<!T>::size

 IL_001c: nop

 IL_001d: ret

 } // end of method Stack`1::.ctor

The first change in metadata is seen in the type name, where the generic Stack type shows as Stack`1.

The `1 part is necessary to describe the ―arity‖ of the type (i.e. how many specified type parameters the

type owns), and to remove any type name disambiguation from metadata readers and the runtime. A little

further down you‘ll see the field declaration is of type ―T‖, which is generally the syntax for describing the

type in CIL. In the constructor CIL code, the stfld CIL opcode takes a !0 parameter – this is the syntax

for indexing the generic type parameters, meaning it references the 0
th

 (first, zero based index) generic

parameter.

The CIL for the Push and Pop methods use similar syntax for referencing the Type arguments. However if

the method itself has a generic Parameter, then these parameters are indexed using two bangs, !!N, such

that the generic method‘s first type parameter is referred to as !!0, the generic method‘s second type

parameter is !!1, and so on.

 .method private hidebysig static void Main(string[] args) cil managed

 {

 .entrypoint

 // Code size 16 (0x10)

 .maxstack 2

 .locals init (class Stack`1<int32> V_0)

 IL_0000: nop

 IL_0001: newobj instance void class Stack`1<int32>::.ctor()

 IL_0006: stloc.0

 IL_0007: ldloc.0

 IL_0008: ldc.i4.1

 IL_0009: callvirt instance void class Stack`1<int32>::Push(!0)

 IL_000e: nop

 IL_000f: ret

 } // end of method Program::Main

Instantiations of generic types are fully declared in CIL, by specifying the type name and either a fully

qualified type argument (this is called a ―closed generic type‖), or have the generic type ―left open‖ by

specifying an in scope type parameter (this is called an ―open generic type‖). In this case, newobj has

been passed a ―closed‖ type: Stack<int>. To further illustrate the difference between open and closed

generic type declarations, let‘s look at the following example of instantiation with an open generic type

definition:

Chapter 6: Generics | 145

public class Foo<T, U>

{ }

public class Bar<T>

{

 public Bar()

 {

 new Foo<T, int>();

 }

}

The Bar() constructor is creating a Foo`2 type, yet does not yet fully specify Foo‘s type arguments.

The constructor decompiles down to the following IL:

.class public auto ansi beforefieldinit Bar`1<T>

 extends [mscorlib]System.Object

{

 .method public hidebysig specialname rtspecialname

 instance void .ctor() cil managed

 {

 // Code size 16 (0x10)

 .maxstack 8

 IL_0000: ldarg.0

 IL_0001: call instance void [mscorlib]System.Object::.ctor()

 IL_0006: nop

 IL_0007: nop

 IL_0008: newobj instance void class Foo`2<!T,int32>::.ctor()

 IL_000d: pop

 IL_000e: nop

 IL_000f: ret

 } // end of method Bar`1::.ctor

} // end of class Bar`1

You can see that the newobj IL instruction is an open generic type definition. This means the generic still

needs to be closed over ―!T‖ when the Bar`1 class is instantiated with its own generic type argument.

Generics as a type system feature were designed to be ―as expected‖, meaning they don‘t

restrict your movement as an object orientated programmer. They support polymorphic

inheritance, polymorphic recursion, polymorphic virtual methods and generally don‘t

have any type system side-effects, in contrast to systems that erase or coerce. A type you

instantiate at runtime will also reflect back at you the same way you defined it, as all

objects carry exact runtime type information.

Generic Parameter Constraints

At times, when defining generic classes, it can be useful to constrain or restrict the type arguments that are

used to instantiate your class to a specific set of types, subclasses of types, even to the degree of restricting

the kind of type (valuetype, reference type, and types that support default constructors) is able to be used.

The constraint syntax in C# looks like the following:

public class Foo<T> where T : struct

{ }

The ―where‖ keyword has been added to C# to support constraints on generic type parameters (on both

class declarations, and method definitions). And the IL output looks like the following:

 .class public auto ansi beforefieldinit

 Foo`1<valuetype .ctor ([mscorlib]System.ValueType) T>

 extends [mscorlib]System.Object

The generic type definition grammar has been extended to support constraints. Here we see the ―valuetype‖

keyword used to specify that the parameter T can only be instantiated with a type that is a valuetype.

Chapter 6: Generics | 146

Details of what constraints are supported on which types are specified in Partition II of

the C# and the CLI ECMA specifications. See http://msdn.microsoft.com/en-

us/netframework/aa569283.aspx to download the specifications in full.

Constraint enforcement is performed at the runtime level when a generic type is loaded and instantiated.

Metadata Table Additions

A few new metadata tables were added to the runtime, and the semantics of existing tables were altered in

order to support the full breadth of Generics. For the most part, existing tables were leveraged as much as

possible, to keep the surface area of metadata tables (not to mention the necessary changes and testing to

support those changes) as small as possible. Generic type definitions still live in the same metadata table as

their non-generic counterparts, the TypeDef table, and generic methods also still reside in the MethodDef

table. However, there isn‘t enough information in these metadata tables to be specific about ―closed‖

generic type instantiations. Instead, closed generic type instantiations are held in separate tables, the

―TypeSpec‖ table for closed generic type definitions, and the ―MethodSpec‖ table for generic method

instantiations.

To make this clearer, let‘s first walk through an example of the metadata table layout for both a non-generic

class and a non-generic method, and then compare this with their generic definition counterparts. Hopefully

this will give you a feel for the changes made to metadata tables and CIL opcodes.

public class Foo

{

 public void MyMethod()

 {}

}

public class MainClass

{

 public static void Main(string[] args)

 {

 new Foo().MyMethod();

 }

}

Using ildasm.exe to decompile the IL with mention of the actual metadata tokens, we use the ―/tokens‖

command line argument:

.class /*02000002*/ public auto ansi beforefieldinit Foo

 extends [mscorlib/*23000001*/]System.Object/*01000001*/

{

 // MyMethod() method definition

 .method /*06000001*/ public hidebysig instance void

 MyMethod() cil managed

 {

 // Code size 2 (0x2)

 .maxstack 8

 IL_0000: nop

 IL_0001: ret

 } // end of method Foo::MyMethod

} // end of class Foo

This all looks fairly standard: the Foo type definition lives in the TypeDef table (0x02) as the second row

(0x02000002), and the MyMethod()method lives in the MethodDef table (0x06) as the first row

(0x06000001). Looking at the implementation of the Main(string[] args) method we see the

following:

 // Main(string[] args)

 .method /*06000003*/ public hidebysig static

 void Main(string[] args) cil managed

http://msdn.microsoft.com/en-us/netframework/aa569283.aspx
http://msdn.microsoft.com/en-us/netframework/aa569283.aspx

Chapter 6: Generics | 147

 {

 .entrypoint

 // Code size 13 (0xd)

 .maxstack 8

 IL_0000: nop

 IL_0001: newobj instance void Foo::.ctor() /* 06000002 */

 IL_0006: call instance void Foo::MyMethod() /* 06000001 */

 IL_000b: nop

 IL_000c: ret

 } // end of method MainClass::Main

The newobj IL instruction instantiates the Foo object and calls the constructor, and the call instruction

calls the Foo.MyMethod() method via the MethodDef metadata for MyMethod.

Now if we look at the same example with Generics mixed in, we see a similar story for the layout of the

generic definition, but a very different story on how these things are ―closed‖ over and called:

public class Foo<T> where T : struct

{

 public void MyMethod<U>()

 {}

}

public class MainClass

{

 public static void Main(string[] args)

 {

 new Foo<int>().MyMethod<float>();

 }

}

Running this example through ildasm.exe /tokens we see similar output to the non-generic example:

.class /*02000002*/ public auto ansi beforefieldinit

 Foo`1<valuetype .ctor ([mscorlib/*23000001*/]System.ValueType/*01000001*/) T>

 extends [mscorlib/*23000001*/]System.Object/*01000002*/

{

 .method /*06000001*/ public hidebysig instance void

 MyMethod<U>() cil managed

 {

 // Code size 2 (0x2)

 .maxstack 8

 IL_0000: nop

 IL_0001: ret

 } // end of method Foo`1::MyMethod}

The Foo`1 type still lives in the TypeDef table (0x02) and the generic method MyMethod<U> still

resides in the MethodDef table (0x06). However, when we go to close and reference

Foo<int>.MyMethod<float>() in MainMethod we see the difference:

IL_0006: call instance void class Foo`1<int32>::MyMethod<float32>() /* 2B000001

*/

Instead of the call instruction taking a MethodDef token like we saw in the non-generic example, it takes

a MethodSpec metadata token instead. The MethodSpec (0x2B) table contains all the information

necessary to ―close over‖ the generic method with a proper generic argument. It contains a pointer to the

―MethodDef‖ or ―MethodRef‖ metadata tables that describe the method that we‘re closing over (in this

example, it would have a MethodDef token to the MyMethod<U> method), and contains a pointer to the

closed method signature definition – in this case it would point to the signature for MyMethod<int>.

When the call instruction is JIT compiled, it will take the MethodSpec token, walk over to the

MethodSpec table, find the relevant generic method via the MethodDef or MethodRef token, and then read

the method signature in order to understand what types are needed to close over the generic method. A

Chapter 6: Generics | 148

similar process occurs when a TypeSpec metadata token is used instead of a TypeDef or TypeRef token, as

the TypeSpec table contains similar information to close over the generic type instantiation.

The example we‘ve walked through above illustrates a fairly simple design: a ‗spec‘ token is used in place

of a ‗def‘ or ‗ref‘ token when a generic that needs to be fully described is referenced. As a result, CIL

opcodes have also been extended to support ‗spec‘ tokens.

There are a couple of other Generics specific tables that haven‘t been described in our example: the

GenericParam (0x2A) table which stores the generic parameters used in generic type definitions and

generic method definitions, and the GenericParamConstraint (0x2C) table, which records the constraints

for each generic parameter. It‘s worth exploring these tables, and the rules around ‗spec‘ tokens, in depth

through the Partition II Metadata specification.

Runtime Layout and Compilation

The runtime layout of Generic types in the SSCLI is similar to non-generic types, as the designers

leveraged the existing runtime data structures in order to achieve the design goal of having all Generic

types exactly known at runtime. This design goal allows subsystems like Reflection to tell the difference

between a List<string> and a List<object> at runtime by looking at the runtime type associated

with that object.

We will consider the runtime layout of Generic types in the context of loading and executing our simple

Stack<T> example. We will then follow this with a more complex example that digs deeper in to

semantics of loading complex Generic types.

Example 6-6. An example of a Generic Stack.

class Stack<T>

{

 public void Push(T x)

 {

 // ...

 }

}

static void Main(string[] args)

{

 Stack<int> stack = new Stack<int>();

 Stack.Push(1);

}

When the Main method of Example 6-6 gets loaded and run for the first time, the JIT compiler begins to

compile the newobj CIL instruction which takes a Stack`1<int>.ctor() MemberRef metadata

token (which invariably has a pointer to the TypeSpec for Stack`1<int>). The JIT asks the execution

engine to resolve this token so that it‘s able understand what x86 code is required for this method. This

process starts in MemberLoad::GetMethodDescFromMemberDefOrRefOrSpecThrowing

which is found in sscli20/clr/src/vm/Memberload.cpp.

MethodDesc * MemberLoader::GetMethodDescFromMemberDefOrRefOrSpecThrowing(

 Module *pModule,

 mdMemberRef MemberRef,

 const SigTypeContext *pTypeContext,

 BOOL strictMetadataChecks,

 BOOL allowInstParam)

This method resolves any MethodDef, MethodRef, or MethodSpec tokens to a MethodDesc. In our Stack

example, we don‘t have any MethodSpec metadata tokens (as we don‘t have any Generic methods defined),

but this method has the curious ability to resolve a MethodSpec token to a MethodRef token. We should

take a look at that code before we move on:

 if (TypeFromToken(MemberRef) == mdtMethodSpec)

 {

Chapter 6: Generics | 149

 PCCOR_SIGNATURE pSig;

 ULONG cSig;

 SigPointer sp(pSig);

 IfFailThrow(sp.GetData(&nGenericMethodArgs));

 genericMethodArgs =

reinterpret_cast<TypeHandle*>(qbGenericMethodArgs.AllocThrows(cbAllocSize));

 for (DWORD i = 0; i < nGenericMethodArgs; i++)

 {

 genericMethodArgs[i] = sp.GetTypeHandleThrowing(pModule, pTypeContext);

 _ASSERTE (!genericMethodArgs[i].IsNull());

 sp.SkipExactlyOne();

 }

 }

If the token is a MethodSpec token, we call the GetData method, passing in the specified Generic type

argument, and get handed back a MethodRef or MethodDef token that specifies the Generic method we

care about (remember, the MethodDesc metadata table contains an index in to the particular

MethodDef/MethodRef table that contains our Generic method, and also contains a pointer to the blob heap

which specifies the particular instantiation information). Once we have the MethodDef/MethodRef token,

we need to grab the type handles for the generic arguments. We do this through the

GetTypeHandleThrowing method. So now, we have the MethodDef/MethodRef that specifies the

Generic method we want, along with all the instantiating type information to close over the method.

Once we have our MethodRef/MethodDef token (and any type information required to close over the

Generic method), we move on to trying to resolve this to a MethodDesc structure. The

MemberLoad::GetDescFromMemberDefOrRefThrowing method found in

sscli20/clr/src/vm/Memberload.cpp performs this job:

void* MemberLoader::GetDescFromMemberDefOrRefThrowing(Module *pModule,

 mdMemberRef MemberRef,

 BOOL *pfIsMethod,

 const SigTypeContext *pTypeContext,

 BOOL strictMetadataChecks,

 DWORD nGenericMethodArgs,

 TypeHandle *genericMethodArgs,

 BOOL allowInstParam,

 ClassLoadLevel level)

It takes a MethodRef token (along with any Generic instantiation information) and begins the process of

loading the type on which the method lives:

 // Now load the parent of the method ref

 TypeHandle typeHnd;

 if (TypeFromToken(parent) == mdtTypeSpec && level == CLASS_LOAD_APPROXPARENTS)

 {

 PCCOR_SIGNATURE sigInst;

 typeHnd = ClassLoader::LoadApproxTypeThrowing(pModule, parent, &sigInst,

pTypeContext);

 }

 else

 {

 typeHnd = ClassLoader::LoadTypeDefOrRefOrSpecThrowing(pModule, parent,

pTypeContext,

ClassLoader::ThrowIfNotFound,

 (strictMetadataChecks) ?

ClassLoader::FailIfUninstDefOrRef :

Chapter 6: Generics | 150

ClassLoader::PermitUninstDefOrRef);

 }

 MethodTable *pMT = typeHnd.GetMethodTable();

The ClassLoader::LoadTypeDefOrRefOrSpecThrowing method trawls metadata and resolves

TypeRef/TypeDef/TypeSpec tokens to runtime types via the class loader, and hands back a unique

MethodTable that for the Generic case, represents a closed over Generic type. Once we have the

MethodRef/MethodDef token (therefore the signature for the method), and the real live runtime type, we

can call the FindMethod method on the EEClass of our closed Generic type to obtain the

MethodDesc for the method:

 // Lookup the method in the class.

 MethodDesc *pMD = pMT->GetClass()->FindMethod(szMember, pSig, cSig, pModule, NULL,

 EEClass::FM_Default, &sigSubst);

 if (pMD == NULL)

 ThrowMissingMethodException(pMT,szMember,pModule,pSig,cSig, pTypeContext);

 // ... checks

 // For generic code it will return an instantiating stub where needed. If the

method

 // is a generic method then instantiate it with the given parameters.

 // For non-generic code this will just return pMD

 pMD = MethodDesc::FindOrCreateAssociatedMethodDesc(pMD,

 pMT,

 FALSE /* don't get unboxing entry point */,

 (strictMetadataChecks ? nGenericMethodArgs : pMD-

>GetNumGenericMethodArgs()),

 (strictMetadataChecks ? genericMethodArgs : pMD-

>LoadMethodInstantiation()),

 allowInstParam,

 FALSE,

 TRUE,

 level);

 return pMD;

So, to recap, we‘ve taken the MethodRef for Stack`1<int>.ctor, loaded the Stack`1<int> type,

and found the .ctor on that instantiation via the EEClass (with a brief stop to understand how we

resolve Generic method MethodSpec tokens as well). Next, the runtime needs to bubble back up to the top

of the paragraph and continue compiling the ―newobj‖ instruction.

Compilation Process

The compilation and allocation process for the Stack`1<int>.ctor method is quite straightforward.

Because we‘ve already loaded the MethodTable and other runtime data structures for the

Stack`1<int> type, the JIT compiler is able to generate code for the constructor just like any other

method.

 .method public hidebysig specialname rtspecialname

 instance void .ctor() cil managed

 {

 // Code size 30 (0x1e)

 .maxstack 8

 IL_0000: ldarg.0

 IL_0001: call instance void [mscorlib]System.Object::.ctor()

 IL_0006: nop

 IL_0007: nop

 IL_0008: ldarg.0

 IL_0009: ldc.i4.s 10

 IL_000b: newarr !T

 IL_0010: stfld !0[] class Stack`1<!T>::store

Chapter 6: Generics | 151

 IL_0015: ldarg.0

 IL_0016: ldc.i4.0

 IL_0017: stfld int32 class Stack`1<!T>::size

 IL_001c: nop

 IL_001d: ret

 }

Whenever the JIT compiler comes across a metadata token that represents the Generic type (i.e. the !T), it

simply resolves that token to the type handle that was used to close over the Generic type: in this case, the

int type. Actual allocation of a Stack`1<int> object (done via a call to the JIT helper function

JIT_NewFast) also uses the int type handle to figure out the type and size of the fields required to

layout the object. That means that the object is specialized to the Generic type argument that is specified.

The same process applies for JIT code generation for the Push and Pop methods. The JIT simply

leverages the metadata tokens and runtime data structures to figure out how to specialize the code

generation for the method over the specified Generic arguments.

Complex Recursive Loading Example

Given the flexible polymorphic programming style that Generics enables, there are clearly more interesting

and complex cases that the runtime needs to deal with. For example, it‘s surprisingly easy to find scenarios

where cyclic graphs of type dependencies appear, which could cause some grief to the runtime. By way of

explanation, let‘s quickly review the loading and layout specifics for an example which contains cyclical

references.

struct S<T>

{

 T t;

}

class A<T>

{

 S<B<T>> foo;

}

class B<T>

{

 S<A<T>> foo;

}

new A<string>();

Invocation of the Loader takes place much the same as in the previous example, with the newobj

A<string> instruction kicking off the process (from here on in, we‘ll use the C# type names instead of

the metadata names to make the explanation a little more cosmetic). The loader looks at the field token for

the S<B<T>> and realizes that S is a generic valuetype. As valuetypes are laid out inline of the heap

object, resolution of S must take place immediately. To load S<B<string>>, we must first load up

B<string>. As B contains the S valuetype, resolution also takes place immediately, so the loader fires up

an S<A<string>> and bang – we have a cycle – we‘re trying to load A<string>, that‘s what we‘re

resolving in the first place.

Detection of these cycles occurs via a method called CheckInstantiationForRecursion, found in

sscli20/clr/src/vm/Generics.cpp:

Example 6-7. Generics::CheckInstantiationForRecursion.cpp

BOOL Generics::CheckInstantiationForRecursion(const unsigned int nGenericClassArgs,

 const TypeHandle pGenericArgs[])

{

 if (nGenericClassArgs == 0)

 return TRUE;

Chapter 6: Generics | 152

 struct PerIterationData {

 const TypeHandle * genArgs;

 int index;

 int numGenArgs;

 };

 PerIterationData stack[MAX_GENERIC_INSTANTIATION_DEPTH];

 stack[0].genArgs = pGenericArgs;

 stack[0].numGenArgs = nGenericClassArgs;

 stack[0].index = 0;

 int curDepth = 0;

 // Walk over each instantiation, doing a depth-first search looking for any

 // instantiation with a depth of over 100, in an attempt at flagging

 // recursive type definitions. We're doing this to help avoid a stack

 // overflow in the loader.

 // Avoid recursion here, to avoid a stack overflow. Also, this code

 // doesn't allocate memory.

 while(curDepth >= 0) {

 PerIterationData * cur = &stack[curDepth];

 if (cur->index == cur->numGenArgs) {

 // Pop

 curDepth--;

 if (curDepth >= 0)

 stack[curDepth].index++;

 continue;

 }

 if (cur->genArgs[cur->index].HasInstantiation()) {

 // Push

 curDepth++;

 if (curDepth >= MAX_GENERIC_INSTANTIATION_DEPTH)

 return FALSE;

 stack[curDepth].genArgs = cur->genArgs[cur->index].GetInstantiation();

 stack[curDepth].numGenArgs = cur->genArgs[cur-

>index].GetNumGenericArgs();

 stack[curDepth].index = 0;

 continue;

 }

 // Continue to the next item

 cur->index++;

 }

 return TRUE;

}

If the type doesn‘t contain any generic parameters then clearly it can‘t possibly have cycles, so the check

returns false. Otherwise, a depth first search occurs looking for a cycle while being very careful to avoid an

internal stack overflow.

If a cycle is found, the loader splits up the loading of these types in to loading phases. Each phase advances

the state of a type‘s runtime data structure (TypeDesc or MethodTable) from one level to a higher

level. This design eliminates the cyclic recursion problem demonstrated by the above example, and thus

avoids infinite recursion and deadlocks.

Example 6-8. ClassLoadLevel enumeration in ClassLoadLevel.h

enum ClassLoadLevel

{

 CLASS_LOAD_BEGIN,

 CLASS_LOAD_UNRESTOREDTYPEKEY,

 CLASS_LOAD_UNRESTORED,

 CLASS_LOAD_APPROXPARENTS,

 CLASS_LOAD_EXACTPARENTS,

Chapter 6: Generics | 153

 CLASS_DEPENDENCIES_LOADED,

 CLASS_LOADED,

 CLASS_LOAD_LEVEL_FINAL = CLASS_LOADED,

};

The various runtime data structures associated with loading and resolving Generic types (TypeHandle,

TypeDesc, and MethodTable) expose a GetLoadLevel method.

Example 6-9. MethodTable::GetLoadLevel in MethodTable.h

inline ClassLoadLevel GetLoadLevel()

{

LEAF_CONTRACT;

g_IBCLogger.LogMethodTableAccess(this);

// Fast path for zapped images (don't look at writeable data)

if (IsZapped())

{

 // If it was marked as not needing a restore, then it was fully loaded at ngen

time

 if (!MayNeedRestore())

 return CLASS_LOADED;

 // Otherwise look at the restore bits

 g_IBCLogger.LogMethodTableWriteableDataAccess(this);

 if (GetWriteableData()->m_dwFlags &

MethodTableWriteableData::enum_flag_UnrestoredTypeKey)

 return CLASS_LOAD_UNRESTOREDTYPEKEY;

 if (GetWriteableData()->m_dwFlags &

MethodTableWriteableData::enum_flag_Unrestored)

 return CLASS_LOAD_UNRESTORED;

}

g_IBCLogger.LogMethodTableWriteableDataAccess(this);

if (HasApproxParent())

 return CLASS_LOAD_APPROXPARENTS;

if (!(GetWriteableData()->m_dwFlags &

MethodTableWriteableData::enum_flag_DependenciesLoaded))

 return CLASS_LOAD_EXACTPARENTS;

if (GetWriteableData()->m_dwFlags &

MethodTableWriteableData::enum_flag_IsNotFullyLoaded)

 return CLASS_DEPENDENCIES_LOADED;

return CLASS_LOADED;

}

Loading starts at CLASS_LOAD_BEGIN and ends with CLASS_LOADED, while being promoted to a

couple of intermediate levels in between. There are rich and useful comments about individual load levels

in the sscli20/clr/src/vm/classloadlevel.h source file.

The multi-level load phases allow the loader to play cute tricks in order to break the recursive reference

cycle. The loader will use a temporary Generic instantiation placeholder type called __Canon, in the

places where a cycle may occur. In this instance, the S<B<string>> instance found in the A<string>

Chapter 6: Generics | 154

type will become S<__Canon>. The __Canon type is found in Object.cs and is part of the core runtime

library:

Example 6-10. __Canon placeholder type in Object.cs

// Internal methodtable used to instantiate the "canonical" methodtable for

// generic instantiations. The name "__Canon" will never been seen by users

// but it will appear a lot in debugger stack traces involving generics so

// it is kept deliberately short as to avoid being a nuisance.

[Serializable()]

[ClassInterface(ClassInterfaceType.AutoDual)]

[System.Runtime.InteropServices.ComVisible(true)]

internal class __Canon

{

}

Load phases for each reference in the cycle progress, and by the time the load phase for the A<string>

type has moved to the CLASS_LOADED phase, the field will point to the fully instantiated

S<B<string>> handle.

Breadth of Changes

The runtime changes required for Generics were far-reaching, touching everything from runtime data

structures, to metadata, to the Base Class Libraries themselves. In this section, we‘ll explore one of the

bigger type system changes its impact.

Nullable types

A common feature request for the production .NET framework was to allow the assigning of null to

valuetypes. This would enable scenarios like mapping SQL database valuetype columns which can be

―null‖ to the runtime type system (i.e. an Age column in a SQL table could be null, but mapping that Age

column to the Integer type on the runtime would fail for the null case). There are several ways of

implementing this feature at both the language and the runtime level, but Generics gave us a unique

opportunity to simply create a container type that hosted a Generic valuetype, yet could be considered at

the runtime level as being null.

The Nullable<T> type was conceived:

Example 6-11. Nullable<T> type found in Nullable.cs.

public struct Nullable<T> where T : struct

{

private bool hasValue;

internal T value;

public Nullable(T value) {

 this.value = value;

 this.hasValue = true;

}

public bool HasValue {

 get {

 return hasValue;

 }

 }

Chapter 6: Generics | 155

public T Value {

 get {

 if (!HasValue) {

 ThrowHelper.ThrowInvalidOperationException(

 ExceptionResource.InvalidOperation_NoValue);

 }

 return value;

 }

}

The C# compiler has special syntactic sugar to describe a nullable type, the details of which can be found

on MSDN (http://msdn2.microsoft.com/en-us/library/Aa479866.aspx). For now, we‘re just interested in a

particularly interesting case of Nullable usage, which required special implementation to be added to the

runtime. The case concerns the boxing and unboxing of Nullable types, consider the following:

Example 6-12. Boxed Nullable semantics without special runtime case.

int? x = null;

Console.WriteLine(x == null); // True

object o = x;

Console.WriteLine(o == null); // ????

When casting the Nullable object ―x‖ to object, the runtime boxes the struct on the heap as an object and

hands it back a reference pointer to it. If there were no rules or semantics surrounding this code, the o ==

null case would return false, as there is a valid pointer pointing to an object on the heap. It‘s unlikely that

this is what programmers expect – they expect the ―o‖ object to be null.

The same applies when trying to unbox a Nullable type:

 Example 6-13. Unboxed nullable semantics without special runtime case.

int x = 123;

object o = x;

int y = (int?)o; // Error, must write (int?)(int)o

In order to get semantics that programmers expect, modifications to the runtime were made in order to deal

with this as a special case. There are two special case semantics to think about: first, when a Nullable<T> is

boxed, it‘s unwrapped, yielding either a null reference, or a reference to a boxed T, and second, when

unboxing a T, a choice can be made between returning a T, or a Nullable<T> (for the unboxing of a null

case, a Nullable<T> with a null value is returned).

In order to implement the programmer expected semantics, a number of changes were made to the runtime,

touching JIT semantics for the box, unbox, unbox.any and isinst instructions, boxing/unboxing

semantics in the execution engine, changes to verification rules, and even some changes to the Reflection

APIs.

Let‘s take a look around some of the changes that were made.

Compilation of the box instruction for a Nullable<T> was changed to adapt to the special case boxing

semantic of Nullables. Code like the following

int x = 123;

object o = x;

will eventually hit the compileCEE_BOX method which hands off to the compileHelperCEE_BOX

method as normal:

Example 6-14. compileHelperCEE_BOX method in fjit.cpp.

http://msdn2.microsoft.com/en-us/library/Aa479866.aspx

Chapter 6: Generics | 156

FJitResult FJit::compileHelperCEE_BOX(unsigned int token)

{

 // Get the stack type of the class

 CorInfoType eeType = jitInfo->asCorInfoType(targetClass);

 OpType targetType = createOpType(eeType, targetClass);

 targetType.toFPNormalizedType();

 CORINFO_CLASS_HANDLE tokenType;

 TokenToHandle(token, tokenType, CORINFO_TOKENKIND_Ldtoken, false);

 // Check whether the token refers to a value type

 DWORD attribs = jitInfo->getClassAttribs(targetClass, methodInfo->ftn);

 if (attribs & CORINFO_FLG_VALUECLASS) {

 // Verify that the token matches the of the item on the stack

 VERIFICATION_CHECK(targetType.enum_() == topOpE() && topOpE() !=

typeValClass ||

 topOpE() == typeValClass && topOp().cls() ==

targetClass);

 // Floats were promoted, put them back before continuing.

 if (eeType == CORINFO_TYPE_FLOAT) {

 emit_conv_RtoR4();

 }

 else if (eeType == CORINFO_TYPE_DOUBLE) {

 emit_conv_RtoR8();

 }

 unsigned vcSize = typeSizeInBytes(jitInfo, targetClass);

 void* helper_ftn = jitInfo->getHelperFtn(jitInfo-

>getBoxHelper(targetClass));

 _ASSERTE(helper_ftn);

 emit_BOXVAL(targetClass, vcSize, helper_ftn);

 }

 else {

 // BOX can be used on things that are not value classes, in which

 // case we get a NOP. However the verifier's view of the type on the

 // stack changes (in generic code a 'T' becomes a 'boxed T')

 VERIFICATION_CHECK(topOp().isRef() && topOp().cls() == targetClass);

 emit_il_nop();

 }

 // Remove the value from the stack

 POP_STACK(1);

 // Create the object type for the stack

 pushOp(OpType(typeRef, jitInfo->getTypeForBox(targetClass)));

 return FJIT_OK;

}

In the valuetype case, the JIT will ask for the pointer to the correct JIT helper function through the method

getBoxHelper:

 Example 6-15. CEEInfo::getBoxHelper method in fjit.cpp.

CorInfoHelpFunc CEEInfo::getBoxHelper(CORINFO_CLASS_HANDLE clsHnd)

{

 WRAPPER_CONTRACT;

 TypeHandle VMClsHnd(clsHnd);

 if (Nullable::IsNullableType(VMClsHnd))

 return CORINFO_HELP_BOX_NULLABLE;

 return CORINFO_HELP_BOX;

}

Chapter 6: Generics | 157

It turns out that both CORINFO_HELP_BOX_NULLABLE and CORINFO_HELP_BOX point to the same

JIT helper function called JIT_Box (this isn‘t the case for the unboxing operation, as a special method is

used). JIT_Box eventually calls on Fast_Box to do the dirty work of boxing the type, and this method

has a special check to see if the more work is required to unbox a Nullable<T> type:

Example 6-16. MethodTable::FastBox method in MethodTable.cpp.

OBJECTREF MethodTable::FastBox(void** data)

{

 // ...

 if (Nullable::IsNullableType(TypeHandle(this)))

 return Nullable::Box(*data, this);

 // ...

}

The Box method on the Nullable type does most of the heavy lifting:

Example 6-17. Nullable::Box method in Object.cpp.

OBJECTREF Nullable::Box(void* srcPtr, MethodTable* nullableMT)

{

 Nullable* src = (Nullable*) srcPtr;

 _ASSERTE(IsNullableType(nullableMT));

 // We better have a concrete instantiation, or our field offset asserts are

not useful

 _ASSERTE(!nullableMT->ContainsGenericVariables());

 if (!*src->HasValueAddr(nullableMT))

 return NULL;

 OBJECTREF obj = 0;

 GCPROTECT_BEGININTERIOR (src);

 MethodTable* argMT = nullableMT->GetInstantiation()[0].GetMethodTable();

 obj = argMT->Allocate();

 CopyValueClass(obj->UnBox(), src->ValueAddr(nullableMT), argMT, obj-

>GetAppDomain());

 GCPROTECT_END ();

 return obj;

}

This code checks for existence of the value field on the Nullable<T> valuetype instance, and passes that

field pointer (via the ValueAddr method) to the CopyValueClass method. CopyValueClass then

memcpy‘s the Nullable value instance in to a new heap object and returns it. This effectively means it is

unwrapping the actual value from the Nullable<T> instance and boxing that, rather than boxing the

entire Nullable<T> instance.

Summary

SSCLI‘s implementation of generics is a well-established programming language feature which delivers

parametric polymorphism with the added benefits of safety, expressivity, clarity and efficiency. This

chapter, we took a brief tour through the CLI‘s implementation of parametric polymorophism, a.k.a.

―Generics‖, which provides a type safe way to deliver true runtime Generic types that are wholly supported

as a first class citizen of the runtime. We walked through metadata table extensions that are used to support

Generic types and members, class loader semantics to resolve Generic metadata tokens to their true runtime

instantiation, and the JIT compilation process. We also explored the changes required to support Nullable

types, a great addition to the type system that was only enabled through the use of Generics.

Chapter 6: Generics | 158

It‘s worthwhile exploring some of the other runtime subsystems and see how they have been impacted by

the Generics feature in your own time. Check out the changes to the Verifier, Reflection, code generation

systems like Reflection.Emit, and some of the nastier Loader semantics. And if that isn‘t enough, make

sure you read Don Syme and Andrew Kennedy‘s paper on the Design and Implementation of Generics for

the .NET Common Language Runtime: http://research.microsoft.com/~dsyme/papers/generics.pdf.

In the meantime, it‘s time to move on towards some additional type-related discussion, that of the new

facilities in the CLI Specification around runtime-generation of types, also known as Lightweight Code

Generation.

http://research.microsoft.com/~dsyme/papers/generics.pdf

Chapter 7: Runtime Type Definition and Exploration | 159

7. Runtime Type Definition and

Exploration

One of the powerful side effects of self-describing code and full-fidelity metadata is the ability to reflect or

introspect on that code and metadata, known in some circles as Reflection. The CLI provides facilities to

examine metadata of this kind through the System.Reflection namespace. We‘ve looked peeked at

the type system (in Chapter 3) and analyzed the bits and bytes that live in assemblies (in Chapter 4), so now

it‘s time to take a brief tour around some of the System.Reflection namespace, and see how it

interacts with the runtime, type system, runtime data structures, and metadata.

Reflection API

The System.Reflection API is a service provided by the CLI to enable loading, inspection, and

invocation of code and types found in assemblies. The Reflection service retrieves this information by

examining both metadata and runtime data structures, and exposes the information through a series of

managed APIs. These APIs can be used to manipulate instances of loaded types, inspect metadata about

types and their members (exposing things like type and member names), and invoke code, all at runtime.

As could well be imagined, it performs these duties through heavy integration with the loader, type system,

and runtime data structures.

The Reflection API is broken down into three basic services: assembly and type loading, inspection of

metadata and runtime data structures that contain information about assemblies, types and members, and

binding and invocation of code. We‘ll examine each of these concepts in turn.

Loading Code

In Chapter 4, we examined how the runtime performs loading and binding of assemblies on the startup of

the CLI by slurping up an assemblies PE file, laying it and its metadata out in memory, and executing the

main method through the ExecuteMainMethod method of ClassLoader. The late-bound (a term

used to describe the execution of type loading, inspecting or invocation related activities at runtime)

assembly loading API is exposed through the System.Reflection.Assembly type, located in

sscli20/clr/src/bcl/system/reflection/Assembly.cs.

+Load()

+LoadFile()

+LoadFrom()

+LoadModule()

+LoadWithPartialName()

+ReflectionOnlyLoadFrom()

+...()

Assembly

Figure 7-1. System.Reflection.Assembly class with example Load API’s

Chapter 7: Runtime Type Definition and Exploration | 160

Figure 7-1 illustrates a few static method entry points that support assembly loading on the Assembly

class. The rules around binding and loading an assembly are different with each assembly loading API.

Taking first a deep dive into the Assembly.Load managed method shows how it leverages the Fusion

binder and runtime class loader to load and instantiate an assembly at runtime.

Example 7-1. The Assembly.Load method

 public static Assembly Load(String assemblyString)

 {

 StackCrawlMark stackMark = StackCrawlMark.LookForMyCaller;

 return InternalLoad(assemblyString, null, ref stackMark, false);

 }

 internal static Assembly InternalLoad(String assemblyString,

 Evidence assemblySecurity,

 ref StackCrawlMark stackMark,

 bool forIntrospection)

 {

 AssemblyName an = new AssemblyName();

 Assembly assembly = null;

 an.Name = assemblyString;

 int hr = an.nInit(out assembly, forIntrospection, true);

 if (hr == System.__HResults.FUSION_E_INVALID_NAME) {

 return assembly;

 }

 else

 return InternalLoad(an, assemblySecurity, ref stackMark,

forIntrospection);

 }

The Assembly.Load method calls the InternalLoad method passing in the string based name (either

a partial or fully qualified name) of the assembly that the user wishes to load, along with a Boolean that

specifies if the type should be loaded for ―Introspection only‖ (more on this later). The InternalLoad

method‘s job is to resolve the string-based assembly name argument to an instance of the AssemblyName

type. This action is performed through the Fusion subsystem, via the unmanaged runtime method called

AssemblyNameNative::Init found in sscli20/clr/src/vm/Assemblyname.cpp.

Several places throughout this chapter refer to a component called ―Fusion‖, which is not

a part of the SSCLI code base, but is instead a part of the Windows operating system.

Fusion is an extension to the operating system loader, providing side-by-side capabilities,

among other things, and in the SSCLI must be provided via the PAL infrastructure. It is

also mentioned and lightly discussed in Chapter 4.

The Init method performs some housekeeping, but defers the job of parsing the assembly name string to

the AssemblySpec::InitializeSpec method.

Example 7-2. The AssemblySpec::InitializeSpec method

HRESULT AssemblySpec::InitializeSpec(StackingAllocator* alloc, ASSEMBLYNAMEREF*

pName,

 BOOL fParsed /*=FALSE*/,

 BOOL fIntrospectionOnly /*=FALSE*/)

Chapter 7: Runtime Type Definition and Exploration | 161

 {

 // Simple name

 if ((*pName)->GetSimpleName() != NULL) {

 WCHAR* pString;

 int iString;

 RefInterpretGetStringValuesDangerousForGC((STRINGREF)

 (*pName)->GetSimpleName(), &pString, &iString);

 DWORD lgth = WszWideCharToMultiByte(CP_UTF8, 0, pString, iString,

 NULL, 0, NULL, NULL);

 if (lgth + 1 < lgth)

 ThrowHR(E_INVALIDARG);

 LPSTR lpName = (LPSTR) alloc->Alloc(lgth + 1);

 WszWideCharToMultiByte(CP_UTF8, 0, pString, iString,

 lpName, lgth+1, NULL, NULL);

 lpName[lgth] = '\0';

 m_pAssemblyName = lpName;

 }

 if (fParsed) {

 HRESULT hr = ParseName();

 if ((hr == FUSION_E_INVALID_NAME) || (!IsValidAssemblyName())) {

 return FUSION_E_INVALID_NAME;

 }

 else

 IfFailThrow(hr);

 }

 else {

 // Flags

 m_dwFlags = (*pName)->GetFlags();

 // Version

 VERSIONREF version = (VERSIONREF) (*pName)->GetVersion();

 if(version == NULL) {

 m_context.usMajorVersion = (USHORT)-1;

 m_context.usMinorVersion = (USHORT)-1;

 m_context.usBuildNumber = (USHORT)-1;

 m_context.usRevisionNumber = (USHORT)-1;

 }

 else {

 m_context.usMajorVersion = version->GetMajor();

 m_context.usMinorVersion = version->GetMinor();

 m_context.usBuildNumber = version->GetBuild();

 m_context.usRevisionNumber = version->GetRevision();

 }

 m_context.szLocale = 0;

 if ((*pName)->GetCultureInfo() != NULL)

 {

 struct _gc {

 OBJECTREF cultureinfo;

 STRINGREF pString;

 } gc;

 gc.cultureinfo = (*pName)->GetCultureInfo();

 gc.pString = NULL;

 GCPROTECT_BEGIN(gc);

 MethodDescCallSite getName(METHOD__CULTURE_INFO__GET_NAME,

 &gc.cultureinfo);

 ARG_SLOT args[] = {

Chapter 7: Runtime Type Definition and Exploration | 162

 ObjToArgSlot(gc.cultureinfo)

 };

 gc.pString = getName.Call_RetSTRINGREF(args);

 if (gc.pString != NULL) {

 WCHAR* pString;

 int iString;

 RefInterpretGetStringValuesDangerousForGC(gc.pString, &pString,

 &iString);

 DWORD lgth = WszWideCharToMultiByte(CP_UTF8, 0, pString, iString,

 NULL, 0, NULL, NULL);

 LPSTR lpLocale = (LPSTR) alloc->Alloc(lgth + 1);

 WszWideCharToMultiByte(CP_UTF8, 0, pString, iString,

 lpLocale, lgth+1, NULL, NULL);

 lpLocale[lgth] = '\0';

 m_context.szLocale = lpLocale;

 }

 GCPROTECT_END();

 }

 // Strong name

 if ((*pName)->GetPublicKeyToken() != NULL) {

 m_dwFlags &= ~afPublicKey;

 PBYTE pArray = NULL;

 pArray = (*pName)->GetPublicKeyToken()-

>GetDirectPointerToNonObjectElements();

 m_cbPublicKeyOrToken = (*pName)->GetPublicKeyToken()-

>GetNumComponents();

 m_pbPublicKeyOrToken = (PBYTE) alloc->Alloc(m_cbPublicKeyOrToken);

 memcpy(m_pbPublicKeyOrToken, pArray, m_cbPublicKeyOrToken);

 }

 else if ((*pName)->GetPublicKey() != NULL) {

 m_dwFlags |= afPublicKey;

 PBYTE pArray = NULL;

 pArray = (*pName)->GetPublicKey()-

>GetDirectPointerToNonObjectElements();

 m_cbPublicKeyOrToken = (*pName)->GetPublicKey()->GetNumComponents();

 m_pbPublicKeyOrToken = (PBYTE) alloc->Alloc(m_cbPublicKeyOrToken);

 memcpy(m_pbPublicKeyOrToken, pArray, m_cbPublicKeyOrToken);

 }

 }

 // Hash for control

 if ((*pName)->GetHashForControl() != NULL)

 SetHashForControl((*pName)->GetHashForControl()->GetDataPtr(),

 (*pName)->GetHashForControl()->GetNumComponents(),

 (*pName)->GetHashAlgorithmForControl());

 // Normalize this boolean as it tends to be used for comparisons

 m_fIntrospectionOnly = !!fIntrospectionOnly;

 return S_OK;

 }

The code in Example 7-2 demonstrates the parser in action. It simply walks the specified string extracting

the name, version number, and public key token, packages that up and hands it back. It follows specific

parsing rules that are specified in the ECMA CLI specification, and rejects a name if it fails a particular

naming rule.

Once the assembly name is parsed, the job of loading the assembly falls to the

System.Reflection.Assembly.InternalLoad overload which takes an AssemblyName

structure. This method in turn hands off the heavy lifting to the AssemblyNative::Load method

found in sscli20/clr/src/vm/Assemblynative.cpp, which in turn performs some housekeeping before handing

Chapter 7: Runtime Type Definition and Exploration | 163

off to methods found in the AssemblySpec class to continue loading the assembly in to the current

appdomain. The LoadDomainAssemblyHelper method found on AssemblySpec is particularly

interesting:

Example 7-4. The AssemblySpec::LoadDomainAssemblyHelper method

 DomainAssembly *LoadDomainAssemblyHelper(AssemblySpec *pSpec, AppDomain *pDomain,

 PEAssembly *pFile, FileLoadLevel targetLevel,

 OBJECTREF* pEvidence,

 OBJECTREF *pExtraEvidence,

 BOOL fDelayPolicyResolution)

 {

 DomainAssembly* pRetVal = NULL;

 EX_TRY

 {

 pRetVal = pDomain->LoadDomainAssembly(pSpec, pFile, targetLevel, pEvidence,

 pExtraEvidence,

fDelayPolicyResolution);

 }

 EX_HOOK

 {

 Exception* pEx=GET_EXCEPTION();

 if (!pEx->IsTransient())

 {

 if (!EEFileLoadException::CheckType(pEx))

 {

 StackSString name;

 pSpec->GetFileOrDisplayName(0, name);

 pEx=new EEFileLoadException(name, pEx->GetHR(), NULL, pEx);

 pDomain->AddExceptionToCache(pSpec, pEx);

 PAL_CPP_THROW(Exception *, pEx);

 }

 else

 pDomain->AddExceptionToCache(pSpec, pEx);

 }

 }

 EX_END_HOOK;

 return pRetVal;

 }

This method in turn calls the DomainAssembly::LoadDomainAssembly method, which may sound

familiar—a quick glance back to Chapter 4 reveals, in fact, that this is eventually called from the clix.exe

bootstrapping process in order to launch an executable assembly. LoadDomainAssembly does the

heavy lifting of loading the assembly in to an appdomain and resolving the assemblies dependencies using

the default binding context (typically the Fusion binding context).

The System.Reflection.Assembly.LoadFile method provides different semantics for binding

and loading an assembly into the current appdomain: instead of relying on Fusion to find and bind to an

assembly through the assembly‘s fully-qualified name, LoadFile will bypass Fusion entirely and load

directly to the file system.

Example 7-5. The AssemblyNative::LoadFile method

 FCIMPL2(Object*, AssemblyNative::LoadFile, StringObject* pathUNSAFE,

 Object* securityUNSAFE)

 {

 if(CorHost2::IsLoadFromBlocked())

 FCThrowEx(kFileLoadException, FUSION_E_LOADFROM_BLOCKED,0,0,0);

 if (pathUNSAFE == NULL)

 COMPlusThrow(kArgumentNullException, L"ArgumentNull_Path");

Chapter 7: Runtime Type Definition and Exploration | 164

 StackSString path;

 gc.strPath->GetSString(path);

 SafeComHolder<IAssembly> pFusionAssembly;

 SafeComHolder<IAssembly> pNativeFusionAssembly;

 SafeComHolder<IFusionBindLog> pFusionLog;

 PEAssemblyHolder pFile(PEAssembly::Open(pFusionAssembly,

 pNativeFusionAssembly, NULL, FALSE, FALSE));

 BOOL fDelayPolicyResolution = FALSE;

 Assembly *pAssembly = GetPostPolicyAssembly(pFile, &gc.refSecurity, FALSE,

TRUE,

 &fDelayPolicyResolution);

 if (pAssembly)

 gc.refRetVal = (ASSEMBLYREF) pAssembly->GetExposedObject();

 }

 return OBJECTREFToObject(gc.refRetVal);

 }

Example 7-5 shows the native internal method AssemblyNative::LoadFile, called from the

managed equivalent. It cracks open the PE file of the assembly that lives on disk, and passes that off to the

GetPostPolicyAssembly method, which in turn performs some security housekeeping before

handing off control to the AppDomain::LoadAssembly method (shown in Example 7-6), which in

turn owns responsibility for doing the actual loading of the assembly.

Example 7-6. GetPolicyAssembly method code

 // ...

 RETURN GetAppDomain()->LoadAssembly(NULL, pFile, FILE_LOADED,

 fSetAsExtraEvidence ? NULL : pSecurity,

 fSetAsExtraEvidence ? pSecurity : NULL,

 *pfDelayPolicyResolution);

The System.Reflection.Assembly.ReflectionOnlyLoad method uses a similar code path to

the Load method to load assemblies, however the assemblies are loaded in to the ReflectionOnly load

context. The curious reader will likely notice a plethora of ―ForIntrospection‖ flags littered

throughout the signatures of methods that are used to bind and load assemblies – these are used to

determine if an assembly should be loaded into the ReflectionOnly context, or whether they should be

loaded in to the default loader context.

Loading types from assemblies is done in a similar fashion. The Assembly.GetType method takes a

string based name, normally case-sensitive, though flags can be passed to allow the binding to occur in a

case-insensitive fashion. GetType eventually maps down to a native runtime method called

TypeName::GetTypeWorker which finds the relevant assembly on which to perform the type name

binding, then hands the assembly reference and type name to the

TypeName::GetTypeHaveAssembly method found in sscli20/clr/src/vm/Typeparse.cpp.

Example 7-8. GetTypeHaveAssembly method

 TypeHandle TypeName::GetTypeHaveAssembly(Assembly* pAssembly,

 BOOL bThrowIfNotFound, BOOL bIgnoreCase, BOOL

bRecurse)

 {

 TypeHandle th = TypeHandle();

 SArray<SString*> &names = GetNames();

 Module* pManifestModule = pAssembly->GetManifestModule();

Chapter 7: Runtime Type Definition and Exploration | 165

 NameHandle typeName(pManifestModule, mdtBaseType);

 // Set up the name handle

 if(bIgnoreCase)

 typeName.SetCaseInsensitive();

 EX_TRY

 {

 for (COUNT_T i = 0; i < names.GetCount(); i ++)

 {

 LPCWSTR wname = names[i]->GetUnicode();

 MAKE_UTF8PTR_FROMWIDE(name, wname);

 typeName.SetName(name);

 th = pAssembly->GetLoader()->LoadTypeHandleThrowing(&typeName);

 }

 if (th.IsNull() && bRecurse)

 {

 IMDInternalImport* pManifestImport = pManifestModule->GetMDImport();

 HENUMInternalHolder phEnum(pManifestImport);

 phEnum.EnumInit(mdtFile, mdTokenNil);

 mdToken mdFile;

 while (pManifestImport->EnumNext(&phEnum, &mdFile))

 {

 if (pManifestModule->LookupFile(mdFile))

 continue;

 pManifestModule->LoadModule(GetAppDomain(), mdFile, FALSE);

 th = GetTypeHaveAssembly(pAssembly, bThrowIfNotFound,

 bIgnoreCase, FALSE);

 if (!th.IsNull())

 break;

 }

 }

 }

 EX_CATCH

 {

 if (bThrowIfNotFound)

 EX_RETHROW;

 Exception *ex = GET_EXCEPTION();

 // Let non-File-not-found exceptions propagate

 if (EEFileLoadException::GetFileLoadKind(ex->GetHR()) !=

kFileNotFoundException)

 EX_RETHROW;

 }

 EX_END_CATCH(RethrowTerminalExceptions);

 return th;

 }

This method first sets the string based type name to be all lower case (if the user asked for a case-

insensitive type name binding), then asks the class loader to try and load the type specified by the name

from within the specified assembly. If the class loader is successful, the TypeHandle of the loaded type

is returned; otherwise, null is returned, it continues searching for the type, this time by loading and iterating

over each Module contained in the specified assembly, and looking for the requested type in that module.

Chapter 7: Runtime Type Definition and Exploration | 166

If found, the native TypeHandle is returned and wrapped in the managed API equivalent:

System.Type.

Given that the ultimate return value of a managed type load request is a TypeHandle (wrapped in a

System.Type object), it stands to reason that the TypeHandle is the core element behind

System.Type. Given that System.Type is the heart and soul of the Reflection API in the CLI, it‘s

easy to see that TypeHandle—and its notion of runtime identity—stands as a key concept to

understanding Reflection and, by extension, a core part of the CLI type system.

Runtime Identity

Identity is the heart of the Reflection system: types, methods, fields, and other runtime code constructs

must be able to uniquely identify themselves—and allow programmers to make use of this identity for a

variety of purposes. For example, programmers will often leverage the member equivalence APIs in

Reflection in order to make decisions at runtime on which code to execute. The classic scenario is using

type equivalence to check if an object is of a particular type before casting and dispatching:

Example 7-8. An example of using type equivalence to make decisions

protected void Page_Load(object sender, EventArgs e)

{

 if (sender.GetType() == typeof(Foo))

 {

 (sender as Foo).FooMethod();

 }

 else if (sender.GetType() == typeof(Bar))

 {

 (sender as Bar).BarMethod();

 }

}

/* This is also often written as the more idiomatic C# equivalent...

protected void Page_Load(object sender, EventArgs e)

{

 if (sender is Foo)

 {

 (sender as Foo).FooMethod();

 }

 else if (sender is Bar)

 {

 (sender as Bar).BarMethod();

 }

}

*/

Example 7-8 makes use of the GetType method declared on System.Object to find the

System.Type of a passed-in parameter object (sender) to determine its type, using equivalence tests

(via the == operator) against known types whose System.Type is found via the typeof operator. The

typeof(Foo) expression maps down to the following IL:

Example 7-9. An example of using type equivalence to make decisions

 IL_000d: ldtoken IL.Foo

 IL_0012: call class [mscorlib]System.Type

[mscorlib]System.Type::GetTypeFromHandle(valuetype

[mscorlib]System.RuntimeTypeHandle)

Chapter 7: Runtime Type Definition and Exploration | 167

The ldtoken IL opcode takes a metadata token and resolves it to a managed RuntimeTypeHandle,

which is a small lightweight structure that encapsulates the strongest sense of type identity in the CLI. This

gets handed to the Type.GetTypeFromHandle which resolves the handle to a System.Type. A

quick comparison ceq IL opcode follows, to compare the two System.Type instances to see if they are

equivalent.

(We leave it to the curious reader to examine the IL differences, if any, between that and the more C#

idiomatic version in the comment in Example 7-8.)

The RuntimeTypeHandle structure (found in sscli20/clr/src/bcl/system/Runtimehandles.cs) contains a

pointer back to an unmanaged TypeHandle reference, which. is used to resolve the

RuntimeTypeHandle back to a System.Type instance, as well as for extremely quick type

equivalence tests:

Example 7-10. RuntimeTypeHandle code in Runtimehandles.cs

 // this is the TypeHandle/MethodTable for the type

 private IntPtr m_ptr;

 public override bool Equals(object obj)

 {

 if(!(obj is RuntimeTypeHandle))

 return false;

 RuntimeTypeHandle handle =(RuntimeTypeHandle)obj;

 return handle.m_ptr == m_ptr;

 }

 public bool Equals(RuntimeTypeHandle handle)

 {

 return handle.m_ptr == m_ptr;

 }

Ultimately, the runtime‘s TypeHandle and MethodTable instances for types and members are the

strongest sense of runtime identity (i.e. there only exists one of these things at runtime for each type and

member). A managed RuntimeTypeHandle instance provides the lightweight wrapper over those

runtime data structures.

Inspection of Types and Members

Understanding and inspecting the metadata of assemblies, modules, types and their members at runtime

forms the core of the Reflection API. The Reflection API‘s were designed to leave no stone unturned—

nearly everything defined by the CLI as part of the type system or stored in an assembly finds a home

somewhere in the Reflection API and/or type structure.

The Reflection subsystem serves two purposes, both of which cooperate to provide important information

about types to both the programmers that use the CLI, as well as to the runtime itself: first, the data

structures created and used by the runtime once a type and its members are loaded, used, for example,

during JIT compilation and memory management, and second, the metadata about those types and

members packaged in an assembly that both programmers and the runtime itself will periodically want

access to, used, for example, in remote method invocation scenarios (such as .NET Remoting) or in object-

XML serialization.

The Reflection API splits the different types of members the SSCLI supports into various types related to

one another through inheritance and composition. Figure 7-2 illustrates these conceptually:

Chapter 7: Runtime Type Definition and Exploration | 168

-DeclaringType

-ReflectedType

-Token

-Module

-Handle

MemberInfo

FieldInfo

ConstructorInfo

TypeEventInfoMethodBasePropertyInfo

MethodInfo

Figure 7-2. Reflection API hierarchy overview

The System.Reflection.MemberInfo class serves as the base class for most Reflection APIs that

serve to inspect members of types: properties, methods, fields, events, and other types. Notably excluded

here are the types System.Reflection.Assembly and System.Reflection.Module; on

further thought, this makes sense, since neither assemblies nor modules are members of types—in point of

fact, the containment relationship is exactly the opposite. System.Type provides facilities to inspect

metadata and runtime data structures about a loaded type; previous examples (such as Example 7-8, above,

or Example 7-11, below) demonstrate some of the ways by which a programmer can obtain an instance of a

System.Type. The various members that the CLI supports are special cased with their own Reflection

types: EventInfo for events, FieldInfo for fields and so on. PropertyInfo is particularly

interesting; while it encapsulates the concept of properties defined for a particular type (such as is exposed

in the C# and Visual Basic languages), in actuality properties live only in the metadata world, backed by

two synthesized methods for accessing and modifying the also-synthesized backing store (field) used by the

property (when synthesized, that is). When a type with properties is loaded, the property metadata

information is thrown away, and the methods that represent the ―Get‖ and ―Set‖ for the property are all that

are left. It is the canonical example of how Reflection serves two masters: metadata and the runtime.

Let‘s take a look at how to obtain an instance of the MethodInfo for a method:

Example 7-11. Getting a MethodInfo

 using System;

 using System.Reflection;

 class Foo

 {

 public void MethodBar() { }

 }

 class Program

 {

 static void Main(string[] args)

 {

 MethodInfo info = typeof(Foo).GetMethod("MethodBar");

Chapter 7: Runtime Type Definition and Exploration | 169

 }

 }

Having obtained the type object for the ―Foo‖ type (via the typeof operator again), getting hold of the

MethodInfo object for the ―MethodBar‖ method means calling the GetMethod method on the Type

object, passing in the string based representation of the desired method (―MethodBar‖). Drilling down to

the System.Type.GetMethod implementation reveals that it defers processing to an abstract helper

method called GetMethodImpl. This gets overridden by the System.RuntimeType runtime

implementation:

Example 7-12. GetMethodImpl implementation from sscli20/clr/bcl/system/Rttype.cs

 protected override MethodInfo GetMethodImpl(

 String name, BindingFlags bindingAttr, Binder binder, CallingConventions

callConv,

 Type[] types, ParameterModifier[] modifiers)

 {

 MethodInfo[] candidates = GetMethodCandidates(name, bindingAttr, callConv,

types, false);

 if (candidates.Length == 0)

 return null;

 if (types == null || types.Length == 0)

 {

 if (candidates.Length == 1)

 {

 return candidates[0];

 }

 else if (types == null)

 {

 for (int j = 1; j < candidates.Length; j++)

 {

 MethodInfo methodInfo = candidates[j];

 if (!System.DefaultBinder.CompareMethodSigAndName(methodInfo,

candidates[0]))

 {

 throw new AmbiguousMatchException(

 Environment.GetResourceString("RFLCT.Ambiguous"));

 }

 }

 // All the methods have the exact same name and sig so return the most

derived one.

 return System.DefaultBinder.FindMostDerivedNewSlotMeth(candidates,

 candidates.Length) as MethodInfo;

 }

 }

 if (binder == null)

 binder = DefaultBinder;

 return binder.SelectMethod(bindingAttr, candidates, types, modifiers) as

MethodInfo;

 }

Two things are at work here: finding all the methods that possibly represent the method we‘re trying to

observe, and if we find more than one method (we might have overloads of the ―MethodBar‖ method), we

delegate to a binder to select the appropriate method from the list. If the binder is unable to make a match

(which is possible, if we haven‘t been specific about which overload we care about) then it throws an

exception to let the user know there are ambiguous matches.

Chapter 7: Runtime Type Definition and Exploration | 170

Digging a little deeper to see how a MethodInfo is created reveals some interesting details about the

nature of the data structures used inside the runtime to provide all of this information. But in order to

understand this process, we must first take a look at the MemberInfoCache data structure, which

provides the gateway to new and cached instantiations of all MemberInfos.

The Reflection MemberInfo Cache

The call to the GetMethodCandidates method in the above code snippet is the first time seen thus far

where the Reflection MemberInfoCache is used. The MemberInfoCache was designed to cache the

results of inspection calls for any MemberInfo. This means any subsequent calls to lookup, bind and

inspect a member can be retrieved from the cache, instead of repopulating from runtime data structures and

metadata from disk, an obvious optimization.

The MemberInfoCache<T> generic data structure, found in sscli20/clr/src/bcl/system/Rttype.cs, is a

lazy cache implemented with a multi-reader/single-writer lock, allowing multiple readers to retrieve

MemberInfos from the cache when asked without excessive blocking. Having multiple readers is

important for two main reasons: to enable good throughput for multi-threaded scenarios, and because there

is only one instance of the cache for all appdomains. Given that most access to the cache will be read

requests anyway, optimizing for multiple readers seems almost necessary.

All calls to lookup and bind to MemberInfos using the GetXX methods (i.e. GetMethod,

GetProperty, GetProperties, etc) usually call a method like GetMethodCandidates, which in

turn invariably asks the cache data structure for the candidates that match against the specified string name

as per the default binding rules:

 List<MethodInfo> candidates = new List<MethodInfo>();

 CerArrayList<RuntimeMethodInfo> cache = Cache.GetMethodList(listType, name);

The GetMethodList method eventually drills down to a call to

RuntimeTypeCache.GetMemberCache<T> which checks to see if an existing cache is alive or not:

Example 7-13. GetMemberCache<T> method from sscli20/clr/bcl/system/Rttype.cs

 private MemberInfoCache<T> GetMemberCache<T>(ref MemberInfoCache<T> m_cache)

 where T : MemberInfo

 {

 MemberInfoCache<T> existingCache = m_cache;

 if (existingCache == null)

 {

 MemberInfoCache<T> newCache = new MemberInfoCache<T>(this);

 existingCache = Interlocked.CompareExchange(ref m_cache, newCache,

null);

 if (existingCache == null)

 existingCache = newCache;

 }

 return existingCache;

 }

The GetMemberCache<T> constructor takes a reference variable, obtained from the runtime type

handle, which means that cache instances of the MemberInfoCache are per-type. Of some interest is the

fact that this code all lives in the managed part of the runtime, meaning the cache implementation all lives

on the garbage-collected heap, and is thus tracked and collected by the garbage collector when the cache is

no longer live.

Looking back to Example 7-10, the request for the ―MethodBar‖ MethodInfo instance will, when first

executed, find that the MemberInfoCache will not exist, so the MemberInfoCache<T> type

constructor will create it and hand it back to the Foo type‘s runtime type handle. After cache creation, the

Chapter 7: Runtime Type Definition and Exploration | 171

GetMethodList method will then populate the newly created cache via the GetMemberList method

that lives on the MemberInfoCache type.

Example 7-14. GetMemberList method from sscli20/clr/bcl/system/Rttype.cs

 internal CerArrayList<T> GetMemberList(MemberListType listType, string name,

 CacheType cacheType)

 {

 CerArrayList<T> list = null;

 switch(listType)

 {

 case MemberListType.CaseSensitive:

 if (m_csMemberInfos == null)

 {

 return Populate(name, listType, cacheType);

 }

 else

 {

 list = m_csMemberInfos[name];

 if (list == null)

 return Populate(name, listType, cacheType);

 return list;

 }

 case MemberListType.All:

 if (m_cacheComplete)

 return m_root;

 return Populate(null, listType, cacheType);

 default:

 if (m_cisMemberInfos == null)

 {

 return Populate(name, listType, cacheType);

 }

 else

 {

 list = m_cisMemberInfos[name];

 if (list == null)

 return Populate(name, listType, cacheType);

 return list;

 }

 }

 }

Example 7-14 shows the code that gets executed to populate the newly created cache. It takes a

MemberListType enumeration argument that specifies if the list should be created by comparing with

case sensitivity or not, the string name of the member we care about (in our example, ―MethodBar‖), and

another enumeration argument called CacheType which specifies the kind of member required (method,

property, interface, event and so on). After switching on the various options, this code eventually defers to

the RuntimeTypeCache.Populate method to set up a Filter (essentially a lightweight data

structure that performs the string matching on the metadata member names) and defers again to the relevant

―PopulateXX‖ method for the required member (in this case, the

RuntimeTypeCache.PopulateMethods method). This method performs all the heavy lifting:

Example 7-15. PopulateMethods() from sscli20/clr/bcl/system/Rttype.cs

Chapter 7: Runtime Type Definition and Exploration | 172

 private unsafe List<RuntimeMethodInfo> PopulateMethods(Filter filter)

 {

 // ...

 RuntimeTypeHandle declaringTypeHandle = ReflectedTypeHandle;

 while(declaringTypeHandle.IsGenericVariable())

 declaringTypeHandle =

 declaringTypeHandle.GetRuntimeType().BaseType.GetTypeHandleInternal();

 bool* overrides = stackalloc bool[declaringTypeHandle.GetNumVtableSlots()];

 bool isValueType = declaringTypeHandle.GetRuntimeType().IsValueType;

 while(!declaringTypeHandle.IsNullHandle())

 {

 bool mayNeedInstantiatingStub = declaringTypeHandle.HasInstantiation() &&

 !declaringTypeHandle.IsGenericTypeDefinition();

 int vtableSlots = declaringTypeHandle.GetNumVtableSlots();

 MethodDescChunkHandle chunkHandle =

declaringTypeHandle.GetMethodDescChunk();

 while(!chunkHandle.IsNullHandle())

 {

 int methodCount = chunkHandle.GetMethodCount();

 for (int i = 0; i < methodCount; i++)

 {

 RuntimeMethodHandle methodHandle = chunkHandle.GetMethodAt(i);

 if (!filter.Match(methodHandle.GetUtf8Name()))

 continue;

 #region Loop through all methods on the current type

 ASSERT.CONSISTENCY_CHECK(!methodHandle.IsNullHandle());

 MethodAttributes methodAttributes = methodHandle.GetAttributes();

 MethodAttributes methodAccess = methodAttributes &

 MethodAttributes.MemberAccessMask;

 #region Continue if this is a constructor

 ASSERT.CONSISTENCY_CHECK(

 LOGIC.IMPLIES((methodHandle.GetAttributes() &

 MethodAttributes.RTSpecialName) != 0,

 methodHandle.GetName().Equals(".ctor") ||

 methodHandle.GetName().Equals(".cctor") ||

 methodHandle.GetName().Equals("IL_STUB")));

 if ((methodAttributes & MethodAttributes.RTSpecialName) != 0 ||

 methodHandle.IsILStub())

 continue;

 #endregion

 #region Continue if this is a private declared on a base type

 bool isVirtual = false;

 int methodSlot = 0;

 if ((methodAttributes & MethodAttributes.Virtual) != 0)

 {

 // only virtual if actually in the vtableslot range, but

GetSlot will

 // assert if an EnC method, which can't be virtual, so narrow

down first

 // before calling GetSlot

Chapter 7: Runtime Type Definition and Exploration | 173

 methodSlot = methodHandle.GetSlot();

 isVirtual = (methodSlot < vtableSlots);

 }

 bool isPrivate = methodAccess == MethodAttributes.Private;

 bool isPrivateVirtual = isVirtual & isPrivate;

 bool isInherited = declaringTypeHandle.Value !=

ReflectedTypeHandle.Value;

 if (isInherited && isPrivate && !isPrivateVirtual)

 continue;

 #endregion

 #region Continue if this is a virtual and is already overridden

 if (isVirtual)

 {

 ASSERT.CONSISTENCY_CHECK(

 (methodAttributes & MethodAttributes.Abstract) != 0 ||

 (methodAttributes & MethodAttributes.Virtual) != 0 ||

 methodHandle.GetDeclaringType().Value !=

declaringTypeHandle.Value);

 if (overrides[methodSlot] == true)

 continue;

 overrides[methodSlot] = true;

 }

 else if (isValueType)

 {

 if ((methodAttributes &

 (MethodAttributes.Virtual | MethodAttributes.Abstract)) !=

0)

 continue;

 }

 else

 {

 ASSERT.CONSISTENCY_CHECK((methodAttributes &

(MethodAttributes.Virtual |

 MethodAttributes.Abstract)) == 0);

 }

 #endregion

 #region Calculate Binding Flags

 bool isPublic = methodAccess == MethodAttributes.Public;

 bool isStatic = (methodAttributes & MethodAttributes.Static) != 0;

 BindingFlags bindingFlags =

 RuntimeType.FilterPreCalculate(isPublic, isInherited,

isStatic);

 #endregion

 // if it is an instantiated type get the InstantiatedMethodDesc if

needed

 if (mayNeedInstantiatingStub)

 methodHandle =

methodHandle.GetInstantiatingStubIfNeeded(declaringTypeHandle);

 RuntimeMethodInfo runtimeMethodInfo = new RuntimeMethodInfo(

 methodHandle, declaringTypeHandle, m_runtimeTypeCache,

 methodAttributes, bindingFlags);

 list.Add(runtimeMethodInfo);

 #endregion

 }

Chapter 7: Runtime Type Definition and Exploration | 174

 chunkHandle = chunkHandle.GetNextMethodDescChunk();

 }

 declaringTypeHandle = declaringTypeHandle.GetBaseTypeHandle();

 }

 return list;

 }

A number of things are happening here. First, it obtains the declaring type handle (the DeclaringType

property on a MemberInfo contains a pointer to the type that declares the member – the declaring type

may not be the same as the type that the user called the GetMethod method from, due to inheritance).

Second, it grabs a MethodDeskChuckHandle (explored in Chapter 5) from the declaring type‘s handle

and walks that structure creating RuntimeMethodHandles through the unmanaged runtime method

MethodDescChunkHandle::GetMethodAt found in sscli20/clr/src/vm/Runtimehandles.cpp. A call

to GetUtf8Name from the runtime method handle, and control returns to the unmanaged runtime‘s world,

drilling down to a method called MethodDesc::GetName:

Example 7-16. MethodDesc::GetName from sscli20/clr/src/vm/Method.cpp

 LPCUTF8 MethodDesc::GetName()

 {

 g_IBCLogger.LogMethodDescAccess(this);

 if (GetMethodTable()->IsArray())

 {

 // Array classes don't have metadata tokens

 return ((DPTR(ArrayMethodDesc))PTR_HOST_TO_TADDR(this))-

>GetMethodName();

 }

 else if (IsNoMetadata())

 {

 // Array classes don't have metadata tokens

 return ((DPTR(DynamicMethodDesc))PTR_HOST_TO_TADDR(this))-

>GetMethodName();

 }

 else

 {

 // Get the metadata string name for this method

 LPCUTF8 result = NULL;

 // This probes only if we have a thread, in which case it is OK to throw

the SO.

 BEGIN_SO_INTOLERANT_CODE_NO_THROW_CHECK_THREAD(COMPlusThrowSO());

 result = GetMDImport()->GetNameOfMethodDef(GetMemberDef());

 END_SO_INTOLERANT_CODE;

 return(result);

 }

 }

We‘re finally down the very bottom of the runtime guts, where a call to GetMDImport is made to retrieve

the wrapper around the runtimes metadata reader API. This interface (called IMDInternalImport and

defined in sscli20/clr/src/inc/Metadata.h) forms the heart and soul of metadata reading and writing for the

runtime. It‘s worth exploring this interface, as it contains the gory details of how metadata is laid out in an

assembly, and how it is read in to runtime data structures. For now, we only care about the call to the

method IMDInternalImport::GetNameOfMethodDef which reads a given method definitions

name from metadata and returns it.

Chapter 7: Runtime Type Definition and Exploration | 175

Once we have the metadata name for a given method handle, the Filter data structure matches it against

the user specified string (in our case, the ―MethodBar‖ string name) and if a match is found, a bunch of

extra inspection is performed on that method to create and layout the attributes of the particular method (i.e.

we need to know if the method is virtual, abstract, public or private, inherited, and so on). Once the runtime

has inspected the attributes of the method, it finally creates the RuntimeMethodInfo and adds it to the

result list for return.

After walking the methods on the type, inspecting their names and attributes through the metadata reader

writer interface, and matching against the user specified string, the code can now start to populate the cache

and return the RuntimeMethodInfo pointer from the cache. This happens back up the call stack at the

RuntimeTypeCache.Populate method:

Example 7-17. Partial implementation of fromRuntimeTypeCache.Populate

 switch (cacheType)

 {

 case CacheType.Method:

 list = PopulateMethods(filter) as List<T>;

 break;

 // ...

 }

 CerArrayList<T> cerList = new CerArrayList<T>(list);

 Insert(ref cerList, name, listType);

 return cerList;

The call to RuntimeTypeCache.Insert contains the gory details of locking the cache, and inserting

elements in to the cache container. (Programmers who are heavy consumer of Reflection based APIs might

find it worthwhile to look at the implementation of the Insert method to understand the performance

implications of calling the inspection APIs; the code can be found in sscli20/clr/src/bcl/system/Rttype.cs.)

After insertion, the list is returned, then continues to be filtered by the GetMethodCandidates call

seen back in Example 7-12. The final candidate is chosen (in our example, we can only find one match for

the ―MethodBar‖ method) and returned to the user as the return result from the Type.GetMethod call.

It‘s been a fairly hefty amount of code thus far, but the process is now more clear: when asking for

MemberInfo instances, control begins by asking the type for its MemberInfoCache, then using that cache

instance to either return an existing cached member, or if not found, to defer to the relevant Populate

method. Populate walks the type and its member‘s metadata, looking for matches to return and populate the

cache, essentially going from cache to metadata and back again.

This process is essentially identical for all the different member types, with only a few slight semantic

changes (depending on the runtime‘s rules for how those members are bound). It is left as an exercise to the

curious reader to compare how methods are found and bound to other member types, as an effort to

understand the various runtime semantics around each.

Invocation of Code at Runtime

Reflection, of course, provides more than just the ability to discover the various code constructs on types at

runtime—it also provides the ability to use those constructs after having found them. Methods can be

invoked, properties set and retrieved, fields changed, and so on, through a process known colloquially as

late-bound code invocation or sometimes late binding.

Late binding is a phrase derived from its logical contrast, early binding, which is the

process by which the vast majority of method invocation takes place. Early binding is,

quite simply, the mechanism where during compile-time (which is obviously much

Chapter 7: Runtime Type Definition and Exploration | 176

earlier than runtime, hence the naming conventions), a compiler or other language tool

emits code to directly invoke the method desired, usually by name. Typically, this

decision results in faster runtime execution, since the verification process required to

ensure the call is successful (correct number and types of parameters, for example) can be

performed during compilation, rather than at runtime.

Having said that, however, the decision to use late binding often has little to do with

performance characteristics—late binding serves a powerful and useful purpose, as

generations of Visual Basic programmers (where late binding was the default invocation

process for years) can attest. Late binding provides a degree of flexibility in design, for

example, in macro languages or ―scripting‖ languages like Python or Ruby, as well as

frameworks and libraries such as user interface object binding or object-relational

mapping layers.

The runtime supports late-bound code invocation in a variety of different ways, from first class delegates

through to various Reflection APIs available, and even via runtime code generation, discussed later (in the

section ―Emitting Components Dynamically‖ and ―Lightweight Code Generation‖). For now, the next

logical step is to take a deep dive on how the Reflection APIs offer a late-bound way to invoke code, and

how that‘s mapped out under the hood.

The various MemberInfo subclasses, each of which represent code-based members (methods, properties,

constructors etc), support code invocation through the Invoke method. A new spin on an old example

shows the Invoke method in action:

Example 7-18. Calling the MethodInfo.Invoke API

 class Foo

 {

 public static void MethodBar()

 {

 Console.WriteLine("Hello, World!");

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 object obj = new Foo();

 MethodInfo info = obj.GetType().GetMethod("MethodBar");

 // call the MethodBar method late-bound

 object result = info.Invoke(null, null);

 }

 }

Having first obtained a MethodInfo object that represents the ―MethodBar‖ method through the

GetMethod API, we can invoke this method through the MethodInfo.Invoke method, passing in the

object instance on which to invoke this method (null in this case because ―MethodBar‖ is static) and an

array of objects representing the parameters to the method (again null because ―MethodBar‖ doesn‘t have

any arguments).

Invocation of the ―MethodBar‖ method starts in managed code in the RuntimeMethodInfo.Invoke

method found in the sscli20/clr/src/bcl/system/reflection/XxxInfos.cs file (where ―Xxx‖ is replaced by the

particular MethodInfo subclass, of course). This method performs a series of checks to make sure the call is

setup properly (i.e. it checks that there is sufficient arguments to satisfy the signature of the method, calls

the security subsystem to make sure the call to the method is permissible according to the CAS security

model, and verifies the types of the arguments to make sure they can be coerced to the parameters‘

argument types). After the checks are complete, it next grabs the MethodHandle and calls the

Chapter 7: Runtime Type Definition and Exploration | 177

InvokeMethodFast method, which represents an internal runtime call to the unmanaged method

RuntimeMethodHandle::InvokeMethodFast. Once inside the unmanaged part of the runtime,

control passes to a helper method, InvokeImpl (found in sscli20/clr/src/vm/Reflectioninvocation.cpp),

which performs even more verification checks. The signature of the method is interesting:

Example 7-19. Signature of the InvokeImpl helper method in Reflectioninvocation.cpp

 OBJECTREF InvokeImpl(MethodDesc *pMeth,

 OBJECTREF targetUNSAFE,

 PTRARRAYREF argsUNSAFE,

 SignatureNative* pSig,

 DWORD attr,

 TypeHandle ownerType)

It takes a MethodDesc (recall, from Chapter 5, that a MethodDesc is a runtime data structure that

describes a method—its name, signature, EEClass pointer, and so on—and also takes a pointer to the object

on which to invoke the method.

Armed with this preface, look at the InvokeImpl implementation:

Example 7-20. Implementation of InvokeImpl method

 struct _gc {

 OBJECTREF target;

 PTRARRAYREF args;

 OBJECTREF targetException;

 } gc;

 gc.target = (OBJECTREF)targetUNSAFE;

 gc.args = (PTRARRAYREF)argsUNSAFE;

 gc.targetException = NULL;

 // Build the arguments on the stack

 UINT nNumSlots = pSig->NumVirtualFixedArgs(IsMdStatic(attr));

 // Make sure we have enough room on the stack for this.

 INTERIOR_STACK_PROBE_FOR(GetThread(),

 (nNumSlots*sizeof(ARG_SLOT) / OS_PAGE_SIZE) +

HOLDER_CODE_NORMAL_STACK_LIMIT);

 ARG_SLOT *pNewArgs = (ARG_SLOT*) _alloca(nNumSlots*sizeof(ARG_SLOT));

 ARG_SLOT *pTmpPtr = pNewArgs;

 // if we have the magic Value Class return, we need to allocate that class

 // and place a pointer to it on the stack.

 OBJECTREF objRet = NULL;

 GCPROTECT_BEGIN(objRet);

 TypeHandle retTH = pSig->GetReturnTypeHandle();

 CorElementType retType = retTH.GetInternalCorElementType();

 if (retType == ELEMENT_TYPE_VALUETYPE) {

 objRet = retTH.GetMethodTable()->Allocate();

 }

 else {

 _ASSERTE(!pSig->IsRetBuffArg());

 }

 BOOL bIsTargetValueClass = pMeth->GetClass()->IsValueClass();

 // Copy "this" pointer

 if (!IsMdStatic(attr)) {

 if (!bIsTargetValueClass)

 *pTmpPtr = ObjToArgSlot(gc.target);

Chapter 7: Runtime Type Definition and Exploration | 178

 else {

 if (pMeth->IsUnboxingStub())

 *pTmpPtr = ObjToArgSlot(gc.target);

 else {

 // Create a true boxed Nullable<T> and use that as the 'this'

pointer.

 // since what is passed in is just a boxed T

 MethodTable* pMT = pMeth->GetMethodTable();

 if (Nullable::IsNullableType(pMT)) {

 OBJECTREF bufferObj = pMT->Allocate();

 void* buffer = bufferObj->GetData();

 Nullable::UnBox(buffer, gc.target, pMT);

 *pTmpPtr = PtrToArgSlot(buffer);

 }

 else

 *pTmpPtr = PtrToArgSlot(gc.target->UnBox());

 }

 }

 pTmpPtr++;

 }

 ARG_SLOT *retBuffPtr = NULL;

 // Take care of any return arguments

 if (pSig->IsRetBuffArg()) {

 retBuffPtr = pTmpPtr++;

 }

 // count whether there is any struct that will need stack allocation.

 // They need to be protected

 // We do a first pass to determine stack allocation and then we loop again

 // to copy the args with a frame in place

 int stackStructCount = 0;

 void *pEnum;

 pSig->Reset(&pEnum);

 for (int i = 0 ; i < (int)pSig->NumFixedArgs(); i++) {

 TypeHandle th = pSig->NextArgExpanded(&pEnum);

 UINT cbSize = MetaSig::GetElemSize(th);

 bool needsStackCopy = (cbSize > sizeof(ARG_SLOT));

 TypeHandle nullableType = NullableTypeOfByref(th);

 if (!nullableType.IsNull()) {

 th = nullableType;

 needsStackCopy = true;

 }

 if(needsStackCopy) {

 MethodTable *pMT = th.GetMethodTable();

 if (pMT && pMT->ContainsPointers())

 stackStructCount++;

 }

 }

 // copy args

 pSig->Reset(&pEnum);

 for (int i = 0 ; i < (int)pSig->NumFixedArgs(); i++) {

 // ... code to copy the arguments to a safe place

 }

 // Call the method

 if (pSig->IsRetBuffArg()) {

 _ASSERTE(objRet);

Chapter 7: Runtime Type Definition and Exploration | 179

 COMPILER_ASSUME_MSG(retBuffPtr != NULL, "retBuffPtr should not be NULL");

 // The return buffer is a true boxed nullable, which we convert later on

 *retBuffPtr = PtrToArgSlot(objRet->GetData());

 }

 ret = method.CallWithValueTypes_RetArgSlot(pNewArgs);

 // It is still illegal to do a GC here. The return type might have/contain GC

pointers.

 if (retType == ELEMENT_TYPE_VALUETYPE)

 {

 // wrap and handle the valuetype case

 // ...

 objRet = Nullable::NormalizeBox(objRet);

 }

 else

 {

 objRet = InvokeUtil::CreateObject(retTH, ret);

 }

 ByRefToNullable::CopyBackToArgs(byRefToNullables, &gc.args);

 ((OBJECTREF)&rv) = objRet;

 return rv;

It‘s a fairly hefty body of code, but taken in pieces, it‘s pretty comprehensible.

A number of things take place in here: allocating the required amount of memory to support the call site

setup, grabbing copies of the arguments as well as ―this‖ pointers if required, and wrapping them in data

structure called an ARG_SLOT which represents a block of memory that can contain pointer and basic

types. Once that‘s done, it instantiates a MethodDescCallSite data structure (found in

sscli20/clr/src/vm/Method.hpp). The constructor code for MethodDescCallSite is particularly

interesting, as it sets up what will eventually be the true pointer to the code we end up calling way down the

call chain – either a pointer to the pre-JIT stub, or a pointer to the virtual table slot that contains the method

implementation.

MethodDescCallSite
It‘s worthwhile making a quick note of this data structure, as it contains a very important feature:

the pointer to the code eventually called. Browsing the class code in clr/src/vm/method.hpp reveals

the private field m_pbCallTarget, which is setup during construction of the

MethodDescCallSite through FindCallTarget method, which in turn calls upon another

method, MethodTable::GetTargetFromMethodDescAndServer. The job of this rather

verbosely-named method is to determine where the code lives in memory for a given

MethodDesc. If the given method hasn‘t been JIT compiled yet, it returns a pointer to the

prestub helper function for JIT compilation upon first call; otherwise it returns the true pointer to

the code in memory. In an interesting twist, this method also deals with the Remoting case,

returning a pointer to the runtime‘s Remoting layer to perform the remote method call if required.

After the MethodDescCallSite setup completes, a few more type checks are necessary—for example,

a Nullable<T> check, to support Nullable types and the semantics associated with them—and then

control hands off to the MethodDescCallSite macro CallWithValueTypes_RetArgSlot

found in Method.hpp. The macro looks a little weird for anyone not well versed in C++ macrology details,

but fear not—we‘ll walk through it slowly:

Chapter 7: Runtime Type Definition and Exploration | 180

Example 7-21. CallWithValueTypes_RetArgSlot Macro definition

 #define MDCALLDEF(wrappedmethod, worker, permitvaluetypes, ext, rettype, eltype)

 rettype wrappedmethod##ext (const ARG_SLOT* pArguments)

 {

 ARG_SLOT retval;

 retval = worker (pArguments DEBUG_ARG(permitvaluetypes));

 return *(rettype *)ArgSlotEndianessFixup(&retval, sizeof(rettype));

 }

The macro sets up an ARG_SLOT to wrap any return values from the method being called, then invokes the

CallTargetWorker method (the variable ―worker‖ is simply a function pointer to the

CallTargetWorker method).

Example 7-22. CallTargetWorker code from Method.hpp

 ARG_SLOT FORCEINLINE CallTargetWorker(const ARG_SLOT* pArguments

 DEBUG_ARG(BOOL fPermitValueTypes))

 {

 WRAPPER_CONTRACT;

 return m_pMD->CallTargetWorker(m_pbCallTarget, &m_methodSig, pArguments,

 m_fCriticalCall DEBUG_ARG(fPermitValueTypes));

 }

Notice the call to the method MethodDesc::CallTargetWorker; the first argument,

m_pbCallTarget is a local variable obtained from the MethodDescCallSite structure containing

the pointer in memory to the code eventually executed. We also pass in the method signature details and a

pointer to the method arguments. The MethodDesc::CallTargetWorker call then simply bounces

off to MethodDesc::CallDescr, which does a series of checks, setups, memory allocations and so on,

all to get ready for the call out to the managed method, starting with setting up a FramedMethodFrame

(frames are examined in Chapter 10; for now simply assume that it represents all the stuff needed to

describe the lowest level processor architecture details for a method invocation) for the call site:

 // Create a fake FramedMethodFrame on the stack.

 DWORD dwAllocaSize = 0;

 if (!ClrSafeInt<DWORD>::addition(FramedMethodFrame::GetRawNegSpaceSize(),

 sizeof(FramedMethodFrame), dwAllocaSize) ||

 !ClrSafeInt<DWORD>::addition(dwAllocaSize, nActualStackBytes, dwAllocaSize))

{

 _ASSERTE(!"Integer overflow calculating number of bytes needed on stack.");

 COMPlusThrow(kInvalidProgramException);

 } rettype wrappedmethod##ext (const ARG_SLOT* pArguments)

We then convert out ARG_SLOTs to the pointers they wrap and copy and align all our method arguments to

the pDest pointer in to our FramedMethodFrame.

Example 7-23. Setting up and copying method arguments

 if (!fIsStatic)

 {

 ((LPVOID) argit.GetThisAddr()) = ArgSlotToPtr(pArguments[arg++]);

 }

 // ...

 switch (stackSize)

 {

 case 1:

 case 2:

 case 4:

Chapter 7: Runtime Type Definition and Exploration | 181

 ((INT32)pDest) = (INT32)pArguments[arg];

 break;

 case 8:

 // the deregistered arguments are only 4-byte aligned

 CopyMemory((INT32*)pDest, (INT32*)(&pArguments[arg]), 2 *

sizeof(INT32));

 break;

 default:

 // The ARG_SLOT contains a pointer to the value-type

 if (MetaSig::IsArgPassedByRef(stackSize))

 {

 (PVOID)pDest = ArgSlotToPtr(pArguments[arg]);

 }

 else

 if (stackSize>sizeof(ARG_SLOT))

 {

 CopyMemory(pDest, ArgSlotToPtr(pArguments[arg]), stackSize);

 }

 else

 {

 CopyMemory(pDest, (LPVOID) (&pArguments[arg]), stackSize);

 }

 break;

 }

And then finally, we call out to a method called CallDescrWorkerWithHandler:

 INT64 retval = 0;

 retval = CallDescrWorkerWithHandler(pFrameBase + sizeof(FramedMethodFrame)

 + nActualStackBytes

 ,

 nActualStackBytes / STACK_ELEM_SIZE,

 (ArgumentRegisters*)(pFrameBase +

FramedMethodFrame::GetOffsetOfArgumentRegisters()),

 dwRegTypeMap,

 pvRetBuff,

 cbRetBuff,

 fpReturnSize,

 (LPVOID)pTarget,

 fCriticalCall);

The CallDescrWorkerWithHandler method (found in sscli20/clr/src/vm/Class.cpp) sets up and

bounces to CallDescrWorker which performs a few more security checks and some threading magic:

Example 7-24. Implementation of CallDescrWorker

 extern "C" ARG_SLOT __stdcall CallDescrWorker(

 LPVOID pSrcEnd,

 UINT32 numStackSlots,

 const ArgumentRegisters * pArgumentRegisters,

 UINT64 dwRegTypeMap,

 LPVOID pRetBuff,

 UINT64 cbRetBuff,

 UINT32 fpRetSize,

 LPVOID pTarget)

 {

 ARG_SLOT retValue;

 // Save a copy of dangerousObjRefs in table.

 Thread* curThread;

 DWORD_PTR ObjRefTable[OBJREF_TABSIZE];

Chapter 7: Runtime Type Definition and Exploration | 182

 curThread = GetThread();

 _ASSERTE(curThread != NULL);

 C_ASSERT(sizeof(curThread->dangerousObjRefs) == sizeof(ObjRefTable));

 memcpy(ObjRefTable, curThread->dangerousObjRefs, sizeof(ObjRefTable));

 _ASSERTE(curThread->PreemptiveGCDisabled());

 // Jitted code expects to be in cooperative mode

 // If current thread owns spinlock or unbreakalble lock, it can not call

managed code.

 _ASSERTE(!curThread->HasUnbreakableLock() &&

 (curThread->m_StateNC & Thread::TSNC_OwnsSpinLock) == 0);

 retValue = (ARG_SLOT) CallDescrWorkerInternal (

 pSrcEnd,

 numStackSlots,

 pArgumentRegisters,

 dwRegTypeMap,

 pRetBuff,

 cbRetBuff,

 fpRetSize,

 pTarget);

 // Restore dangerousObjRefs when we return back to EE after call

 memcpy(curThread->dangerousObjRefs, ObjRefTable, sizeof(ObjRefTable));

 TRIGGERSGC();

 return retValue;

 }

For those who might find themselves lost in translation, it is worthwhile pointing out that the pTarget

parameter in CallDescrWorker is called with the m_pbCallTarget variable from the

MethodDescCallSite. After a few more checks, CallDescrWorker gets ready for a call to an

assembly language method called CallDescrWorkerInternal which is found in

sscli20/clr/src/vm/i386/Asmhelpers.asm. This is where the magic of the method invocation is performed:

Example 7-25. Implementation of CallDescWorkerInternal/CallDescrWorker

 CallDescrWorkerInternal PROC stdcall public,

 pSrcEnd: DWORD,

 numStackSlots: DWORD,

 pArgumentRegisters: DWORD,

 fpRetSize: DWORD,

 pTarget: DWORD

 LOCAL doubleRet:QWORD

 mov eax, pSrcEnd

 mov ecx, numStackSlots

 test ecx, ecx

 jz donestack

 sub eax, 4

 push dword ptr [eax]

 dec ecx

 jz donestack

 sub eax, 4

 push dword ptr [eax]

 dec ecx

 jz donestack

 stackloop:

Chapter 7: Runtime Type Definition and Exploration | 183

 sub eax, 4

 push dword ptr [eax]

 dec ecx

 jnz stackloop

 donestack:

 ; now we must push each field of the ArgumentRegister structure

 mov eax, pArgumentRegisters

 mov edx, dword ptr [eax]

 mov ecx, dword ptr [eax+4]

 call pTarget

 ifdef _DEBUG

 nop ; This is a tag that we use in an assert. Fcalls expect to

 ; be called from Jitted code or from certain blessed call sites

like

 ; this one. (See HelperMethodFrame::InsureInit)

 endif

 ; Save FP return value

 mov ecx, fpRetSize

 cmp ecx, 4

 je ReturnsFloat

 cmp ecx, 8

 je ReturnsDouble

 jmp Epilog

 ReturnsFloat:

 fstp dword ptr doubleRet

 mov eax, dword ptr doubleRet; load it into EAX

 jmp Epilog

 ReturnsDouble:

 fstp qword ptr doubleRet

 mov eax, dword ptr doubleRet; load it into EDX:EAX

 mov edx, dword ptr doubleRet+4

 Epilog:

 RET

 CallDescrWorkerInternal endp

CallDescrWorkerInternal starts by plucking off any arguments that may be setup in the pSrcEnd

pointer (remember, this argument is actually a FramedMethodFrame structure, which contains the

method arguments copied over from Example 7-23). Once an argument is plucked from pSrcEnd, we

push them on to the processors stack, which sets up the call site for our call to the late-bound method

contained in pTarget:

 call pTarget

Remember, on first invocation, pTarger will be a pointer to the JIT stub and on subsequent invocations it

will contain the pointer to the real code for the method.

Wow. All that code to simply execute a ―call‖ instruction. If anything, it‘s an important lesson about the

performance of late-bound invocation of code: it takes a great deal of binding, setup, checking, coercion

and more checking to call a late-bound method in an environment that was built to assume early binding

and offers guarantees based on that assumption.

Emitting Components Dynamically

In an interesting twist, not only does the CLI provide the facilities to examine all this structure and

metadata at runtime via the System.Reflection namespace, it also provides the ability to emit

Chapter 7: Runtime Type Definition and Exploration | 184

entirely both runtime-synthesized types, and lightweight GC reclaimable methods (called Lightweight

Methods) via the System.Reflection.Emit namespace. This means, quite literally, that it becomes

possible to build these types ―on the fly,‖ as it were. We will touch on generating types on-the-fly using the

Reflection.Emit API, then examine the Lightweight Code Generation (LCG) feature and its impact on

calling convention and runtime data structures.

Reflection.Emit API

What follows here is a simple Reflection.Emit program, which dynamically produces, the ―Hello

World‖ sample that every programming textbook defines. (Note that we don‘t reuse the Echo sample

because to emit even something as simple as Echo would occupy several pages of pure code.)

using System;

using System.Reflection;

using System.Reflection.Emit;

class App

{

 static void Main()

 {

 AssemblyName an = new AssemblyName();

 an.Name = "HelloReflectionEmit";

 AppDomain ad = AppDomain.CurrentDomain;

 AssemblyBuilder ab = ad.DefineDynamicAssembly(an, AssemblyBuilderAccess.Run);

 ModuleBuilder mb = ab.DefineDynamicModule(an.Name);

 // Define "public class Hello.Emitted"

 //

 TypeBuilder tb = mb.DefineType("Hello.Emitted", TypeAttributes.Public |

 TypeAttributes.Class);

 // Define "public static int Main(string[] args)"

 //

 MethodBuilder mthb = tb.DefineMethod("Main",

 MethodAttributes.Public |

 MethodAttributes.Static,

 typeof(int),

 new Type[] { typeof(string[]) });

 ILGenerator ilg = mthb.GetILGenerator();

 // Define a call to System.Console.WriteLine, passing "Hello World"

 //

 ilg.Emit(OpCodes.Ldstr, "Hello, World!");

 ilg.Emit(OpCodes.Call, typeof(Console).GetMethod("WriteLine", new

Type[]{typeof(string[])}));

 ilg.Emit(OpCodes.Ldc_I4_0);

 ilg.Emit(OpCodes.Ret);

 Type t = tb.CreateType();

 ab.SetEntryPoint(mthb, PEFileKinds.ConsoleApplication);

 Console.WriteLine("Finished—executing Hello");

 ad.ExecuteAssembly("Hello.exe");

 }

}

Emitting a dynamic assembly requires only seven steps:

Chapter 7: Runtime Type Definition and Exploration | 185

1. Often (although we don’t do so here), a new application domain will be created, to allow the host to

unload the domain and its dynamically-defined assembly when desired.

2. From that application domain, create an AssemblyBuilder by calling

DefineDynamicAssembly, passing in the AssemblyName for the dynamic assembly and the

access restrictions—can this assembly be saved, run, or both?

3. Define each module (usually 1:1) for the assembly.

4. Generate the desired types (in this case, the type “Emitted” in the namespace “Hello”). Note that the

type’s attributes are described using TypeAttributes in the second parameter to the

DefineType call.

5. Define methods using MethodBuilder (and fields using FieldBuilder, and events using

EventBuilder, and so on), again making sure to pass in the desired attributes and, as necessary, the

signature of the element being defined—in this case, the signature of the Main method needs to take

an array of strings (typeof(string[])), and returns an int.

6. For methods, emit the CIL opcodes directly to the method body using the ILGenerator class

(which is a simple wrapper over Metadata bits).

7. Call CreateType to finish, and the type is ready—in our case, we set the entrypoint for the

assembly, then ask our application domain to execute it.

The results are pretty much as would be expected—the assembly is defined and executed, printing ―Hello,

World‖ to the console. Note that Hello.exe exists only in memory—to save it would require creating the

AssemblyBuilder with the AssemblyBuilderAccess.Save attribute and saving the type using

Save on the AssemblyBuilder.

It is important to note here that the Reflection.Emit structures closely mirror those of the underlying

structures they generate—assemblies contain one or move modules, which in turn contain types, which in

turn contain fields, methods, properties, events, and so on. In fact, the metadata token itself is available

from these APIs—you can get the MethodToken from a MethodBuilder by calling GetToken-

adding the line

 Console.WriteLine("{0:X}", mthb.GetToken().Token);

right after the CreateType call prints out 0x06000001. (As verification, save the emitted assembly to

disk and run ildasm against it—Main is, in fact, 0x06000001.)

The implementation

To provide this functionality, the Reflection types, and especially the Invoke methods found on

them, have to have extensive knowledge of EEClass, MethodTable, and other internal structures.

Finding that link is something of an interesting dive through the Rotor-Base-Class-Library-to-VM chain.

While we won‘t trace the entire set of methods, we‘ll touch on a few of the interesting ones.

Working in top-down fashion, we start with the call to AppDomain.DefineDynamicAssembly.

From the source, stored in the file clr\src\bcl\system\appdomain.cs, we see that this is a wrapper around

another call:

 public AssemblyBuilder DefineDynamicAssembly(

 AssemblyName name,

 AssemblyBuilderAccess access)

 {

 StackCrawlMark stackMark = StackCrawlMark.LookForMyCaller;

 return InternalDefineDynamicAssembly(name, access, null,

 null, null, null, null, /

 ref stackMark);

 }

Chapter 7: Runtime Type Definition and Exploration | 186

This internal method, in turn, sets the key pair on the assembly (if provided), demands a security

permission (if security evidence was provided), and then makes a call to another internal method,

nCreateDynamicAssembly, whose declaration is also found in appdomain.cs:

 [MethodImplAttribute(MethodImplOptions.InternalCall)]

 private extern AssemblyBuilder nCreateDynamicAssembly(AssemblyName name,

 Evidence identity,

 ref StackCrawlMark stackMark,

 PermissionSet requiredPermissions,

 PermissionSet optionalPermissions,

 PermissionSet refusedPermissions,

 AssemblyBuilderAccess access);

But, as can plainly be seen, no implementation is found—instead, the MethodImplAttribute

indicates that this is an internal call, meaning this is the point of entry into the execution engine code itself.

However, the SSCLI doesn‘t have a method named nCreateDynamicAssembly anywhere within it—

so where, precisely, will you jump off to?

Defined in clr/src/vm/ecall.cpp is a set of tables that map methods marked as internal calls to their actual

function entry points; sure enough, in one of these tables, an entry named nCreateDynamicAssembly

is found:

FCFuncStart(gAppDomainFuncs)

 // ...

 FCFuncElement("nCreateDynamicAssembly", AppDomainNative::CreateDynamicAssembly)

 // ...

FCFuncEnd()

This is the trampoline, then, that takes calls bound to the name nCreateDynamicAssembly and

substitutes the entry point for the CreateDynamicAssembly method of the C++ class

AppDomainNative. Tracking this further, then, takes you to clr/src/vm/appdomainnative.cpp, in which

CreateDynamicAssembly rips through the arguments handed to it, finds the VM-level pointer for the

given application domain, creates a new Assembly structure, and adds it to the application domain.

A number of interesting functions are defined in ecall.cpp; one is the trampolined call that occurs when

TypeBuilder is asked to create a new type. This in turn routes to:

FCFuncStart(gCOMClassWriter)

 // ...

 FCFuncElement("InternalDefineClass", COMDynamicWrite::CWCreateClass

 // ...

FCFuncEnd()

which is in turn defined in clr/src/vm/comdynamic.cpp. (Again, don‘t let the ―COM‖ prefixes here throw

you—remember, Rotor was derived from the original CLR sources, which were developed under the

presumption that .NET would be the next generation of COM.) This method calls against a

RefClassWriter class (defined in clr/src/vm/reflectclasswriter.h), which in turn is a wrapper around

our old friends IMetaDataEmit and IMetaDataImport, the interfaces to the metadata subsystem in

Rotor. These take the generated CIL for the type, store it into the CLI metadata formats, which are suitable

for consumption by the very mechanisms we‘ve just discussed, the class loader and JIT compiler.

Lightweight Code Generation

Lightweight Code Generation (LCG) is a new feature in SSCLI 2.0 that provides enhanced runtime code

generation facilities for emitting static methods at runtime. It is aimed at compilers for languages that

require runtimes (e.g. scripting languages such as JScript) and other scenarios where runtime code

generation is required for performance (e.g. Serialization, Regular Expressions, XSLT, code specialization

Chapter 7: Runtime Type Definition and Exploration | 187

and more). LCG improves on existing Reflection.Emit in several ways: less overhead (no need to

generate new assemblies, modules and types at runtime just to contain code stubs); ability to live on an

existing assembly or type given appropriate (high) security permissions and the ability to skip JIT-time

visibility checks given appropriate (high) security permissions.

To make it simpler for existing Reflection.Emit users to switch over to this new facility, LCG

extends the existing ILGenerator object model with the DynamicILGenerator class. For clients

who already have their own IL and code generation facilities, LCG also provides a low-level API which

works in terms of tokens and scopes. This allows more sophisticated clients to continue to perform their

own IL generation, while still taking advantage of LCG‘s lower overhead, better resource utilization and

additional capabilities compared to classic Reflection.Emit.

What follows here is a simple Lightweight Code Generation program that emits the classic ―write Hello

World to the console‖ example:

using System;

using System.Reflection;

using System.Reflection.Emit;

public class LCGHelloWorld

{

 public static void Main(string[] args)

 {

 DynamicMethod dm = new DynamicMethod("HelloWorld", typeof(void),

 new Type[] {}, typeof(LCGHelloWorld), false);

 ILGenerator il = dm.GetILGenerator();

 il.Emit(OpCodes.Ldstr, "hello, world");

 il.Emit(OpCodes.Call, typeof(Console).GetMethod("WriteLine",

 new Type[] { typeof(string) }));

 il.Emit(OpCodes.Ret);

 dm.Invoke(null, null);

 }

}

Observant readers will notice the LCG API is very similar to the Reflection.Emit example above.

The implementation

LCG methods have no metadata on disk; instead, a representation of metadata is created in-memory and

resolved by the runtime, simulating a method which is laid out on disk in an assembly. In order to achieve

this, the implementation is split up in to two main parts: the managed API to create the method and

generate the in-memory CIL, and the unmanaged runtime goop to resolve the in-memory metadata

equivalent so that the JIT compiler and Execution Engine can proceed as if the LCG method were any other

managed method in the runtime. To illustrate the design and understand the managed and unmanaged

runtime interactions, let‘s walk through the interesting parts of the Hello World example.

LCG methods start with a call to GetILGenerator, found in

clr\src\bcl\system\reflection\emit\Dynamicmethod.cs.

 public ILGenerator GetILGenerator(int streamSize)

 {

 if (m_ilGenerator == null)

 {

 byte[] methodSignature = SignatureHelper.GetMethodSigHelper(

 null, CallingConvention, ReturnType, null, null,

 m_parameterTypes, null, null).GetSignature(true);

 m_ilGenerator = new DynamicILGenerator(this, methodSignature, streamSize);

 }

 return m_ilGenerator;

 }

Chapter 7: Runtime Type Definition and Exploration | 188

 public bool InitLocals {

 get {return m_fInitLocals;}

 set {m_fInitLocals = value;}

 }

A byte array instance is created by calling the SignatureHelper.GetMethodSigHelper method,

which creates an in-memory representation of the method signatures metadata. This is the first place we see

an in-memory abstraction of metadata.

The DynamicILGenerator class is the LCG equivalent of generating CIL. It contains two important

fields that are used throughout the IL generation process:

 internal class DynamicILGenerator : ILGenerator

 {

 internal DynamicScope m_scope;

 // m_ILStream is inherited from ILGenerator

 internal byte[] m_ILStream;

 // ...

 }

The m_ILStream byte array field is used to build up an in-memory representation of the CIL opcode

stream for the LCG method. All calls to the DynamicILGenerator.Emit method do a simple lookup

of the instruction and generate the binary equivalent into this byte array. Traditionally, most CIL

instructions take a metadata token in order to perform an action on that metadata pointer. To make the LCG

and Reflection.Emit APIs more pleasant, the Emit method allows you to pass in the Reflection

based representation of the metadata token: runtime handles, or even the actual object itself. Consider the

example of emitting a ―ldstr‖ instruction through the Emit method:

 il.Emit(OpCodes.Ldstr, "hello, world");

The ―ldstr‖ opcode is paired with a string object. In traditional CIL, this string would be a metadata token

pointing to the string literal‘s location in the assembly. For the LCG case, there are no traditional metadata

tables to store the string, so in this case, it must be held somewhere in memory.

The DynamicScope class (referenced through the m_scope variable in DynamicILGEnerator) is a

container class that abstracts metadata away by keeping track of real objects and runtime handles. Every

time an object (in this case, the ―hello, world‖ string object) or runtime handle (e.g. the ―call‖ takes a

RuntimeTypeHandle for the Console.WriteLine static method) is passed to the

DynamicILGEnerator.Emit method, the DynamicScope class captures the scope of that request,

and passes back a generic metadata token to be used in the CIL byte stream.

 internal class DynamicScope

 {

 internal ArrayList m_tokens;

 internal unsafe DynamicScope()

 {

 m_tokens = new ArrayList();

 m_tokens.Add(null);

 }

 internal string GetString(int token) { return this[token] as string; }

 public int GetTokenFor(RuntimeMethodHandle method, RuntimeTypeHandle

typeContext)

 { return m_tokens.Add(new GenericMethodInfo(method, typeContext))

 | (int)MetadataTokenType.MethodDef; }

 public int GetTokenFor(DynamicMethod method)

 { return m_tokens.Add(method) | (int)MetadataTokenType.MethodDef; }

 public int GetTokenFor(RuntimeFieldHandle field)

 { return m_tokens.Add(field) | (int)MetadataTokenType.FieldDef; }

Chapter 7: Runtime Type Definition and Exploration | 189

 public int GetTokenFor(RuntimeTypeHandle type)

 { return m_tokens.Add(type) | (int)MetadataTokenType.TypeDef; }

 public int GetTokenFor(string literal)

 { return m_tokens.Add(literal) | (int)MetadataTokenType.String; }

 public int GetTokenFor(byte[] signature)

 { return m_tokens.Add(signature) | (int)MetadataTokenType.Signature; }

 // ...

DynamicScope has a simple ArrayList as the container for the tokens (it also has an index property,

essentially making this an associative array more than just a traditional array), and a GetTokenFor

method for each respective object or runtime handle. The GetTokenFor method simply adds the object

or handle to the ArrayList and returns the abstract metadata token. This largely completes the managed

representation of the API.

At the runtime level, a number of abstractions were created in order to ―trick‖ the runtime in to believing its

business as usual for LCG method invocation. The DynamicMethodDesc class is used to represent the

MethodDesc for the LCG method. It inherits from StoredSigMethodDesc, a class designed to

abstract away and represent the method signature metadata. The DynamicMethodTable class is used as

a special case MethodTable for LCG methods.

Invocation of an LCG method (through the managed Invoke method) follows the same Reflection- based

invocation code path, up until we hit the JIT compiler code. The code found in clr\src\vm\jitinterface.cpp

has many special cases for LCG methods, where metadata tokens need to be resolved to the respective

runtime handles. In these cases, the JIT passes the abstract metadata token to a metadata resolver interface,

called LCGMethodResolver:

Example 7-25. LCGMethodResolver header file (DynamicMethod.h)

 class LCGMethodResolver : public DynamicResolver

 {

 friend class DynamicMethodDesc;

 friend class EEJitManager;

 public:

 LCGMethodResolver() {}

 void Destroy(BOOL fRecycle);

 void FreeCompileTimeState();

 void GetJitContext(DWORD *securityControlFlags, TypeHandle *typeOwner);

 ChunkAllocator* GetJitMetaHeap();

 BYTE* GetCodeInfo(unsigned *pCodeSize, unsigned short *pStackSize,

CorInfoOptions *pOptions, unsigned short *pEHSize);

 PCCOR_SIGNATURE GetLocalSig(DWORD *pSigSize);

 StringObject* GetStringLiteral(mdToken token);

 void* ResolveToken(mdToken token);

 unsigned ResolveParentToken(mdToken token);

 PCCOR_SIGNATURE ResolveSignature(mdToken token);

 PCCOR_SIGNATURE ResolveSignatureForVarArg(mdToken token);

 void GetEHInfo(unsigned EHnumber, CORINFO_EH_CLAUSE* clause);

 BOOL IsValidToken(mdToken token);

 void* GetInstantiationInfo(mdToken token);

 MethodDesc* GetDynamicMethod() { LEAF_CONTRACT; return m_pDynamicMethod; }

 };

Let‘s take a look at the JIT code to compile the ―ldstr‖ CIL instruction to make this process a little clearer:

Example 7-26. compileCEE_LDSTR method in fjit.cpp

 FJitResult FJit::compileCEE_LDSTR()

Chapter 7: Runtime Type Definition and Exploration | 190

 {

 unsigned int token;

 InfoAccessType iat;

 CORINFO_MODULE_HANDLE tokenScope = methodInfo->scope;

 void* literalHnd = NULL;

 iat = jitInfo->constructStringLiteral(tokenScope,token, &literalHnd);

 emit_WIN32(emit_LDC_I4(literalHnd)) emit_WIN64(emit_LDC_I8(literalHnd)) ;

 emit_LDIND_PTR(false);

 // Get the type handle for strings

 CORINFO_CLASS_HANDLE s_StringClass = jitInfo->getBuiltinClass(CLASSID_STRING);

 VALIDITY_CHECK(s_StringClass != NULL);

 pushOp(OpType(typeRef, s_StringClass));

 return FJIT_OK;

 }

The JIT asks the EE-JIT interface to construct the string literal through the call to the

constructStringLiteral method found in jitinterface.cpp:

InfoAccessType __stdcall CEEInfo::constructStringLiteral(CORINFO_MODULE_HANDLE

scopeHnd,

 mdToken metaTok,

 void **ppInfo)

 {

 CONTRACTL {

 SO_TOLERANT;

 THROWS;

 GC_TRIGGERS;

 } CONTRACTL_END;

 InfoAccessType result = IAT_PVALUE;

 JIT_TO_EE_TRANSITION();

 if (IsDynamicScope(scopeHnd))

 {

 result = CEEDynamicCodeInfo::constructStringLiteral(scopeHnd, metaTok,

ppInfo);

 }

 else

 {

 // ...

 }

 EE_TO_JIT_TRANSITION();

 return result;

 }

A check is made to see if the passed in scope is a DynamicScope , and if so, makes another call through

to CEEDynamicCodeInfo::constructStringLiteral:

 InfoAccessType CEEDynamicCodeInfo::constructStringLiteral(

 CORINFO_MODULE_HANDLE moduleHnd,

 mdToken metaTok,

 void **ppInfo)

 {

 *ppInfo = NULL;

 DynamicResolver* pResolver = GetDynamicResolver(moduleHnd);

 OBJECTHANDLE string = NULL;

Chapter 7: Runtime Type Definition and Exploration | 191

 STRINGREF strRef = ObjectToSTRINGREF(pResolver-

>GetStringLiteral(metaTok));

 GCPROTECT_BEGIN(strRef);

 if (strRef != NULL)

 {

 MethodDesc* pMD = pResolver->GetDynamicMethod();

 string = (OBJECTHANDLE)pMD->GetModule()->GetAssembly()->

 Parent()->GetOrInternString(&strRef);

 }

 *ppInfo = (LPVOID)string;

 return IAT_PVALUE;

 }

Finally, the DynamicResolver class (which is really just an instance of

LCGDynamicMethodResolver), makes an unmanaged to managed transition to ask the managed

DynamicResolver object to resolve the metadata token to a string object:

 StringObject* LCGMethodResolver::GetStringLiteral(mdToken token)

 {

 STRINGREF retStr = NULL;

 MethodDescCallSite getStringLiteral(METHOD__RESOLVER__GET_STRING_LITERAL,

m_managedResolver);

 OBJECTREF resolver = ObjectFromHandle(m_managedResolver);

 VALIDATEOBJECTREF(resolver); // gc root must be up the stack

 ARG_SLOT args[] = {

 ObjToArgSlot(resolver),

 token,

 };

 retStr = getStringLiteral.Call_RetSTRINGREF(args);

 return STRINGREFToObject(retStr);

 }

This unmanaged to managed call takes place to the GetStringLiteral method on the

DynamicResolver class:

 private DynamicScope m_scope;

 // ...

 internal override String GetStringLiteral(int token)

 {

 return m_scope.GetString(token);

 }

This method simply asks the DynamicScope object for the string object representing the ―abstract‖ JIT

metadata token and returns a string object back to the JIT to resume compilation. Mission complete.

Finalization

Because LCG methods are mostly implemented in managed code, they are reclaimable by the Garbage

Collector, making them extremely memory efficient over their Reflection.Emit cousin. When an

LCG delegate and DynamicMethod object references no longer exist, the GC can target the object for

collection. The memory reclamation process is done in two stages: firstly, the managed objects used by the

LCG method must be collected and destroyed, and secondly, the unmanaged memory in the runtime freed.

Because the unmanaged memory contains pointers to the managed objects, we must be certain that the

managed memory is completely destroyed. Generally, we‘d expect that finalization of the LCG objects

should guarantee that these objects no longer exist, and thus from the finalizer method, we could prepare

Chapter 7: Runtime Type Definition and Exploration | 192

the unmanaged objects to be freed. Unfortunately, there‘s an unusual scenario which could break this

invariant: a user could hold a weak reference to these objects, allowing the objects to survive finalization.

To guarantee that the LCG managed objects have been completely finalized, and thus invoke the freeing of

unmanaged memory, there‘s a cute hack to do a ―post finalization‖ unmanaged memory cleanup. The

DynamicScope finalizer shows this hack in action:

 ~DynamicResolver() {

 DynamicMethod method = m_method;

 if (method == null)

 return;

 if (method.m_method.IsNullHandle())

 return;

 DestroyScout scout = null;

 try {

 scout = new DestroyScout();

 } catch {

 // We go over all DynamicMethodDesc during AppDomain shutdown and make

sure

 // that everything associated with them is released. So it is ok to skip

reregistration

 // for finalization during appdomain shutdown

 if (!Environment.HasShutdownStarted &&

 !AppDomain.CurrentDomain.IsFinalizingForUnload())

 {

 // Try again later.

 GC.ReRegisterForFinalize(this);

 }

 return;

 }

 // We can never ever have two active destroy scouts for the same method.

 // We need to initialize the scout outside the try/reregister block to

 // avoid possibility of reregistration for finalization with active scout.

 scout.m_method = method.m_method;

 }

 private class DestroyScout

 {

 internal RuntimeMethodHandle m_method;

 ~DestroyScout()

 {

 if (m_method.IsNullHandle())

 return;

 // It is not safe to destroy the method if the managed resolver is alive.

 if (m_method.GetResolver() != null)

 {

 if (!Environment.HasShutdownStarted &&

 !AppDomain.CurrentDomain.IsFinalizingForUnload())

 {

 // Somebody might have been holding a reference on us via weak

handle.

 // We will keep trying. It will be hopefully released eventually.

 GC.ReRegisterForFinalize(this);

 }

 return;

 }

Chapter 7: Runtime Type Definition and Exploration | 193

 m_method.Destroy();

 }

 }

A temporary DestroyScout object is created in the local scope of the DynamicResolver‘s finalizer

method. This scout object will survive the finalization of the DynamicResolver object and will be

tagged for collection by the GC only if the DynamicResolver object was destroyed. Thus, it‘s

guaranteed that by the time the DestroyScout object is being finalized, all managed objects related to

the LCG method will be destroyed. A call to RuntimeMethodHandle.Destroy is made, and the

unmanaged memory is cleaned up.

Summary

Reflection on code is a rich and powerful side-effect of running code on a virtual machine. The CLI enables

reflection of assemblies, types and code via a rich API that taps both metadata on disk and the runtimes

data structures. The process starts with a string or a token identifier, and ends with an instance of a derived

MemberInfo object. And during that process, the runtime enhances the performance of this process

through the use of MemberInfo caching.

Late-bound code generation and invocation is also another powerful CLI feature. Here we can inspect a

MethodInfo and invoke the method it represents safely. Extending this late-bound invocation concept to

the generation of code at runtime completes the picture of true dynamism in code. The CLI features

Reflection.Emit and DynamicMethod (Lightweight Code Generation), both of which are powerful

ways to generate types and code, adhering to a large surface area of the CLI Metadata specification, and

leveraging IL as its code descriptor.

Chapter 8: Regulating the Execution Engine | 194

8. Regulating the Execution Engine

We‘ve now seen how the CLI transforms high-level type descriptions into processor-specific code. This

chapter examines what happens once this code has begun to run and what the execution engine needs to do

to remain in control. Without a foolproof way to retain control, all of the unpacking, re-jiggering, checking,

compiling, and linking of types that has been described to this point would be for nought. The runtime

boundaries that are erected by the execution engine are one of its most desirable features, since they enable

components to cooperate while remaining safely isolated.

Rotor piggybacks on two operating system abstractions, threads and exceptions, to control the execution

state for a given process. Threads and exceptions are both related to the execution stack: a thread is home to

the memory that makes up an execution stack, while exceptions create structure for that memory using a

convention that helps protect its integrity at runtime.

Threads

Most programmers think of threads as a way to separate well-defined tasks into independent chunks of

code, usually in conjunction with matching synchronization constructs. This usage is supported by the CLI,

of course; chunks of code can run ―on‖ threads whose schedules are dictated by the operating system‘s

threading implementation and by intertask dependencies. But threads in the CLI have another equally

important role: they are the primary data structure for maintaining execution engine information about

executing code. Besides representing concurrent execution and synchronization, the thread structures

within the CLI provide a way to associate the microprocessor‘s execution stack with related runtime data.

This runtime data is a trove of bookkeeping information, which includes security annotations, garbage-

collection markers, program variables, and many other things.

Inside the execution engine, threads are implemented on top of PAL threads, which abstract away system-

specific threading details. (Threads are one of the least standardized system services. Because of this, the

PAL‘s implementation is both difficult and important.) In the discussion that follows, we will draw a

distinction between PAL threads and managed threads. A managed thread is an instance of the Thread

type, while a PAL thread is a preemptively scheduled execution unit that exists within an address space and

can have private state associated with it. Managed threads wrap PAL threads; they are high-level types

within the CLI that encapsulate lower-level semantics. Managed threads always have a corresponding PAL

thread, but PAL threads do not need to have a corresponding managed thread.

The ability of PAL threads to maintain private per-thread state is important, because the execution engine

tracks ―interesting‖ threads (defined, rather myopically, as threads that have executed managed code) by

associating an instance of Thread with the underlying PAL thread using this per-thread state. From the

perspective of the managed code, the Thread type has a field named m_ThreadHandle, which contains

a HANDLE to its PAL thread that it uses to control and schedule execution on this thread. Since there is no

PAL call to enable navigating from a thread handle to a managed thread, the execution engine maintains a

ThreadStore that can be used to enumerate managed threads from both managed and unmanaged code.

To facilitate interoperability between unmanaged and managed code, managed threads mix the execution

state of managed and unmanaged code on a single stack. PAL threads that become associated with

managed code are used by the execution engine to maintain exception handlers, scheduling priorities, and a

set of structures that the underlying platform uses to save context whenever it preempts the thread‘s

execution. (The thread context holds important details, such as the values held in machine registers and the

state of the current execution stack.)

Chapter 8: Regulating the Execution Engine | 195

There are many places in which unmanaged code calls managed code, and vice versa, as illustrated by

Figure 8-1. Three scenarios, in particular, are common:

 Much of the execution engine is written in unmanaged code, and JIT helper functions and large parts

of the base class libraries frequently call or are called by JIT-compiled code.

 Managed components can be instantiated and called by native applications that wish to host the CLI.

 Previously unknown threads can enter the runtime from the “outside.”

Figure 8-10. Many threads of control can coexist within a managed process

Managed threads must be prepared to behave gracefully in the face of manipulation in any of these

scenarios. Since components are free to call external routines using ECMA‘s platform invocation

(P/Invoke) mechanism and pass component references to these external routines, component callbacks may

be asynchronously invoked from outside the execution engine. Likewise, applications are free to host

instances of the execution engine within their own processes, instantiating and calling component instances

from their own threads, which also results in external invocation. Because of these possibilities and because

the SSCLI implementation mixes execution state of both managed and PAL threads, the concurrency model

is quite complex.

Transitions between managed and unmanaged code can be created in many different ways, and it is

important to understand every one of them since the execution engine must account for each to maintain

control and integrity. Significant transitions are not limited to boundaries with external code; even within

managed code, isolation needs to be maintained as application domain boundaries or remoting contexts are

crossed, as security permissions change, or as exceptions are thrown.

Setting Up a Managed Thread

The easiest transition to understand is the initial transition from unmanaged to managed code, when a PAL

thread prepares to run managed code. The linkage between the PAL thread and the managed thread is

accomplished in SetupThread, defined in clr/src/vm/threads.cpp; the code in Example 8-1 is edited

from threads.cpp and shows this process.

Example 8-1. Threads are associated with an underlying PAL thread (simplified from

clr/src/vm/threads.cpp)

Thread* SetupThread(BOOL fInternal)

{

 Thread* pThread;

 if ((pThread = GetThread()) != NULL)

Chapter 8: Regulating the Execution Engine | 196

 return pThread;

 if (ThreadStore::s_pThreadStore->m_PendingThreadCount != 0)

 {

 DWORD ourOSThreadId = ::GetCurrentThreadId();

 IHostTask *curHostTask = NULL;

 IHostTaskManager *hostTaskManager = CorHost2::GetHostTaskManager();

 if (hostTaskManager) {

 BEGIN_SO_TOLERANT_CODE_CALLING_HOST(GetThread());

 hostTaskManager->GetCurrentTask(&curHostTask);

 END_SO_TOLERANT_CODE_CALLING_HOST;

 }

 while ((pThread = ThreadStore::s_pThreadStore->GetAllThreadList(pThread,

Thread::TS_Unstarted | Thread::TS_FailStarted, Thread::TS_Unstarted)) != NULL)

 {

 if (curHostTask)

 {

 if (curHostTask == pThread->GetHostTask())

 {

 break;

 }

 }

 else if (pThread->GetOSThreadId() == ourOSThreadId)

 {

 break;

 }

 if (pThread)

 {

 BOOL fStatus = pThread->HasStarted();

 ensurePreemptive.SuppressRelease();

 return fStatus ? pThread : NULL;

 }

 }

 // First time we've seen this thread in the runtime:

 pThread = new Thread();

 if (!pThread->InitThread(fInternal) ||

 !pThread->PrepareApartmentAndContext())

 ThrowOutOfMemory();

 // reset any unstarted bits on the thread object

 FastInterlockAnd((ULONG *) &pThread->m_State, ~Thread::TS_Unstarted);

 FastInterlockOr((ULONG *) &pThread->m_State, Thread::TS_LegalToJoin);

 ThreadStore::AddThread(pThread);

 pThread->SetupThreadForHost();

 threadHolder.SuppressRelease();

 _ASSERTE(!pThread->IsBackground()); // doesn't matter, but worth checking

 pThread->SetBackground(TRUE);

 return pThread;

}}

There are two checks made to ensure that the thread being set up does not already have a corresponding

instance of Thread. First, a call to GetThread is made via a function pointer established in

InitThreadManager; GetThread looks for a cached Thread instance in the TLS for the calling

PAL thread. If an instance is found, the calling thread is already known to the execution engine.

Chapter 8: Regulating the Execution Engine | 197

If there is no cached thread instance, SetupThread ensures that the call is not coming from a different

thread than the thread being initialized. To check this, the ThreadStore (which is exactly what it sounds

like—a container for all known Threads) is queried for a matching identifier. If one is found,

SetupThread can return, since the thread is known to the execution engine. If the PAL thread is truly

unknown to the execution engine, a new Thread object is created, installed on its TLS, and marked as

started. The call to Thread::HasStarted completes the initialization of the Thread instance.

In addition to acting as a home for managed execution bookkeeping info associated with the underlying

PAL thread, the new Thread instance will be added by the execution engine to the ThreadStore‘s list

of all the threads ever seen. This bookkeeping information is used during thread suspension, during

shutdown, and for thread enumeration. Of these threads, those that wander into the execution engine

without being known to it become background threads, which cannot keep the execution engine alive by

themselves. Foreground threads have the opposite effect and will keep the CLI execution engine alive as

long as they are running. (The thread that calls the main .entrypoint for a managed program, for

example, is a foreground thread.) The foreground/background state of a Thread is exposed through its

API and can be changed from managed code.

Traversing the Execution Engine Stack

Once a Thread instance has been associated with an underlying PAL thread, managed code can be

executed on it. One sequence that will kick off the execution of managed code can be found in

MethodDesc::CallTargetWorker, which we discussed in Chapter 5 (and which can be found in

sscli/clr/src/vm/method.cpp). The implementation of CallTargetWorker relies on the fact that two

important tracking structures will be on the stack before JIT-compiled code is executed: an exception

handler that will wrap the managed code (which we will see in great detail later in the ―Handling

Exceptions‖ section of this chapter), and a chain of execution engine frames (―frames,‖ for short—see the

sidebar ―Frames, Frames, Frames‖) that will be used to annotate portions of the stack with runtime

information produced by the execution engine.

Execution engine frames do not exist in the regions of the stack that are generated by the JIT compiler,

since the execution engine already has intimate knowledge about how this code will use the stack and can

read the resulting stack data directly, without using frames as markers. But the multiple calling

conventions, exception paths, and other nasty details that must be understood when interpreting stack

layouts for code not produced by the JIT compiler, or for JIT helper code, are what make frames a

necessary part of the SSCLI execution strategy. The intricacies of tracing the stack, as well as the tight

requirements placed on stack layout by security, result in a runtime service called the code manager, which

knows how to join the managed and unmanaged portions of a stack together into a single coherent view.

Frames, Frames, Frames
Unfortunately, the word ―frame‖ is used within the execution engine in three ways, each of which

is different. The most familiar to programmers is the notion of a stack frame, which is a region of

stack memory that is allocated for a single procedure call, used to hold parameter values, local

variables, a return value, and anything else needed by the calling convention in effect. To reduce

ambiguity, we will refer to this as an activation record in this book, which is a commonly used

alternate term.

The second use of ―frame‖ is in the context of exception handling. An exception handler frame is

a region of the stack that is covered by a particular structured exception handler. Exception

handler frames are begun by the use of the try keyword in C# or C++, and conclude at the point

following the last corresponding exception handler. Here, we will always refer to this kind of

frame in a fully qualified way.

Chapter 8: Regulating the Execution Engine | 198

The third kind of frame is unique to the SSCLI execution engine. Execution engine frames are

bookkeeping structures that are stored on the stack by the execution engine for the purpose of

marking significant boundaries. These frames are discussed extensively in the accompanying text,

and because of this, we will refer to them as nothing more than frames.

The existence of execution engine frames and the code manager highlight an important aspect of the SSCLI

implementation: its stacks contain much more than method invocation state. In fact, the stack for each

thread forms a complete record of currently executing code and is an ideal place to put control information

needed by the execution engine, since it manages the execution of that code. The execution engine uses the

information in the stack to:

 Track and update stack-stored object references for garbage collection

 Hold state for security checks

 Recognize transitions, such as cross-domain or managed-to-unmanaged calls

 Find the correct handler and unwind the stack during an exception

 Generate human-readable call traces for debugger and exception support

 Keep track of exception resources

When needed, this information is accessed via stackwalking, which, as the name implies, is the process of

traversing interesting spots in the stack‘s call chain to extract current execution state.

Annotating the Stack with Frames

Frame instances are used polymorphically by the code manager, which relies on virtual method dispatching

to produce specialized behaviors. A linked list of execution engine frames is associated with every

Thread object, all of which are instances of the Frame class or one of its subclasses, and all of which can

be found in sscli20/clr/src/vm/frames.h. The C++ classes are provided to let the code within the execution

engine manipulate existing frames, but frame construction is often done by assembler stubs, from JIT

helpers, or by other implementation-specific tricks within the execution engine. Because of this, the class

declarations in frames.h are tightly coupled with the architecture-specific stub generation code, which

makes it important to keep these stubs in sync when changing the frame code in any way. In particular,

programmers should avoid attempting to use constructors or destructors on these objects without first

examining any related stubs, since many of the frames are not meant to be instantiated in this way (and

most constructors are private for this reason).

Frames are often linked to exception handling; there is a frame type for every situation in which protection

or special action is needed when crossing a boundary in the context of an exception. Interop calls, context-

crossing calls, and internal calls into the execution engine all generate special frames. Any crossing from

unmanaged or managed compiled code back into the execution engine is also marked by a frame of some

sort. Figure 8-2 contains some of the more interesting types of frames that are used in the SSCLI.

Figure 8-2 displays some of the following types of frames:

Chapter 8: Regulating the Execution Engine | 199

Figure 8-11. A partial view of the frame type hierarchy in the SSCLI

DebuggerClassInitMarkFrame

This frame is used as the very first frame in a given thread‘s linked list.

GCFrame

This frame is used to alert the garbage collector to object references that should be tracked within

unmanaged execution engine code.

ContextTransitionFrame

This frame marks a transition across an application domain or a context.

TransitionFrame

This frame represents the transition from JIT-compiled code into either an execution engine function or

a framed method.

ExceptionFilterFrame

This frame wraps a call to the Exception filter.

FaultingExceptionFrame

This frame has taken a PAL exception during the execution of JIT-compiled code.

FuncEvalFrame

The debugger ―borrows‖ the stack to do evaluation, and the point at which the stack is borrowed is

marked by this frame.

HelperMethodFrame

This frame is used to include JIT helper functions and FCalls in the stackwalk.

FramedMethodFrame

This frame is an abstract superclass for all kinds of method calls that will use a Frame.

NDirectMethodFrame

This frame marks a transition into native code via the P/Invoke mechanism.

Chapter 8: Regulating the Execution Engine | 200

NDirectMethodFrameEx

A P/Invoke transition, with additional cleanup.

DebuggerSecurityCodeMarkFrame

This frame is used during security stackwalks and acts as a holder for the security object of an

activation record on the stack.

UnmanagedToManagedFrame

This frame is used to mark a transition into managed code from unmanaged code.

UnmanagedToManagedCallFrame

This frame is used to mark a transition from unmanaged code to a managed method, which registers

the method arguments with the garbage collector.

UMThkCallFrame

This frame is used to mark a transition into managed code from unmanaged code via a UMThunk,

which is a delegate that encapsulates an unmanaged target function.

As you can see, frames come in many flavors, not all of which correspond to method calls in a one-to-one

way. The SSCLI stack is a complex mixture of execution engine frames, exception-handling frames, and

activation records.

Categorizing Frames

To help make sense of this mixture, we will divide execution engine frames into two categories: data

annotations and transition markers. Data annotations are used by the execution engine to track data items of

interest in the stack, while transition markers help the execution engine track context.

Annotating data

As an example of a frame that is purely an annotation, consider GCFrame. The only purpose of a

GCFrame is to protect one or more object references from being garbage collected while they are

manipulated by execution engine code. The execution engine uses GCFrame instances to guarantee stable

pointers while allocating objects or doing any other operation that could trigger a GC.

As we will see in the next chapter, garbage collectors spend their life moving objects

around in memory and updating references so that they correctly reflect the move. If the

garbage collector doesn‘t know that a reference exists, or if the object is in flux, it can‘t

update its tracking information correctly. This is why ―protection‖ is needed for variables

that hold references that are unstable in some way. Without protection, garbage collection

holes can result, which often causes serious problems.

The use of GCFrame within the SSCLI code may not be entirely obvious; this operation is hidden under

the GCPROTECT_BEGIN macro, which is defined as follows in frames.h:

#define GCPROTECT_BEGIN(ObjRefStruct) do { \

 FrameWithCookie<GCFrame> __gcframe((OBJECTREF*)&(ObjRefStruct), \

 sizeof(ObjRefStruct)/sizeof(OBJECTREF), \

 FALSE); \

 /* work around unreachable code warning */ \

 if (true) { DEBUG_ASSURE_NO_RETURN_BEGIN

Calls to GCPROTECT_BEGIN must be bracketed by a corresponding GCPROTECT_END, which pops the

GCFrame back off of the stack. There are other related macros for special cases, such as protecting interior

object references or arrays. All of these are used extensively in the source code for the execution engine,

and all use instances of GCFrame to get their jobs done. The following method of the Thread class

Chapter 8: Regulating the Execution Engine | 201

(which can be found in sscli20/clr/src/vm/threads.cpp) uses a GCFrame to inform the garbage collector

that its CultureObj variable is volatile:

 void Thread::SetCultureId(LCID lcid, BOOL bUICulture)

 {

 OBJECTREF CultureObj = NULL;

 GCPROTECT_BEGIN(CultureObj)

 {

 // Convert the LCID into a CultureInfo.

 GetCultureInfoForLCID(lcid, &CultureObj);

 // Set the newly created culture as the thread's culture.

 SetCulture(&CultureObj, bUICulture);

 }

 GCPROTECT_END();

 }

Like GCFrames, debugger frames also annotate data located on the stack. For example, an instance of

DebuggerClassInitMarkFrame is the root for the chain of frames formed by executing the main

entry point for an application. (An instance of this was laid down in the stack during the trace through clix

to AppDomain::ExecuteMainMethod in Chapter 4.)

Marking transitions

Other frames correspond one-to-one with method or function calls. The entire family of frames derived

from the TransitionFrame class, for example, is used to capture and store state about the stubs

inserted into method bodies by the JIT compilation process.

Recall from Chapter 5 that a component that has not yet been JIT-compiled has a method table that is

entirely fleshed out with thunks. The worker code in these thunks knows how to use prefabricated sections

of code, called stubs, which can be strung together to do pre- and post-processing for method calls. As part

of its analysis, the compilation process recognizes situations that can be satisfied by the use of these

prefabricated templates (such as unboxing) and produces customized snippets of code tailored to fit both its

method signature and the semantic demands of the situation.

What does this have to do with frames? Since multiple stubs are often mixed into a single method (to inject

security checks or to create proxy code for remoting, for example), transition frames are important

indicators to the execution engine. Each individually crafted stub in the chain pushes a frame onto the

thread‘s chain of frames when it is run, and these frames mark the stubs‘ passage. The frames also act as a

place to store state to be restored on return, which will be used when unwinding exceptions, or that will be

needed when the stack is walked for purposes such as debugging or remoting.

Several other frames mark transitions for other purposes. As mentioned earlier, P/Invoke is a way of

making calls from managed code into unmanaged code automatically, based on programmer-provided

descriptions of unmanaged functions. (This facility was called NDirect originally, and you will see this

word widely used in SSCLI comments and function names. Think of P/Invoke and NDirect as synonyms.)

In order for this mechanism to successfully bridge the managed call to the unmanaged call, the calling

convention used by the JIT compiler must be matched to the calling convention of the external function,

and the managed arguments and return value (if present) must be converted into their unmanaged

counterparts. This is done using marshaling frames.

To illustrate what descriptions look like, Example 8-2 shows a P/Invoke declaration that matches an

external __cdecl function named foo (found in mylibrary.dll) to the static C# method

ExternalFooImplementation of the WrapperClass type.

Example 8-2. P/Invoke uses a programmer-provided description to do marshaling

public class WrapperClass {

 [DllImport("mylibrary.dll",

Chapter 8: Regulating the Execution Engine | 202

 EntryPoint="foo",

 CallingConvention=CallingConvention.Cdecl)]

 public static extern int ExternalFooImplementation(int hWnd, String text,

 String caption, uint type);

}

The execution engine uses a special kind of MethodDesc, called a NDirectMethodDesc, to represent

P/Invoke methods of types (in this case, the ExternalFooImplementation method). This

NDirectMethodDesc locates the address of the external function foo (loading a shared library, if

necessary), and creates a stub on the fly that will call this function, as well as reorder arguments on the

stack and/or do data type conversion if necessary. The implementation also caches stubs once they are

built, although you can examine this level of detail on your own. The marshaling process is an intricate and

delicate piece of engineering that has been revisited many times to improve performance; for curious

readers, the code is interesting, but not easy, to browse.

Stackwalking

A stackwalk will typically traverse both managed and unmanaged regions of the stack. The managed

regions (somewhat perversely referred to as ―frameless frames‖) consist of a series of activation records for

managed code. There is no reason to add the extra overhead of frames to these regions of the stack, since

the execution engine knows all about the structure of JIT-produced code. The engine can walk these

regions directly, decoding them as necessary by using thread context and code manager information.

In unmanaged regions, a stackwalk must be performed by using Frame objects, which are embedded

directly in the stack as navigational aids. To walk the frame chain, either the

Thread::StackWalkFramesEx method call or the StackWalkFunctions macro is used within

the execution engine. StackWalkFramesEx takes a callback function as a parameter and invokes this

function on every frame in the chain that matches its filtering criteria. For each frame, the callback receives

a pointer to a CrawlFrame, which is a simple wrapper that exposes the GetFrame function, which in

turn returns the underlying Frame pointer if one exists. The wrapper also exposes GetFunction, which

returns a MethodDesc if the frame represents a method call. StackWalkFunctions is a simpler

variant of StackWalkFramesEx, which walks only ―true‖ function calls. (It is used, for example, to

generate the stack trace shown whenever an Exception is created.)

Figure 8-3 shows how a region of the stack that contains both managed and unmanaged activation records

can be walked, combining Frame objects with execution engine knowledge of the activation record

structure of JIT-compiled methods.

Figure 8-12. Stackwalking uses a combination of Frames and the execution engine’s

knowledge of the JIT calling convention

Chapter 8: Regulating the Execution Engine | 203

Walking the stack is an inherently thread-based activity. Since any given callback is very intimately tied to

the state of the thread, stackwalking can be done only on the current thread or on a thread that is suspended.

Not surprisingly, StackWalkFramesEx is a method of the Thread class, which can be found in

clr/src/vm/stackwalk.cpp. Example 8-3 contains a shortened version of this method.

Example 8-3. Stackwalking using StackWalkFramesEx (simplified from clr/src/vm/stackwalk.cpp)

StackWalkAction Thread::StackWalkFramesEx(

 PREGDISPLAY pRD, // virtual register set at crawl start

 PSTACKWALKFRAMESCALLBACK pCallback,

 VOID *pData,

 unsigned flags,

 Frame *pStartFrame

)

{

 CrawlFrame cf;

 StackWalkAction retVal = SWA_FAILED;

 if (pStartFrame)

 {

 cf.pFrame = pStartFrame;

 }

 else

 {

 cf.pFrame = this->GetFrame();

 }

 cf.isFirst = true;

 cf.isInterrupted = false;

 cf.hasFaulted = false;

 cf.isIPadjusted = false;

 cf.isNativeMarker = false;

 cf.JitManagerInstance = pEEJM;

 cf.codeMgrInstance = NULL;

 cf.isFrameless = (pEEJM != NULL);

 if (cf.isFrameless)

 {

 cf.codeMgrInstance = pEEJM->GetCodeManager();

 }

 cf.pAppDomain = GetDomain(INDEBUG(flags & PROFILER_DO_STACK_SNAPSHOT));

The CrawlFrame class is used to hide the distinctions between managed frames and unmanaged frames,

and is used as a cursor for this iterator function. The first task is to initialize this cursor; the iterator starts

either at an intermediate frame passed in as a parameter or at the innermost active frame on the Thread.

The CrawlFrame also tracks the current application domain, as well as exception and hardware status.

(pRD is a pointer to a register display, which indirectly holds the captured values of selected

microprocessor registers.)

The CrawlFrame also contains references to both the JIT manager and the code manager, since these

services will often be needed during a stackwalk. We will now examine the code that is used with

―frameless‖ CrawlFrames, which are the parts of the managed stack that are directly accessed by the

execution engine. Since the code being walked is JIT-compiled, this part of StackWalkFramesEx uses

the JIT manager to extract information:

for (;;)

{

 if (cf.isFrameless)

 {

Chapter 8: Regulating the Execution Engine | 204

 //---

 // This must be a JITed/managed native method. There is no explicit

 // frame.

 //---

 pEEJM->JitCodeToMethodInfo((BYTE*)GetControlPC(cf.pRD),

 &(cf.pFunc),

 &(cf.methodToken),

 (DWORD*)&(cf.relOffset),

 fJitManagerScanFlags);

 EECodeInfo codeInfo(cf.methodToken, pEEJM, cf.pFunc);

 LPVOID methodInfo = pEEJM->GetGCInfo(cf.methodToken);

 GSCookie * pGSCookie = (GSCookie*)cf.codeMgrInstance->GetGSCookieAddr(

 cf.pRD,

 methodInfo,

 &codeInfo,

 cf.relOffset,

 &cf.codeManState);

 if (pGSCookie)

 cf.SetCurGSCookie(pGSCookie);

While the CrawlFrame is iterating through a segment of managed code, the execution engine uses the JIT

manager to turn the address of the code into a method token and an offset. The token is then used to extract

information about the JIT-compiled code and place it into the CrawlFrame, where it can be used by the

callback function. After setting up the CrawlFrame, the callback function is called with the

CrawlFrame as an argument, as well as its multipurpose data argument pData, through which frame-

specific data can be returned. When the callback returns, it has the option of terminating the stackwalk,

which has the effect of unwinding the stack.

We will skip rest of this long function for now. It continues with special-case handling and exception-

handling details that we will see later in this chapter.

Stackwalking Example: Enforcing Code Access Security

The SSCLI‘s Code Access Security (CAS) implementation is a good example of a control mechanism that

uses stackwalking. As we saw in Chapter 4, it is aimed at providing a component-oriented style of security.

It relies on the execution engine to assert and enforce policy in the face of evidence and permissions, based

on component demands and behavior.

No single component is responsible for identifying whether a particular permission check succeeds or fails.

Instead, all of the components cooperate in such a way that each contributes what it knows (its own

evidence and annotations) to the broader context, from which the all-encompassing security engine can

draw conclusions. The execution stack provides a wonderful mechanism for both collecting this data and

enforcing its use, since context is nested on the stack as components call each other, and the stack is what

these components rely on for communication. By intervening in method call processing, the security engine

can ensure that a component has permission to do the things that it is attempting to do. And a stackwalk, of

course, is the mechanism that the security engine will use during this intervention to check permission

grants against permissions that are being demanded.

Permission demands propagate up the stack. When a method call demands a particular type of permission,

the security engine must affirm that every component on the stack (prior to the point of the permission

demand) has appropriate permissions. If any component does not, the permission demand fails and an

exception is thrown to signify this failure. Each frame of the stack can modify the effective set of

permissions by calling Assert, Deny, or PermitOnly before making calls, and there are also calls to

Chapter 8: Regulating the Execution Engine | 205

Revert changes made earlier. Taken together, this mechanism results in aggregate behavior that is

constrained by the least privileged component that is participating in a given stack region.

The initial set of permission grants for a stack comes from the application domain that is current when the

stack is created, which allows programmers to control security at application domain granularity, which can

be very useful. At every frame in the stack where execution shifts from one application domain to another

(called a ContextTransition frame), the effective permissions change.

A component‘s own permission grants, which were loaded as part of the component-loading process

described in Chapter 4, are added to the aggregate context as needed. The activation record for every JIT-

compiled method call on the stack contains a spot for a security object, which is used to check permissions

as the stack is walked. These security objects are created only when needed; if a method makes no changes

and doesn‘t need the services of the security engine, it remains uninstantiated and appears in the stack as a

null reference.

As you might well imagine, a complete stackwalk can be an extremely time-consuming and expensive

operation, particularly when you stop to consider the frequency in which security checks are called for in

the CLI framework code. In today‘s security-conscious environment, programmers are encouraged to pay

more attention to security. Since the CLI was designed from the ground up with modern security

requirements in mind, many of its libraries and supporting code rely on security checks. As a practical

result, security stackwalks can take a significant amount of time in a managed program, and programmers

may find themselves caught in the familiar conundrum of sacrificing performance for the sake of secure

operations.

This situation gets even more interesting when you consider interthread dependencies. A thread spawned

within the CLI for use by managed code must not only track its own security information, but must also be

annotated with the security information of the thread that spawned it. The reason for this is fairly simple

and can be illustrated with an example: consider an assembly that wishes to delete a file on the local hard

drive. It is easy to check and enforce permissions for this assembly using a stackwalk, but what if the

assembly had spun off a thread to perform the delete? The security manager must somehow associate the

entire security context that is in effect when the new thread is created with this thread. Not only will a

security check on the new thread need to walk its own stack, but it will also need to check the stack of the

thread that spawned it.

This is implemented in the SSCLI in a way that satisfies both security and performance requirements.

When performing a security stackwalk, it is often the case that only a few of the total number of frames

contain information that is actually relevant to the security context. In addition, although activation frames

are the structure used to gather the relevant context, the evidence and permissions that make up this context

can be cached since they take the form of immutable data. The SSCLI uses a data structure called a

CompressedStackObject to cache the relevant security information obtained from a stackwalk

whenever it needs to store this data for calls that cross thread boundaries or calls that are deferred as

delegates. CompressedStackObject is defined in clr/src/vm/Object.h and is obtained via a static call

to the GetCSFromContextTransitionFrame method on the Security class, defined in

clr/src/vm/security.h.

Threading and Concurrency

Reading to this point in this chapter, one might think that threads serve as little more than a place to do

frame bookkeeping. While this aspect of threads is certainly important, the primary role of threads has

always been to organize programming tasks into understandable units of concurrency and synchronization.

We will now turn our attention to this more familiar facet of threading, and examine how programmers can

use managed threads to build concurrent applications.

Threads are the primary abstraction for execution and concurrency in the CLI. Because the CLI includes

support for concurrent execution, it must also allow independently executing parts of a program to

communicate and to synchronize their state, as well as provide programmers with the ability to impact the

scheduling of concurrent activity.

Chapter 8: Regulating the Execution Engine | 206

The execution engine provides mechanisms for all of these:

 Programmers can communicate between component references that have been marshaled between

threads using method calls.

 Programmers can synchronize access to instance and static methods, instance fields, and arbitrary

regions of their components, either automatically or manually.

 Programmers can control thread scheduling by manipulating instances of the Thread component or

by using the CLI threadpool, which is an efficient runtime service that simplifies worker thread

creation and scheduling.

We will visit each of these mechanisms in turn; but first, we will examine how managed threads are

implemented.

Managing Threads

Managed code offers several distinct ways for programmers to use threads, which we will cover in detail in

the next few sections. All of these techniques use the Thread type to access the execution state of their

managed threads. The Thread type provides a number of properties and methods, and is built as a hybrid

component; it is exposed and used as a managed component, but much of its implementation is actually

written in C++ and is internal to the execution engine. This is done by marking methods that are

implemented natively with the MethodImplOptions.InternalCall method attribute and by using

the FCall calling convention described in Chapter 5. The C++ class used to represent managed instances

can be found in sscli20/clr/src/vm/comsynchronizable.cpp.

We‘ve already seen an incoming PAL thread being ―taken over‖ by the execution engine in

SetupThread, but threads can also be created directly from managed code. In this case, programmers

create a Thread and pass it a ThreadStart delegate via the constructor. Execution can be started at any

point after this by calling the Start method of the Thread.

Here is what the managed thread constructor, found in thread.cs in the sscli20/clr/src/bcl/system/threading

directory, looks like:

 public Thread(ThreadStart start) {

 if (start == null) {

 throw new ArgumentNullException("start");

 }

 SetStartHelper((Delegate)start,0); //0 will setup Thread with default

stackSize

 }

Recall that ThreadStart is a delegate type (also declared in thread.cs) used to indicate the method that

the new Thread should execute. This delegate is passed to SetStartHelper, which calls the internal

method SetStart, whose C# representation is:

 [MethodImplAttribute(MethodImplOptions.InternalCall)]

 private extern void SetStart(ThreadStart start, int maxStackSize);

The InternalCall attribute causes any calls on this method to become calls on the corresponding

native FCall method in comsynchronizable.cpp :

void ThreadNative::SetStart(ThreadBaseObject* pThisUNSAFE, Object* pDelegateUNSAFE,

 INT32 iRequestedStackSize)

{

 THREADBASEREF pThis = (THREADBASEREF) pThisUNSAFE;

 OBJECTREF pDelegate = (OBJECTREF) pDelegateUNSAFE;

 HELPER_METHOD_FRAME_BEGIN_2(pThis, pDelegate);

Chapter 8: Regulating the Execution Engine | 207

 if (pThis->m_InternalThread == NULL) {

 // If we don't have an internal Thread object associated with this

 // exposed object, now is our first opportunity to create one.

 Thread *unstarted = SetupUnstartedThread();

 pThis->SetInternal(unstarted);

 unstarted->SetExposedObject(pThis);

 }

 // Save the delegate used as starter

 pThis->SetDelegate(pDelegate);

 HELPER_METHOD_FRAME_END();

}

Note the use of a helper frame in this function. The HELPER_METHOD_FRAME_BEGIN_2 wraps around

a HelperMethodFrame, which in turn registers two object references (pThis and pDelegate, in the

previous example) with the garbage collector. Assuming that the thread is new and has no internal thread,

the next call is to SetupUnstartedThread, which can be found in threads.cpp:

 Thread* SetupUnstartedThread()

 {

 Thread* pThread = new Thread();

 if (pThread) {

 FastInterlockOr((ULONG *) &pThread->m_State,

 (Thread::TS_Unstarted | Thread::TS_WeOwn));

 ThreadStore::AddThread(pThread);

 }

 return pThread;

 }

You can see that care needs to be taken with synchronized access to variables. Also, this is the point at

which an internal thread is created and placed into the ThreadStore. The managed thread now has one

CLI object instance and two native instances behind it (the CLI Thread instance, the execution engine‘s

C++ Thread, and the entity behind the PAL HANDLE) and is ready to roll.

Thread states

Once a thread is running, its execution can be started and stopped in several ways. Programmers can use

the Sleep method directly to yield control momentarily (by yielding its current timeslice) or pause for a

minimum amount of time (after which it will be rescheduled). Programmers can also call Suspend, which

has the effect of blocking execution of the target thread until Resume is called, or SpinWait, which kills

time without yielding control. Finally, a programmer can call Abort, which will cause a

ThreadAbortException to be thrown. (This exception may cause the underlying PAL thread to be

killed, associated resources to be released, and the Thread instance to be dissociated from the execution

engine. The Thread may also survive this exception, however, if it is caught, or if the thread is a worker

in a ThreadPool.)

A thread moves through a definitive lifecycle: it is born, it can be paused and resumed, and it will

eventually die, either of natural causes (it returns from the ThreadStart delegate passed to it) or by

outright murder (Abort). Managed threads have a read-only property named ThreadState that reflects

their current states; for example, newly created threads are initially in the Unstarted state and remain in

this state until a transition is initiated by a call to Thread.Start. Likewise, external threads that wander

into the execution engine are already in the Running state.

When viewed from the perspective of a Thread instance, state transitions seem orderly and

straightforward. Once running, there are a number of actions that can cause the thread to change states, and

these trigger conditions are uncomplicated. Viewed from the execution engine, however, a thread‘s

lifecycle is anything but simple. Since a thread‘s execution state transitions must be coordinated for

Chapter 8: Regulating the Execution Engine | 208

concurrent use by both unmanaged and managed code, these state transitions must be carefully navigated to

preserve the integrity of the execution engine. Because of the complexity that this incurs, the internal

representation of state uses a bit mask, shown in Example 8-5, rather than an enumerated value to maintain

current state. As you can infer from the structure of this masked value, the transitions visible to managed

code are considerably simplified.

An example helps show how something that looks simple in managed code can be quite complex beneath

the surface. It also helps show how the three elements of execution engine frames, managed threads, and

exceptions are tied together. In the CLI, the Thread type supports a number of methods that can be used

to control thread lifetimes and scheduling. One of these methods is Abort, which causes the special

ThreadAbortException to be raised on any thread on which it is called. This exception will kill the

thread, except when the thread has an exception handler in place to catch it, in which case ResetAbort

can be called from within this handler to keep the thread alive, or if the ThreadAbortException is

propagated beyond the last managed handler on the stack and into unmanaged code, in which case an

implicit ResetAbort occurs. Handling a ThreadAbortException is demonstrated in the simple

program shown in Example 8-4.

Example 8-4. Threads can be scheduled and manipulated from managed code

using System;

using System.Threading;

public class WorkerClass

{

 public static void StartMethod()

 {

backToStart:

 try

 {

 for(int i=0; i<10; i++)

 {

 Console.WriteLine("Worker state: {0}.", Thread.CurrentThread.ThreadState);

 Thread.Sleep(100);

 }

 Console.WriteLine("OK, worker finished.");

 return;

 }

 catch(ThreadAbortException e)

 {

 Console.WriteLine("Worker caught ThreadAbortException.");

 Console.WriteLine(" Worker state: {0}.", Thread.CurrentThread.ThreadState);

 Console.WriteLine(" Exception message: {0}", e.Message);

 Thread.Sleep(1000);

 Thread.ResetAbort();

 }

 Console.WriteLine("Worker not dead yet.");

 Console.WriteLine("Worker state after reset: {0}.",

 Thread.CurrentThread.ThreadState);

 // how's this? seen a goto lately?

 goto backToStart;

 }

}

class ThreadAbortExample

{

 public static void Main()

 {

 ThreadStart td = new ThreadStart(WorkerClass.StartMethod);

 Thread worker = new Thread(td);

 worker.Start();

 Thread.Sleep(100);

Chapter 8: Regulating the Execution Engine | 209

 Console.WriteLine("Main thread aborting worker.");

 worker.Abort();

 worker.Join();

 Console.WriteLine("Main done.");

 }

}

When the program in Example 8-4 is run, the main thread attempts to kill its worker, but the worker is both

tireless and prepared, having put an exception handler in place that calls ResetAbort. The Main method

of ThreadAbortExample creates and starts a new worker Thread. This Thread goes into a simple

loop, writing out its thread state during each iteration and then sleeping. Meanwhile, the Main method

continues by sleeping for a brief period and then calling Abort on the worker, followed directly by Join.

Since the worker has an exception handler in place for the ThreadAbortException caused by the call

to Abort, and since it is running at a high enough permission level to reset rather than die, the worker calls

ResetAbort and then runs to completion.

At the point at which Main calls Abort, the worker thread is really in more than one internal state; it is

likely to be blocked on a call to Sleep when the other thread calls Abort, and so from the perspective of

its two threads, it is in both the WaitSleepJoin and the AbortRequested states at the same time.

When the thread receives the ThreadAbortException, this dichotomy will be resolved, but until this

point, the thread‘s state must be carefully maintained. As we will see, the maintenance involved is a

nontrivial task that falls to the execution engine. One of the primary design goals for the CLI is to hide

complexity, such as these transitional states from higher-level managed code, when possible. Example 8-5

shows the flags used to coordinate transitions.

Example 8-5. Combining flags to represent thread execution state

enum ThreadState

{

 TS_Unknown = 0x00000000, // threads are initialized this way

 TS_AbortRequested = 0x00000001, // Abort the thread

 TS_GCSuspendPending = 0x00000002, // waiting to get to safe spot for GC

 TS_UserSuspendPending = 0x00000004, // user suspension at next

opportunity

 TS_DebugSuspendPending = 0x00000008, // Is the debugger suspending

threads?

 TS_GCOnTransitions = 0x00000010, // Force a GC on stub transitions

(GCStress only)

 TS_LegalToJoin = 0x00000020, // Is it now legal to attempt a

Join()

 TS_YieldRequested = 0x00000040, // The task should yield

 TS_BlockGCForSO = 0x00000100, // If a thread does not have enough

stack, WaitUntilGCComplete may fail.

 // Either GC suspension will wait

until the thread has cleared this bit,

 // Or the current thread is going to

spin if GC has suspended all threads.

 TS_Background = 0x00000200, // Thread is a background thread

 TS_Unstarted = 0x00000400, // Thread has never been started

 TS_Dead = 0x00000800, // Thread is dead

 TS_WeOwn = 0x00001000, // Exposed object initiated this

thread

 // Some bits that only have meaning for reporting the state to clients.

 TS_ReportDead = 0x00010000, // in WaitForOtherThreads()

Chapter 8: Regulating the Execution Engine | 210

 TS_TaskReset = 0x00040000, // The task is reset

 TS_SyncSuspended = 0x00080000, // Suspended via WaitSuspendEvent

 TS_DebugWillSync = 0x00100000, // Debugger will wait for this thread

to sync

 TS_StackCrawlNeeded = 0x00200000, // A stackcrawl is needed on this

thread, such as for thread abort

 // See comment for

s_pWaitForStackCrawlEvent for reason.

 TS_SuspendUnstarted = 0x00400000, // latch a user suspension on an

unstarted thread

 TS_ThreadPoolThread = 0x00800000, // is this a threadpool thread?

 TS_TPWorkerThread = 0x01000000, // is this a threadpool worker

thread?

 TS_Interruptible = 0x02000000, // sitting in a Sleep(), Wait(),

Join()

 TS_Interrupted = 0x04000000, // was awakened by an interrupt APC.

!!! This can be moved to TSNC

 TS_CompletionPortThread = 0x08000000, // Completion port thread

 TS_AbortInitiated = 0x10000000, // set when abort is begun

 TS_Finalized = 0x20000000, // The associated managed Thread

object has been finalized.

 // We can clean up the unmanaged part

now.

 TS_FailStarted = 0x40000000, // The thread fails during startup.

 TS_Detached = 0x80000000, // Thread was detached by DllMain

 // We require (and assert) that the following bits are less than 0x100.

 TS_CatchAtSafePoint = (TS_UserSuspendPending | TS_AbortRequested |

 TS_GCSuspendPending | TS_DebugSuspendPending |

TS_GCOnTransitions | TS_YieldRequested),

};

In our example, Sleep causes the thread to yield immediately, using the threading facilities of the PAL.

This puts it into the TS_Interruptible state. (Suspend has an interesting difference: the execution

engine will mark the thread as TS_UserSuspendPending, and bring the thread to a ―safe place‖ before

halting its execution and placing it into a blocked state by changing to TS_SyncSuspended.) When

Abort is called by the main thread (assuming that the worker is sleeping), an exception is thrown. Because

aborting a thread is an exceptional activity that should be undertaken only when normal scheduling

solutions are unusable, design tradeoffs have been applied. The codepath is longer and less direct, since it is

seldom exercised, and the logic involves careful audit and cleanup of internal structures, since it is meant to

work in unanticipated and tenuous situations.

The execution engine first requires that any caller that wishes to call the Abort method have appropriate

security permission; it does this by placing SecurityPermissionAttribute on the method

declaration for Abort. This can be seen in the declaration in clr/src/bcl/system/threading/thread.cs, as

shown in Example 8-6.

Example 8-6. The Abort method is protected using declarative security

[SecurityPermissionAttribute(SecurityAction.Demand, ControlThread=true)]

public void Abort() { AbortInternal(); }

Chapter 8: Regulating the Execution Engine | 211

This declarative demand for a permission check ensures that Abort will be called only if the current

security context has the ControlThread permission. The JIT compiler will place a call to the security

engine into the code that it produces to check this demand at runtime.

AbortInternal uses an FCall to call into the native implementation, ThreadNative::Abort. This

function is shown in Example 8-7.

Example 8-7. The Abort method is actually implemented as an FCall (defined in

clr/src/vm/comsynchronizable.cpp)

FCIMPL1(void, ThreadNative::Abort, ThreadBaseObject* pThis)

{

 THROWSCOMPLUSEXCEPTION();

 if (pThis == NULL)

 FCThrowVoid(kNullReferenceException);

 THREADBASEREF thisRef(pThis);

 HELPER_METHOD_FRAME_BEGIN_1(thisRef);

 Thread *thread = thisRef->GetInternal();

 if (thread == NULL)

 COMPlusThrow(kThreadStateException, IDS_EE_THREAD_CANNOT_GET);

 thread->UserAbort(thisRef);

 HELPER_METHOD_FRAME_END_POLL();

}

FCIMPLEND

For the first time in this book, we‘ve left all of the ugly SSCLI-specific macros in place in this example.

We now have enough information about execution engine internals to talk about what they do, and you

should be aware of what the code in the distribution actually looks like. These macros are commonplace in

the SSCLI code, and you should expect to encounter them routinely. They track various kinds of state on

behalf of the execution engine. The first shown here, FCIMPL1, is one of a series of macros used to declare

FCalls. It declares that ThreadNative::Abort is an FCall that returns a void and has a single

argument, which is a ThreadBaseObject*. After this, THROWSCOMPLUSEXCEPTION is a declaration

that indicates that the function may throw a managed exception (and indeed, from what we know about

Abort, its main job in this case is to throw an exception, although usually from a different thread).

THREADBASEREF is simply a typedef for a ThreadBaseObject* and will be used to obtain a pointer

to the internal thread. HELPER_METHOD_FRAME_BEGIN_1 causes a helper frame to be created for the

FCall. (The matching macro at the end of the function causes it to be popped before the function returns.

Remember that a helper frame marks FCalls so that they will be visible during a managed stackwalk.)

Finally, the real work begins with the call to UserAbort. As we break it down in Example 8-8, notice

that the entirety of this large method is dedicated to coordinating a graceful state machine transition.

Example 8-8. The beginning of the internal method that implements Thread::Abort (defined in

clr/src/vm/threads.cpp)

class CheckForAbort

{

private:

 Thread *m_pThread;

 BOOL m_fHoldingThreadStoreLock;

 BOOL m_NeedRelease;

public:

 CheckForAbort(Thread *pThread, BOOL fHoldingThreadStoreLock)

 : m_pThread(pThread),

 m_fHoldingThreadStoreLock(fHoldingThreadStoreLock),

 m_NeedRelease(TRUE)

 {

 if (!fHoldingThreadStoreLock)

 {

Chapter 8: Regulating the Execution Engine | 212

 ThreadStore::LockThreadStore(GCHeap::SUSPEND_OTHER);

 }

 ThreadStore::ResetStackCrawlEvent();

 // The thread being aborted may clear the TS_AbortRequested bit and the

matching increment

 // of g_TrapReturningThreads behind our back. Increment

g_TrapReturningThreads here to

 // ensure that we stop for the stack crawl even if the TS_AbortRequested bit

is cleared.

 ThreadStore::TrapReturningThreads(TRUE);

 }

 HRESULT

 Thread::UserAbort(ThreadAbortRequester requester,

 EEPolicy::ThreadAbortTypes abortType,

 DWORD timeout,

 UserAbort_Client client)

 {

 CheckForAbort checkForAbort(this, fHoldingThreadStoreLock);

 // ...

// continues after Example 8-9

Because the call to Thread::Abort could come as other threads are asking the thread to change its state,

while overall thread state is being manipulated or during exception processing, reentrancy protection is

necessary. However it is not sufficient to take a lock and exclude all other threads, because those threads

may have code running in an unmanaged section of the stack that is acting as part of the execution engine.

The important work of coordinating, for example, cannot be arbitrarily stopped. Because of this,

unmanaged code needs to run unimpeded, because it often holds locks or resources that are needed to

continue execution. This makes synchronization harder.

The call to ThreadStore::TrapReturningThreads, which requests that other managed-thread

activity be trapped during the processing of this method, shows a typical mechanism of the sort used by the

execution engine to maintain control in lieu of a simple lock. The global variable

g_TrapReturningThreads is set within this call to detect reentries into managed code by threads

currently executing unmanaged code. As threads reenter, they can be safely suspended using the same

mechanism that the garbage collector uses to suspend all managed threads. As we will see in Chapter 9, the

garbage collector uses code emitted by the JIT compiler to regularly check whether it needs to run. This

polling activity is used not only for GC activation, but also to rendezvous with thread state changes, such as

the Abort method through which we are browsing. In fact, a quick glance at CommonTripThread,

which is the function called during polling, reveals a call to HandleThreadAbort. Its implementation is

shown in Example 8-9.

Example 8-9. HandleThreadAbort is actually raises the ThreadAbortException

void Thread::HandleThreadAbort (BOOL fForce)

{

 if (IsAbortRequested() && GetAbortEndTime() < CLRGetTickCount64())

 {

 HandleThreadAbortTimeout();

 }

 if (fForce || ReadyForAbort())

 {

 ResetThreadState ((ThreadState)(TS_Interrupted | TS_Interruptible));

 // We are going to abort. Abort satisfies Thread.Interrupt requirement.

 FastInterlockExchange (&m_UserInterrupt, 0);

 // generate either a ThreadAbort exception

Chapter 8: Regulating the Execution Engine | 213

 if (!PreemptiveGCDisabled())

 {

 DisablePreemptiveGC();

 }

 if (!IsAbortInitiated() ||

 (IsRudeAbort() && !IsRudeAbortInitiated()))

 {

 PreWorkForThreadAbort();

 }

 PreparingAbortHolder paHolder;

 OBJECTREF exceptObj;

 if (IsRudeAbort())

 {

 exceptObj = CLRException::GetPreallocatedRudeThreadAbortException();

 }

 else

 {

 EEException eeExcept(kThreadAbortException);

 exceptObj = CLRException::GetThrowableFromException(&eeExcept);

 }

 RaiseTheExceptionInternalOnly(exceptObj, FALSE);

 }

}

The ThreadAbortException that is thrown at the end of the HandleThreadAbort function does

the dirty work of polishing off the thread (unless it is caught). As we will see later in this chapter, this is a

special type of exception that is used to kill threads. In order for it to be raised during a poll, no exception

can be in progress, and the thread state has to be set to TS_AbortRequested. Let‘s return to tracing

through the UserAbort method to understand how TS_AbortRequested is set, as shown in Example

8-10.

Example 8-10. Initiating the abort sequence

 MarkThreadForAbort(requester, abortType);

 Thread *pCurThread = GetThread();

 // If aboring self

 if (this == pCurThread)

 {

 SetAbortInitiated();

 if (CLRHosted() && GetAbortEndTime() != MAXULONGLONG)

 {

 AppDomain::EnableADUnloadWorkerForThreadAbort();

 }

 GCX_COOP();

 OBJECTREF exceptObj;

 if (IsRudeAbort())

 {

 exceptObj = CLRException::GetPreallocatedRudeThreadAbortException();

 }

 else

 {

Chapter 8: Regulating the Execution Engine | 214

 EEException eeExcept(kThreadAbortException);

 exceptObj = CLRException::GetThrowableFromException(&eeExcept);

 }

 RaiseTheExceptionInternalOnly(exceptObj, FALSE);

 }

The call to MarkThreadForAbort both sets the thread state to TS_AbortRequested and checks to

see whether it has already been set. If it has, there is nothing more to do but wait for a poll to happen and

the exception to be thrown. If it has not been set, but the calling thread is simply trying to abort itself, then

the simplest thing to do is throw ThreadAbortException directly.

This fast-track approach works because the exception is being thrown on the thread‘s own stack. There is

no need to wait for a poll; the suicide can be accomplished cleanly and efficiently. If the abort is being

initiated from a different thread, however, things get more complex. First, the state is set to

TS_StopRequested, which will cause the target thread to be stopped at the first opportunity; the CLI

specifies that a thread being aborted will be in a Stopped state and can be resurrected from within an

exception handler. After this housekeeping is done, the loop is begun, as shown in Example 8-11.

Example 8-11. Synchronization converges within a loop

 for (;;) {

 // Lock the thread store

 LOG((LF_SYNC, INFO3, "UserAbort obtain lock\n"));

 // ...

 CheckForAbort checkForAbort(this, fHoldingThreadStoreLock);

 // We own TS lock. The state of the Thread can not be changed.

 if (m_State & TS_Unstarted)

 {

 // This thread is not yet started.

 return S_OK;

 }

 if (GetThreadHandle() == INVALID_HANDLE_VALUE &&

 (m_State & TS_Unstarted) == 0)

 {

 // The thread is going to die or is already dead.

 UnmarkThreadForAbort(Thread::TAR_ALL);

 return S_OK;

 }

 // What if someone else has this thread suspended already? It'll depend

where the

 // thread got suspended.

 //

 // User Suspend:

 // We'll just set the abort bit and hope for the best on the resume.

 //

 // GC Suspend:

 // If it's suspended in jitted code, we'll hijack the IP.

 // If it's suspended but not in jitted code, we'll get suspended for GC,

the GC

 // will complete, and then we'll abort the target thread.

 //

 // It's possible that the thread has completed the abort already.

 //

 if (!(m_State & TS_AbortRequested))

 {

 return S_OK;

Chapter 8: Regulating the Execution Engine | 215

 }

 // If a thread is Dead or Detached, abort is a NOP.

 //

 if (m_State & (TS_Dead | TS_Detached | TS_TaskReset))

 {

 UnmarkThreadForAbort(Thread::TAR_ALL);

 return S_OK;

 }

 // Still in for loop at this point

The first thing to be done is to take the lock on the ThreadStore so that only one coordination operation

will occur at any time, and races will be avoided. This is followed by a logging call for thread debugging.

LOG is a common macro within SSCLI code; it results in a log record being produced, but only when the

appropriate build switches and runtime flags have been set by the programmer. In a production

environment, LOG is equivalent to a no-op, and does not impact performance.

Each of the conditional statements within this long loop tests for various combinations of state. Because

threads are a constantly-moving target, there is always the possibility that the target thread is in a condition

that is unsafe to abort. (Remember, code in other threads might be waiting for or holding locks, or

consuming resources related to the thread being aborted in other ways. The execution engine must

anticipate these dependencies.) This loop is executed until a ―safe place‖ is found to kill the target thread.

The first thing that needs to be done before proceeding is to obtain the handle to the underlying PAL thread

for the target. If this handle is set to INVALID_HANDLE_VALUE, which signals a problem, then either the

managed thread does not yet have a PAL thread associated with it or it has died. In either case, there is

nothing else to do, and the loop can be skipped.

Next, the underlying thread is suspended, as shown in Example 8-12.

Example 8-12. Suspend the underlying thread

 // Win32 suspend the thread, so it isn't moving under us.

 SuspendThreadResult str = SuspendThread();

 switch (str)

 {

 case STR_Success:

 break;

 case STR_Failure:

 case STR_UnstartedOrDead:

 case STR_NoStressLog:

 checkForAbort.Release();

 __SwitchToThread(0);

 continue;

 case STR_SwitchedOut:

 // If the thread is in preemptive gc mode, we can erect a barrier to block

the

 // thread to return to cooperative mode. Then we can do stack crawl and

make decision.

 if (!m_fPreemptiveGCDisabled)

 {

 checkForAbort.NeedStackCrawl();

 if (GetThreadHandle() != SWITCHOUT_HANDLE_VALUE ||

m_fPreemptiveGCDisabled)

 {

 checkForAbort.Release();

 __SwitchToThread(0);

 continue;

 }

 else

Chapter 8: Regulating the Execution Engine | 216

 {

 goto LStackCrawl;

 }

 }

 else

 {

 goto LPrepareRetry;

 }

 default:

 UNREACHABLE();

 }

 // Check whether some stub noticed the AbortRequested bit in-between our test

above

 // and us suspending the thread.

 if ((m_State & TS_AbortInitiated) && !IsRudeAbort())

 {

 ResumeThread();

 break;

 }

 if (!(m_State & (TS_Dead

 | TS_Detached

 | TS_Unstarted)));

 {

 ResumeThread();

 return S_OK;

 }

 // Still in for loop at this point

If the thread has an AbortInitiated or a Dead or Detached state, the thread can be resumed, to run

until its suicide. Likewise, even a thread that is unstarted may be aborted; suicide in this case will be the

thread‘s first and only act. When Start is called, the pending abort will happen.

As shown in Example 8-13, the next conditional is more interesting, because a thread that has been

suspended by managed code cannot be aborted without making sure that it drops its locks.

Example 8-13. Drop a thread’s locks

 if (m_State & TS_SyncSuspended)

 {

 ResumeThread();

 checkForAbort.Release();

 // If it's stopped by the debugger, we don't want to throw an exception.

 // Debugger suspension is to have no effect of the runtime behaviour.

 //

 if (m_State & TS_DebugSuspendPending)

 {

 return S_OK;

 }

 COMPlusThrow(kThreadStateException, IDS_EE_THREAD_ABORT_WHILE_SUSPEND);

 }

 // Still in for loop at this point

// for clarity, CheckForAbort.Release looksl like this:

//

class CheckForAbort

{

Chapter 8: Regulating the Execution Engine | 217

 void Release()

 {

 if (m_NeedRelease)

 {

 m_NeedRelease = FALSE;

 ThreadStore::TrapReturningThreads(FALSE);

 ThreadStore::SetStackCrawlEvent();

 m_pThread->ResetThreadState(TS_StackCrawlNeeded);

 if (!m_fHoldingThreadStoreLock)

 {

 ThreadStore::UnlockThreadStore();

 }

 }

 }

}

The presence of TS_SyncSuspended means that the thread is waiting for a synchronized resource, and

this is why the ThreadStore must be unlocked before the special exception can be thrown.

The SSCLI doesn‘t cover all possible state changes. Note in this example that suspended

threads cannot be cleanly aborted (which is a well-known limitation of the current

implementation). This is likely to be fixed in the future.

After this come a series of cases, as shown in Example 8-14.

Example 8-14. Look for special case states

 if ((m_pFrame == FRAME_TOP)

 && (GetFirstCOMPlusSEHRecord(this) == EXCEPTION_CHAIN_END)

)

 {

 ResumeThread();

 return S_OK;

 }

 if (!m_fPreemptiveGCDisabled)

 {

 if ((m_pFrame != FRAME_TOP) && m_pFrame->IsTransitionToNativeFrame()

 {

 fOutOfRuntime = TRUE;

 }

 }

 checkForAbort.NeedStackCrawl();

 if (!m_fPreemptiveGCDisabled)

 {

 fNeedStackCrawl = TRUE;

 }

 // The thread is not suspended now.

 ResumeThread();

 // !!! Check for Exception in flight should happen before induced thread abort.

 // !!! ReadyForAbort skips catch and filter clause.

 // If an exception is currently being thrown, one of two things will happen.

Either, we'll

 // catch, and notice the abort request in our end-catch, or we'll not catch [in

which case

 // we're leaving managed code anyway. The top-most handler is responsible for

resetting

Chapter 8: Regulating the Execution Engine | 218

 // the bit.

 //

 if (HasException() &&

 // For rude abort, we will initiated abort

 !IsRudeAbort())

 {

 break;

 }

 // If the thread is in sleep, wait, or join interrupt it

 // However, we do NOT want to interrupt if the thread is already processing an

exception

 if (m_State & TS_Interruptible)

 {

 UserInterrupt(TI_Abort); // if the user wakes up because of this, it

will read the

 // abort requested bit and initiate the

abort

 }

 // Still in for loop at this point

The first conditional checks to see whether someone is trying to abort a thread that has no managed code in

it. This is checked by looking for a special exception frame that is used only around managed code. If it is

not present, all of the state flags are reset, and the thread is resumed. This is followed by a check to see

whether an exception is in progress. If it is, the thread is resumed so that the exception handlers can be

invoked. If the thread is blocked in a wait operation, it is interrupted so that next time around the loop, the

right thing can happen.

If unmanaged code is running (which is checked by examining the garbage collector mode), and there is an

execution engine frame in place that signals that a stub exists to capture reentry, the thread is resumed.

Once the stub code is run, the polling function that we saw in Example 8-9 will cause exception handling to

commence.

Finally, the end of the loop is reached. At this point, the PAL thread is resumed and the ThreadStore is

unlocked to allow access before another iteration occurs, as shown in Example 8-15.

Example 8-15. How to finish loop iteration

 checkForAbort.Release();

 } // End of the for(;;) loop

}

If you haven‘t handled the call by this point, it means that the thread is in a position where you can‘t really

do anything to it. It is most likely running within execution engine code (for example, within an FCall or a

stub), and you just need to loop around until the thread comes back to a point where you can deal with it.

Of course, in order for a polling strategy like this to work, the execution engine‘s internal code must be

crafted to avoid monopolizing the thread‘s timeslice while running.

As promised, this is a pretty hefty chunk of code. Similar code exists for suspending and resuming threads;

it is a very typical example of coordination-type routines. They are complex because they need to handle

every possible state transition and permit code to continue its execution while carefully avoiding race

conditions.

Scheduling Execution Using the Threadpool

While it is possible to use the methods of either the managed or unmanaged thread object to manually

create, manipulate, and destroy threads, the CLI also includes a pooling mechanism that not only makes

concurrent operations much simpler, but in many cases also improves efficiency. Besides being available

Chapter 8: Regulating the Execution Engine | 219

for general-purpose programming use, this thread pool is used internally by the SSCLI in the following

implementations:

 Timer callbacks

 Remoting channels

 Lease management

 Security policy

 The Context type

Threads that spend a great deal of time waiting for an event to occur or for periodic polls in which they

update state are candidates for thread pool use. Pooling enables applications to share worker threads that

are managed by the execution engine. A single thread monitors the status of all wait operations queued to

the thread pool, and when conditions change, dispatches a worker thread from the pool (using the correct

application domain) to execute a stored callback function.

There is a single managed thread pool per process, and the Base Class Library (BCL)

System.Threading.ThreadPool class is used to mediate access to it. Using the thread pool, you

can post work items using either QueueUserWorkItem from managed code or

CorQueueUserWorkItem from unmanaged code in the execution engine. These functions use delegates

in the managed case (and callbacks in the unmanaged case) that are called by a thread selected and

scheduled by the thread pool. The snippet in Example 8-16 demonstrates how to queue up a thread pool

task from within managed code.

Example 8-16. Using the ThreadPool

using System;

using System.Threading;

class ThreadPoolExample {

 static void Main(string[] args)

 {

 ThreadPool.QueueUserWorkItem(new WaitCallback(Foo));

 Thread.Sleep(5 * 1000); // sleep for five seconds

 }

 static void Foo(object state)

 {

 Console.WriteLine("Inside Foo");

 }

}

As would be expected, this program writes "Inside Foo" to the console while the thread spun out from

Main blocks for five seconds.

The thread pool itself is created on the first call to QueueUserWorkItem, when a timer or other client

queues a callback function. The number of threads in the thread pool is based on a heuristic that takes into

account the number of CPUs, how many items are in the work item queue, and how many idle threads are

in the thread pool, although the number of threads that can ultimately be created is limited only by available

memory.

Most of the CLI‘s runtime services involve heuristics. You can study the heuristics that

thread pool logic uses to decide when to create a new thread and when to reduce the

number of threads that it contains by looking in clr/src/vm/win32threadpool.h and

clr/src/vm/win32threadpool.cpp. Certainly there is room for improvement; it is not too

hard to imagine some enterprising Computer Science student forming a thesis around

ways to adaptively decide how many threads should be alive here, for example. By doing

a little code base archeology, you can see that other approaches have already been tried in

Chapter 8: Regulating the Execution Engine | 220

the past. The execution engine provides many opportunities to tune heuristics or invent

new ones.

When the QueueUserWorkItem managed call is called, it eventually routes its way into

ThreadpoolMgr::QueueUserWorkItem, as shown in Example 8-17.

Example 8-17. QueueUserWorkItem dynamically creates worker threads as needed (defined in

clr/src/vm/win32threadpool.cpp)

BOOL ThreadpoolMgr::QueueUserWorkItem(LPTHREAD_START_ROUTINE Function,

 PVOID Context,

 DWORD Flags)

{

 EnsureInitialized();

 if (Flags == CALL_OR_QUEUE)

 {

 // we've been asked to call this directly if the thread pressure is not too

high

 int MinimumAvailableCPThreads = (NumberOfProcessors < 3) ? 3 :

NumberOfProcessors;

 // It would be nice to assert that this is a completion port thread, but

 // there is no easy way to do that.

 if ((MaxLimitTotalCPThreads - NumCPThreads) >= MinimumAvailableCPThreads)

 {

 ThreadLocaleHolder localeHolder;

 QueueUserWorkItemHelp(Function, Context);

 return TRUE;

 }

 }

 WorkRequest* workRequest = MakeWorkRequest(Function,Context);

 LONG lRequestsQueued = 0;

 if (workRequest)

 {

 // see if we need to grow the worker thread pool, but don't bother if GC is

in progress

 if (ShouldGrowWorkerThreadPool() &&

 !(GCHeap::IsGCInProgress(TRUE)

))

 {

 CrstHolder csh(&WorkerCriticalSection);

 if (ShouldGrowWorkerThreadPool())

 {

 if (NumRetiredWorkerThreads == 0)

 {

 CreateWorkerThread();

 }

 else

 shouldWakeupRetiredThread = TRUE;

 }

 }

 else

 {

 EnsureGateThreadCreated(GATE_THREAD_STATUS_NOWORKERTHREAD);

 MonitorWorkRequestsQueue = 1;

 }

 return (workRequest != NULL);

}

Chapter 8: Regulating the Execution Engine | 221

Essentially, ThreadpoolMgr consists of two parts: a list of enqueued work items to execute and a

collection of threads at which to throw these work items. The first call, EnsureInitialized, is simply

a check to an internal field to see if it‘s nonzero. If it isn‘t, you‘ve not yet initialized, and Initialize

needs to be called. After initialization is confirmed, QueueUserWorkItem consists of two steps:

1. First, the work request is placed into a queue using EnqueueWorkRequest.

2. Second, the function checks to see whether there needs to be a new thread to handle the queue.

The simple decision-making process is part of ShouldGrowWorkerThreadPool, as shown in

Example 8-18. (This is quite a bit different than Microsoft‘s commercial CLR, which uses a complex

heuristic.)

Example 8-18. The logic for creating new worker threads (defined in clr/src/vm/win32threadpool.cpp)

BOOL ThreadpoolMgr::ShouldGrowWorkerThreadPool()

{

 // we only want to grow the worker thread pool if there are less than n

 // threads, where n= no. of processors and more requests than the number

 // of idle threads and number of worker threads not at max ceiling

 return (NumWorkerThreads < MinLimitTotalWorkerThreads &&

 NumIdleWorkerThreads < NumQueuedWorkRequests &&

 (DWORD)NumWorkerThreads < MaxLimitTotalWorkerThreads);

} }

MaxLimitTotalWorkerThreads is simply a constant, defined in the Initialize method

mentioned earlier as NumberOfProcessors * MaxLimitCPThreadsPerCPU. This number is a

simple, but workable, way to decide whether to increase the size of the thread pool.

Synchronizing Concurrent Access to Components

The sharing of resources between components that are using multiple threads is notoriously difficult. It is a

subtle proposition to get right, and whole forests have been sacrificed to the topic. People continue to

investigate and experiment with new deadlock detection and avoidance algorithms.

Access to shared resources must always be synchronized or carefully coordinated in some manner.

Component programmers can use protection mechanisms that exist in the execution engine specifically for

this purpose, choosing to use its primitives manually, or else use higher-level constructs and leave the

details to the execution engine. Just as the thread pool makes working with threads easier for some

common cases, automatic features, such as synchronized regions of code and synchronized access to

component member types, can make programming easier and less bug-prone. As always, the tradeoff is one

of complexity and control.

When using execution engine primitives directly, implementers can use a broad palette of managed classes

that expose them, including the Interlocked type, the Monitor type, the ReaderWriterLock

type, and both the ManualResetEvent and AutoResetEvent types. In addition to these types,

WaitHandle is used to represent all synchronization objects in the runtime that allow multiple wait

semantics, such as mutex and event handles. WaitHandle encapsulates PAL synchronization handles and

uses the thread pool to make callbacks.

The CLI combines operating system synchronization with CLI-specific synchronization constructs (such as

the thread pool, which is a collection of threads that are available for communal use) into a single coherent

service for programmers. By default, both the instance and static members of a component are not

synchronized, and any thread can access any member at any time. Compilers, of course, can implement

whatever locking semantics their language requires with the aid of the execution engine primitives. The

CLI supports automatic use of syncblocks (locks associated with types) for both instances and classes; the

Chapter 8: Regulating the Execution Engine | 222

CLI will generate code to synchronize on the instance syncblock for instance methods (or on the class

syncblock for statics) if it finds the synchronized flag in their metadata.

CLI synchronization is interesting in its use of loosely associated instance data for storing syncblocks.

Syncblocks are exposed to the programmer via the managed Monitor object, and can be used to protect

global, static, and instance fields and/or methods. Monitors cannot be instantiated by themselves; they are

associated on-demand with object or class instances. They expose the ability to take and release the

syncblock lock on an object via the static methods Enter, TryEnter, and Exit. It is necessary to be in

a synchronized region on an object before calling Wait or Pulse on that object. Wait releases the lock

and waits to be notified, at which point it returns, having been granted the lock again. Pulse signals the

next thread in the wait queue to proceed.

In the syncblock, the monitor is implemented using the C++ class AwareLock, which can be found in

clr/src/vm/syncblk.h. As we saw in Chapter 5, each object has a syncblock index associated with it, which

begins empty, and is populated only when needed. When an instance is used as part of a synchronization

operation, a syncblock is retrieved from the syncblock cache, and it is associated with the object by

updating the index. Syncblocks themselves are sparsely allocated data structures, and when they are being

used for synchronization purposes, they will contain the AwareLock used to implement synchronized

methods and synchronized blocks of code, as well as a list of waiting threads for Monitor.Wait,

Monitor.Pulse, and Monitor.PulseAll.

On occasion, a programmer has to break a Thread out of a blocking operation, such as waiting for a

syncblock or Sleep call. To do this, Thread provides the Interrupt method, which essentially

releases the Thread out of the Wait without having acquired the syncblock.

Handling Component Exceptions

Microsoft‘s earlier component model, COM, used a fragile and failure-prone mechanism for dealing with

violations of component contracts. Most component methods in COM returned an integer status code called

an HRESULT. (Why HRESULT? Originally, it was designed to be a handle to a result and only late in the

game was its definition simplified.) When COM components are deeply nested, they are supposed to check

the HRESULT being returned by their subordinate components and pass errors up the stack either directly

or by mapping them into new HRESULTs. As might well be imagined, this discipline is tedious, error-

prone, and leads to numerous problems, including inconsistent or erroneous HRESULT checking and

bloated code. It also results in lost error information, which makes debugging harder.

From the perspective of the designers of the CLI component model, structured exception handling (SEH)

seemed to be at least a partial answer to many of these problems. SEH is familiar to programmers from

languages such as Java and C++; what is less known is that it is also a standard part of Windows systems

programming. It provides two very important capabilities for components: the ability to always execute

local cleanup code declared within a finally block, and the ability to alert components further up the

food chain about violations of behavioral contracts (whether malicious or innocent), providing those

components with the opportunity to recover without necessitating cooperative error-passing. SEH provides

a level playing field for components, as well as an opportunity for arms-length cooperation. Exception

handling is an easier and safer alternative to HRESULTs. It can also be more efficient than HRESULTs

when it is used for exceptional cases only, guaranteeing that the exception path is rarely followed.

One of the strengths of HRESULTs was that their DWORD values needed neither allocation nor cleanup after

use; the discipline for creating and destroying HRESULTs was simple and fast, and resulted in good

interoperability between languages. In addition, DWORD values can easily be sent between processes or

machines, and because of this, HRESULTs worked well for remoting operations across processes or

machines. Because the CLI provides support for garbage collection, serialization, and is designed to be

language-agnostic from the ground up, both of these original design points look dated. The CLI uses full-

fledged objects rather than DWORDs as its error indicators, and instantiation and cleanup are dealt with

inside the execution engine. A reference type, System.Exception, is used as the basis for C#

exceptions, but any object can be thrown by languages that do not wish to conform to the CTS. (Of course,

Chapter 8: Regulating the Execution Engine | 223

the Exception type was designed for this purpose. Instances of Exception marshal by value, taking

advantage of the CLI‘s built-in support for serialization. Because of this, they can be simply propagated

across application domain, process, or machine boundaries. On unmarshalling they are simply objects that

are garbage collected like any other type and need no special cooperative ownership protocol.)

CLI Exception Model

Many programmers think of exception handling as try, catch, and finally blocks in a higher-level

language, along with corresponding throw statements, such as those we saw in the Echo component in

earlier chapters. The CLI, however, is designed to serve the needs of programming languages with various

syntactic models and uses a general approach.

The ECMA specification has a detailed discussion of this abstract model for managed exceptions. There are

four distinct kinds of blocks (filter, catch, fault, and finally), several opcodes dedicated to

ensuring verifiable control flow (shown in Table 8-1), and a large tree of exception types. It is possible,

using these building blocks, to construct many different kinds of high-level exception syntax; since they

share underlying plumbing, they can still interoperate safely despite their differences.

Table 8-5. CIL opcodes specific to exception handlers

Opcode Usage

throw Throws an exception, using object on stacks

rethrow Reissues an exception from within a catch handler

block.

leave Used within a section of guarded code to jump out

to a specific point. This jump will cause execution

of any required termination handlers.

endfinally (alias endfault) Used at the end of a termination handler to return

control back to the execution engine.

endfilter Used at the end of a filter function to return the

handler status back to the execution engine.

In the CLI model, a block of code can be protected by one or more exception handlers. A block so

protected is called a guarded block (or just a block). There can be multiple guarded blocks in a single stack

frame. It is common for C# code to have multiple handlers for a single block, with each handler covering a

subset of the possible exceptions, but this is built on top of the simpler CLI model, in which try blocks

have a single handler. Handlers themselves may contain catch and/or finally blocks, and catch

blocks may have filters associated with them that provide code to determine whether the catch block is

eligible for handling a given exception. Catch blocks, filters, a fault block, and a finally block

together constitute a single exception handler for a given try block.

Recall that the worker thread‘s StartMethod in Example 8-4 used exception handling to catch the

ThreadAbortException. This method is turned into the CIL found in Example 8-19 by Rotor‘s C#

compiler.

Example 8-19. CIL for the StartMethod in Example 8-4

.method public hidebysig static void StartMethod() cil managed

{

 // Code size 189 (0xbd)

 .maxstack 3

 .locals init (int32 V_0,

 class [mscorlib]System.Threading.ThreadAbortException V_1,

 bool V_2)

 .try

 {

Chapter 8: Regulating the Execution Engine | 224

 // bunch of worker code omitted

 IL_002d: ldstr "OK, worker finished."

 IL_0032: call void [mscorlib]System.Console::WriteLine(string)

 IL_0037: leave.s IL_00bb

 } // end .try

 catch [mscorlib]System.Threading.ThreadAbortException

 {

 // bunch of catch code omitted

 IL_007c: leave.s IL_0090

 } // end handler

 // method continues

Notice the block structure that is created, the use of the leave opcode, and the local variable that is

created to hold the ThreadAbortException object. Although not shown here, there can be many

exception handlers in a single method, and exception handlers can be nested.

Exception handlers are grouped together into an Exception Information Table (EIT). Assemblies contain a

compressed precursor for the EIT within the CIL headers that describe methods. This compressed table

contains offsets into the CIL code, and is translated by the JIT into the runtime EIT, which is located in

memory immediately above the compiled native code for the method.

finally and fault blocks are not just redundant siblings of the catch block, since

they can‘t be emulated using a catch that rethrows the exception. This approach would

cause changes in the order in which filters and handlers are executed due to the two-pass

nature of exception handling. Some languages that target the CLI depend on exact

ordering of filters and handlers.

Using the EIT that corresponds to the method for each activation record on the managed stack, the

execution engine can determine which handlers are in effect at any point during execution. When an

exception is raised, all of the eligible catch handlers are visited in turn. Each must either handle the

exception or pass it on. After the exception is caught and handled, but before returning control, finally

and fault handlers are given the chance to clean up; finally handlers are always called, and fault

handlers are called only if an exception has occurred in the block that they guard (see Example 8-20).

Example 8-20. The EIT within an executable image (Defined in clr/src/inc/corhdr.h)

typedef struct IMAGE_COR_ILMETHOD_SECT_FAT

{

 unsigned Kind : 8;

 unsigned DataSize : 24;

} IMAGE_COR_ILMETHOD_SECT_FAT;

typedef enum CorExceptionFlag

{

 COR_ILEXCEPTION_CLAUSE_NONE,

 COR_ILEXCEPTION_CLAUSE_OFFSETLEN = 0x0000,

 COR_ILEXCEPTION_CLAUSE_DEPRECATED = 0x0000,

 COR_ILEXCEPTION_CLAUSE_FILTER = 0x0001,

 COR_ILEXCEPTION_CLAUSE_FINALLY = 0x0002,

 COR_ILEXCEPTION_CLAUSE_FAULT = 0x0004,

 COR_ILEXCEPTION_CLAUSE_DUPLICATED = 0x0008,

} CorExceptionFlag;

typedef struct IMAGE_COR_ILMETHOD_SECT_EH_CLAUSE_FAT

{

 CorExceptionFlag Flags;

 DWORD TryOffset;

 DWORD TryLength; // relative to start of try block

Chapter 8: Regulating the Execution Engine | 225

 DWORD HandlerOffset;

 DWORD HandlerLength; // relative to start of handler

 union {

 DWORD ClassToken; // use for type-based exception handlers

 DWORD FilterOffset; // use for filter-based exception handlers

 } u;

} IMAGE_COR_ILMETHOD_SECT_EH_CLAUSE_FAT;

typedef struct IMAGE_COR_ILMETHOD_SECT_EH_FAT

{

 IMAGE_COR_ILMETHOD_SECT_FAT SectFat;

 IMAGE_COR_ILMETHOD_SECT_EH_CLAUSE_FAT Clauses[1]; // variable size

} IMAGE_COR_ILMETHOD_SECT_EH_FAT;

These tables can exist for every method. Using the Clauses array, a variable number of handlers can

exist for a given method. Each entry in the table will have a guarded block, represented by TryOffset

and TryLength, followed by a handler block, represented by HandlerOffset and

HandlerLength. (Note that it can take more than one record to store a single compound handler.)

On Windows, interoperability with native SEH was a desirable feature, since managed and unmanaged

code share the same execution stack, as shown in Figure 8-4. Even without this requirement, since the CLI

exception model is intended for use by components running in managed code, it is important for the

execution engine itself to participate in raising and handling exceptions, since it actually controls and

manages many of the resources that components depend on. Because of the need for interoperability

between native code and managed code, providing portable SEH was an implementation challenge for the

SSCLI team. Consistent system-level support for SEH doesn‘t exist on some of the operating systems for

which the SSCLI was created, and so a portable implementation was made part of the PAL using the

Win32 SEH APIs as its interface.

Figure Error! No text of specified style in document.-13. Exception frames on a stack

containing both managed and unmanaged code

The CLI exception model piggybacks on the lower-level portable implementation, and meshes with it

seamlessly. Exceptions can be thrown and caught between the two implementations without restriction, but

they are not identical mechanisms; the CLI mechanism is ―nested‖ within the portable SEH mechanism. A

Chapter 8: Regulating the Execution Engine | 226

CLI exception is not a portable SEH exception, but it may cause one to be raised if it is not handled within

a single stack segment of managed code. Likewise, an exception thrown at the lower level, if not consumed

by the execution engine for special purposes, may flow into the higher-level CLI system, with the

execution engine mapping into the hierarchy of exceptions.

Throwing Exceptions

Exactly how exceptions come into being and are processed is dependent on where they originate. Hardware

or software exceptions can originate from user code that has been JIT-compiled or from within the

execution engine itself, and yet all cases must be dealt with in such a way as to give the appearance of

seamless uniformity to the managed-code programmer. To accomplish this, every exception thrown,

whether by hardware or by software, is routed through the PAL‘s portable SEH layer. This approach

ensures consistency and helps simplify interoperability.

There are three distinct ways that exceptions can be raised during the execution of managed code, produced

by the JIT compiler:

 Programmatically, from managed code that is throwing an exception

 Programmatically, from the C++ code that implements the execution engine

 From the hardware directly, not initiated by software

If managed code is the source, an object instance is created and the JIT_Throw function is called, which

packs the exception into a form compatible with the portable SEH and throws an exception from within that

lower level, as shown in Example 8-21.

Example 8-21. JIT_Throw (extracted from clr/src/vm/jithelpers.cpp)

void JIT_Throw(Object* obj)

{

 ResetCurrentContext();

 FC_GC_POLL_NOT_NEEDED(); // throws always open up for GC

 HELPER_METHOD_FRAME_BEGIN_ATTRIB_NOPOLL(Frame::FRAME_ATTR_EXCEPTION); // Set

up a frame

 OBJECTREF oref = ObjectToOBJECTREF(obj);

 if (oref == 0)

 COMPlusThrow(kNullReferenceException);

 else

 if (!IsException(oref->GetMethodTable()))

 {

 GCPROTECT_BEGIN(oref);

 WrapNonCompliantException(&oref);

 GCPROTECT_END();

 }

 else

 { // We know that the object derives from System.Exception

 if (g_CLRPolicyRequested &&

 oref->GetMethodTable() == g_pOutOfMemoryExceptionClass)

 {

 EEPolicy::HandleOutOfMemory();

 }

 ((EXCEPTIONREF)oref)->ClearStackTraceForThrow();

 }

 RaiseTheExceptionInternalOnly(oref, FALSE);

 HELPER_METHOD_FRAME_END();

}

Chapter 8: Regulating the Execution Engine | 227

The call to ResetCurrentContext resets the hardware, taking care of things like resetting the FPU

and mask values. After this, a helper frame is pushed to mark the transition from JIT-compiled code to

execution engine code. This frame will ensure that the security engine and the garbage collector know

about the transition. After this, RaiseTheExceptionInternalOnly is called (Example 8-22), which

is a routine shared by all exception paths.

Example 8-22. RaiseTheExceptionInternalOnly is shared by all types of exception (simplified from

clr/src/vm/excep.cpp)

VOID RaiseTheExceptionInternalOnly(OBJECTREF throwable, BOOL rethrow, BOOL

fForStackOverflow)

{

 Thread *pThread = GetThread();

 ThreadExceptionState *pExState = pThread->GetExceptionState();

 ULONG_PTR *args;

 ULONG argCount;

 ULONG flags;

 ULONG code;

 // Always save the current object in the handle so on rethrow we can reuse it.

 // This is important as it contains stack trace info.

 //

 // Note: we use SafeSetLastThrownObject, which will try to set the

 // throwable and if there are any problems, it will set the throwable to

 // something appropiate (like OOM exception) and return the new

 // exception. Thus, the user's exception object can be replaced here.

 throwable = pThread->SafeSetLastThrownObject(throwable);

 if (!rethrow ||

 (pExState->GetExceptionCode() == EXCEPTION_COMPLUS) ||

 (pExState->GetExceptionCode() == STATUS_STACK_OVERFLOW))

 {

 ULONG_PTR hr = GetHRFromThrowable(throwable);

 args = &hr;

 argCount = 1;

 flags = EXCEPTION_NONCONTINUABLE;

 code = EXCEPTION_COMPLUS;

 }

 else

 {

 args = pExState->GetExceptionRecord()->ExceptionInformation;

 argCount = pExState->GetExceptionRecord()->NumberParameters;

 flags = pExState->GetExceptionRecord()->ExceptionFlags;

 code = pExState->GetExceptionRecord()->ExceptionCode;

 flags |= EXCEPTION_NONCONTINUABLE;

 }

 // Tell GC that scheduling is preemptive before call into OS

 pThread->EnablePreemptiveGC();

 RaiseException(code, flags, argCount, args);

 EEPOLICY_HANDLE_FATAL_ERROR(COR_E_EXECUTIONENGINE);

}

Note the involvement of the Thread object. Exception handling is a stack-intensive activity, and since the

Thread object is the ―owner‖ of the stack for the purposes of the execution engine, it is also the logical

Chapter 8: Regulating the Execution Engine | 228

place to keep the information needed for exception handling. The ThreadExceptionState struct is

used to store exactly this data and can be found in sscli20/clr/src/vm/excep.h.

In the function shown in Example 8-14, if a rethrow is in process, information about the original exception

will be pulled from the thread‘s ExInfo and passed along to the PAL‘s RaiseException function. A

reference to the Exception object is also placed into the current managed Thead object, which has a

spot reserved for this purpose. The last act before a noncontinuable EXCEPTION_COMPLUS exception is

raised (using RaiseException) is to turn off cooperative garbage collection, since system code, being

unaware of the execution engine, doesn‘t take pains to interact safely with the garbage collector. Of course,

noncontinuable exceptions are not supposed to return, which explains the call to

EEPOLICY_HANDLE_FATAL_ERROR.

Typically, when the exception is thrown from within the execution engine‘s code directly, one of many

different exception-throwing functions that are defined in sscli20/clr/src/vm/excep.h is used to do the actual

raising of the exception. Most of the time, COMPlusThrow is used, which is a macro that wraps

RealCOMPlusThrow, and which eventually bottoms out in RealCOMPlusThrowWorker. Atypically,

other wrapper functions are used but only in special circumstances, and these additional wrappers usually

bottom out in RealCOMPlusThrowWorker themselves, as well. RealCOMPlusThrowWorker is

shown in Example 8-23.

Example 8-23. First part of a worker function for throwing exceptions (extracted and simplified from

clr/src/vm/excep.cpp)

static VOID RealCOMPlusThrowWorker(RuntimeExceptionKind reKind,

 BOOL fMessage,

 BOOL fHasResourceID,

 UINT resID,

 HRESULT hr,

 LPCWSTR wszArg1,

 LPCWSTR wszArg2,

 LPCWSTR wszArg3,

 ExceptionData* pED)

{

 Thread *pThread = GetThread();

 // Running in managed code, need to be cooperative mode

 if (!pThread->PreemptiveGCDisabled())

 pThread->DisablePreemptiveGC();

 // Is enough of the execution engine in place to run exception code?

 if (!g_fExceptionsOK)

 COMPlusThrowBoot(hr);

 // Out of memory is a special case

 if (reKind == kOutOfMemoryException && hr == S_OK)

 RealCOMPlusThrow(ObjectFromHandle(g_pPreallocatedOutOfMemoryException));

 // Execution engine failure is a special case

 if (reKind == kExecutionEngineException && hr == S_OK && (!fMessage))

 RealCOMPlusThrow(ObjectFromHandle(g_pPreallocatedExecutionEngineException));

 // Go ahead now and gather exception data to throw

 FieldDesc *pFD;

 MethodTable *pMT;

 LPWSTR wszExceptionMessage = NULL;

 pMT = g_Mscorlib.GetException(reKind);

 if (fMessage) {

 wszExceptionMessage =

 CreateExceptionMessage(fHasResourceID, resID,

 wszArg1, wszArg2, wszArg3);

Chapter 8: Regulating the Execution Engine | 229

 }

 // The rest of this very long function omitted for brevity

This function first ensures that the garbage collector mode is in the correct state. There is no need to push a

transition frame in this case, since the exception is coming directly from within the code of the execution

engine, and transition frames will already be in place. The function checks to see that the execution engine

has bootstrapped far enough to run managed code; if not, it will not attempt to throw a managed exception,

as there is no engine to support this. (This check is also used for teardown. If the execution engine is in the

process of shutting down, and is unable to throw a managed exception, it will not attempt it.) If the error is

the result of running out of memory or an execution engine failure, preallocated exceptions that were

prepared for this eventuality are thrown. Otherwise, an instance of the appropriate managed exception type

is created, and the hunt for the appropriate user-readable message begins.

The rest of the function is not shown due to its tedious length and niggling specificity. It spends a good deal

of effort on setting up the exception object by ferreting out failure information. If there was no message

passed from the caller, the code looks for a message to place into the exception object, sets the source and

the HRESULT if available, and ultimately throws the exception using RaiseTheException, as seen

previously in Example 8-14. (The HRESULT in this code is purely a result of backwards compatibility and

interop, and shouldn‘t cause consternation.) Much of the work done in the execution engine has to do with

mapping the different kinds of errors into the higher-level exception hierarchy, copying appropriate

information into the exception objects, and making sure that the execution engine itself is in a safe state.

For example, the first-pass exception handler will take lower-level status codes and map them to types that

will fit into some part of the exception hierarchy using the function in Example 8-24.

Example 8-24. Mapping from a lower-level exception domain to a higher-level domain (defined in

clr/src/vm/excep.cpp)

DWORD MapWin32FaultToCOMPlusException(EXCEPTION_RECORD *pExceptionRecord)

{

 switch (pExceptionRecord->ExceptionCode)

 {

 case STATUS_FLOAT_INEXACT_RESULT:

 case STATUS_FLOAT_INVALID_OPERATION:

 case STATUS_FLOAT_STACK_CHECK:

 case STATUS_FLOAT_UNDERFLOW:

 return (DWORD) kArithmeticException;

 case STATUS_FLOAT_OVERFLOW:

 case STATUS_INTEGER_OVERFLOW:

 return (DWORD) kOverflowException;

 case STATUS_FLOAT_DIVIDE_BY_ZERO:

 case STATUS_INTEGER_DIVIDE_BY_ZERO:

 return (DWORD) kDivideByZeroException;

 case STATUS_FLOAT_DENORMAL_OPERAND:

 return (DWORD) kFormatException;

 case STATUS_ACCESS_VIOLATION:

 {

 // ...

 return (DWORD) kNullReferenceException;

 }

 case STATUS_ARRAY_BOUNDS_EXCEEDED:

 return (DWORD) kIndexOutOfRangeException;

 case STATUS_NO_MEMORY:

 return (DWORD) kOutOfMemoryException;

 case STATUS_STACK_OVERFLOW:

Chapter 8: Regulating the Execution Engine | 230

 return (DWORD) kStackOverflowException;

 default:

 return kSEHException;

 }

}

The status codes in this function are defined as part of the PAL, where yet another layer of mapping is

clearly taking place, depending on the operating system being used.

In software exceptions from managed code and software exceptions from the execution engine, exceptions

are packaged under the EXCEPTION_COMPLUS status code at the level of PAL SEH. In a hardware

exception, other status codes will be used, but, in all cases, the portable SEH mechanism is used to find

handlers. This is important because the execution engine causes exception handlers to run. By leveraging

the portable SEH mechanism, the execution engine locates and executes appropriate handler code in a

single, uniform way.

Handling Exceptions

Exception handling within the execution engine is a two-pass process, which is illustrated in Figure 8-5. On

the first pass, a stackwalk checks every activation record on the stack until an appropriate filter is found.

Then, on the second pass, the stack is ―unwound,‖ meaning that any finally blocks in the region of the

stack about to be discarded are called before execution resumes further up the stack.

Figure 8-14. Locating exception handlers using a two-pass stackwalk

To initiate stackwalks of the managed regions that are needed for this two-pass algorithm, the execution

engine prepares for it by using the portable SEH mechanism to install a standard exception frame around

regions of managed code. In this way, regardless of an exception‘s source (a hardware exception, a soft

exception in code produced by the JIT compiler, or an execution engine exception), this SEH filter kicks

off the processing. By right of its low-level position, this handler, named COMPlusFrameHandler, has

the first opportunity at any exception. This potentially platform-specific code is shown in Example 8-25.

This example is defined in clr/src/vm/i386/excepx86.cpp.

Example 8-25. The normal exception filter

EXCEPTION_HANDLER_IMPL(COMPlusFrameHandler)

{

Chapter 8: Regulating the Execution Engine | 231

 if (g_fNoExceptions)

 return ExceptionContinueSearch; // No EH during EE shutdown.

 EXCEPTION_DISPOSITION retVal = ExceptionContinueSearch;

 // Code elided for clarity

 //

 if (pExceptionRecord->ExceptionFlags & (EXCEPTION_UNWINDING |

EXCEPTION_EXIT_UNWIND))

 {

 retVal = CPFH_UnwindHandler(pExceptionRecord,

 pEstablisherFrame,

 pContext,

 pDispatcherContext);

 }

 else

 {

 ResetCurrentContext();

 // clear the second pass flags to handle nested exceptions

 pEstablisherFrame->dwFlags &= ~PAL_EXCEPTION_FLAGS_All;

 retVal = CPFH_FirstPassHandler(pExceptionRecord,

 pEstablisherFrame,

 pContext,

 pDispatcherContext);

 }

 return retVal;

}

The first thing the COMPlusFrameHandler does is verify that the exception engine is in a state in which

it can actually handle exceptions. If not, control is passed on to other handlers for the thread, which will

more than likely trigger a shutdown. If the exception is already on its second pass,

CPFH_UnwindHandler is called; otherwise, the hardware is reset, and the exception-handling process is

begun with a call to CPFH_FirstPassHandler.

The first pass handler, found in sscli20/clr/src/vm/i386/excepx86.cpp, is responsible for detecting nested

exceptions and setting up the bookkeeping that surrounds their use. The first pass handler also sorts through

a myriad of special-purpose exceptions before dispatching any ―real‖ exceptions to the correct handler. To

do this, it first ensures that the garbage collector is in the right state. After this preliminary step, the first-

pass handler filters out exceptions that are used in special ways by the execution engine: access violations

may indicate the need to adjust the garbage collector‘s write barrier, stack overflows can be remedied by

expanding the stack, thread aborts get special treatment, and so on. The call to

ShouldHandleManagedFault continues this winnowing activity, looking specifically at exceptions

that occur within JIT-compiled code. The function calls ExecutionManager::FindCodeMan to

determine whether the current instruction pointer is executing within JIT-compiled code; if it is, it filters for

special cases, which include things like debugger single-step and breakpoints. If this function returns true, a

call to HandleManagedFault is made.

You may be curious as to why we keep mentioning garbage collector state during all this

discussion of the exception-handling mechanism. If you are interested in modifying or

exploring the exception mechanisms within Rotor, we recommend you step with extreme

care. As you can probably tell by now, a garbage collection that occurs at the wrong

moment during exception processing (or any other deeply integrated service) can make

things really ugly really fast, due to monkeying with the thread stack, processor registers,

and other sharp objects. Managed handlers in code that was JIT-compiled must execute

with the state set to cooperative mode, while PAL handlers must use pre-emptive mode.

Chapter 8: Regulating the Execution Engine | 232

If by this point in the handler, the exception still qualifies as ―real,‖ the exception record and machine

context are saved into the thread, a call to CPFH_RealFirstPassHandler is made which in turn

pushes a FaultingExceptionFrame to mark this special transition, and finally, a global exception

lock is taken. The LaunchThrowHelper will be used to trigger the rethrow of the specific managed

exception when the time comes; at this point, you are only preparing for this call and passing control back

to the exception engine.

The code used by the first pass handler to locate an existing managed handler is contained in

sscli/clr/src/vm/excep.cpp. This function uses a stack walk to search the managed stack, as shown in

Example 8-26.

Example 8-26. Stackwalking for managed handlers

LFH LookForHandler(// LFH return types

 const EXCEPTION_POINTERS *pExceptionPointers, // The ExceptionRecord and

ExceptionContext

 Thread *pThread, // Thread on which to look (always

current?)

 ThrowCallbackType *tct) // Structure to pass back to callback

functions.

{

 // Make sure that the stack depth counter is set to zero.

 COUNTER_ONLY(GetPrivatePerfCounters().m_Excep.cThrowToCatchStackDepth=0);

 // go through to find if anyone handles the exception

 StackWalkAction action = pThread-

>StackWalkFrames((PSTACKWALKFRAMESCALLBACK)COMPlusThrowCallback,

 tct,

 0, //can't use FUNCTIONSONLY because the

callback uses non-function frames to stop the walk

 tct->pBottomFrame);

 // If someone handles it, the action will be SWA_ABORT with pFunc and dHandler

indicating the

 // function and handler that is handling the exception. Debugger can put a

hook in here.

 if (action == SWA_ABORT && tct->pFunc != NULL)

 return LFH_FOUND;

 // nobody is handling it

 return LFH_NOT_FOUND;

} // LFH LookForHandler()

Each frame is examined using the COMPlusThrowCallback function. This complex function, found in

sslcl20i/clr/src/vm/i386/excepx86.cpp, is where the exception stack trace is built and where handler

identification takes place. When a handler match is found, the location is recorded in the tct argument,

and the stackwalk is aborted. The callback function uses the frame‘s GetFunction method to procure a

metadata token for the method whose activation state it represents. This token is then used to ask the code

manager to procure the EIT. (Remember, the JIT compiler produces a header at the beginning of a

compiled method in the code heap that includes garbage collection information as well as the EIT.) The

flags and offsets of the EIT, along with the current instruction pointer, are used to search outward until an

overlapping handler that meets all criteria is found. The exception filter will remember which handler needs

to be run, and then return, causing second-pass unwinding to take place.

At this point, if no matching managed handler has been found, the lower-level SEH mechanism continues

along its merry way, searching in unmanaged code until a handler is found or the default handler is

encountered. If a handler was located, it seems as though starting the managed second pass would be the

right thing to do; for the purposes of interoperability, this can‘t be done until the lower-level SEH has also

moved on to its second pass. The first pass handler, to perform this hand-off, sets the

Chapter 8: Regulating the Execution Engine | 233

PAL_EXCEPTION_FLAGS_UnwindCallback in the frame where the handler is located and returns

ExceptionStackUnwind, which will cause the lower level machinery to stop searching and begin its

second pass. The state needed to begin unwinding has been safely stored in the exception record.

Unwinding the Stack

Execution begins with the CPFH_UnwindHandler, already seen in Example 8-25. Two flags may have

been set during the first pass: one that designates exceptions coming from unmanaged code that‘s

subordinate to a region of managed code (PAL_EXCEPTION_FLAGS_LaunchThrowHelper) and one

that designates that a managed handler was located for the exception

(PAL_EXCEPTION_FLAGS_UnwindCallback). If the latter is set, the execution engine needs to fire

any finally or fault blocks and then give the managed code a chance to handle the exception, which

requires another walk of the managed stack.

To call a managed handler, COMPlusAfterUnwind is invoked, which causes another stackwalk to

happen via the UnwindFrames function. The callback for this second pass is

COMPlusUnwindCallback. Once again, the code manager is queried for EIT information, and this

information, along with the program counter, is used to find handlers. This time through, the code manager

is also used to execute any finally or fault blocks with EEJitManager::CallJitEHFinally,

and if a handler exists, the handler is jumped to using EEJitManager::ResumeAtJitEH. Once

called, the handler filter itself may decline to handle the exception, in which case control will pass back to

the SEH handler chain. By passing through the dispatch phase, the managed blocks have been executed—

both portable SEH and managed SEH remain well-synchronized and correct.

Unmanaged faults that occur while running managed code, if unhandled, are rethrown after a

FaultingExceptionFrame is injected into the stack. The unwind helper calls

LinkFrameAndThrow within the execution engine, which sets the threadstate to reflect the managed

exception, releases the global exception lock, and calls RaiseException anew, using the exception

state gathered during the first pass. This second RaiseException can be baffling. It was put in the code

to enable possible future compatibility and interop with exception resumption.

It is very important that stackwalks within exception processing be ―correct‖ with regards

to security invariants. This is especially tricky for filters because the stack is not yet

unwound when filters are called, and because of this, the arbitrary code in them may be

called between the time that the exception is thrown and its matching finally is called.

This has interesting implications for writing secure managed exception handlers and

handling reentrancy in managed libraries. To understand more about these issues, see

Microsoft‘s recommendations concerning building secure managed libraries in the .NET

Framework SDK.

Summary

The careful checking and rechecking of format, metadata invariants, and typesafety is not worth much

without the presence of an execution engine that can enforce policies and keep control over the managed

code that is run within it. To maintain control, the SSCLI carefully orchestrates the behavior of threads and

exceptions, inserting control structures and bookkeeping information directly into their in-memory data for

this purpose.

Threads are appropriated as soon as they are detected by the execution engine, by associating managed-

thread instances with them. These managed threads actually share their runtime stacks with any unmanaged

code running within them. To keep transitions between managed and unmanaged regions straight, the

execution engine uses a control structure called an execution engine frame. Execution engine frames are

small chunks of bookkeeping info that are tucked into the stack amidst the activation records that populate

it. They are used to both mark transitions and annotate stack usage.

Chapter 8: Regulating the Execution Engine | 234

Of course, one of the primary roles of a thread is to provide a home for the runtime stack that contains its

nested execution state. We saw in Chapter 5 that the stack in the execution engine is used for traditional

language purposes such as parameter passing, but the execution engine also uses it to control security and

to track exception-handler boundaries. Code access security walks the stack to find permissions, grants, and

demands. Exceptions are used to handle nonlocal transfer of control and keep boundaries around managed

regions of code that are interspersed with unmanaged code.

Since multiple threads can share the services of a single execution engine instance, the CLI provides

concurrency and synchronization primitives that match its specialized threading implementation. This

traditional threading facility has a number of built-in conveniences, such as a thread pool, and

synchronization components, such as monitors.

Chapter 9: Managing Memory Within the Execution Engine | 235

9. Managing Memory Within the

Execution Engine

Component-based applications, viewed as the vast graphs of interconnected type instances that they are, are

notorious for their complex internal pointer manipulation, and as a result, their profligate thrashing of

memory allocators. One of the longest standing feuds in the world of programming language design has

centered on best practices for memory management in this kind of demanding environment. For some, it is

even a long-standing joke: it‘s said that C programmers have long understood that memory management is

so critical, it can‘t be left up to the system, and Lisp programmers have long understood that memory

management is so critical, it can‘t be left up to the programmers.

Since its introduction in the 1950s, garbage collection has received something of a nefarious reputation

with many programmers. Garbage collection (GC) was for programmers who couldn‘t keep track of their

own resources; GC was slothful; GC would force an application to hang for nontrivial portions of time

while it was running internal bookkeeping; or GC was simply for wimps. But now, it is clear that garbage

collection is enjoying something of a renaissance. Why?

For starters, GC implementations have improved. Not only are they running on faster hardware than before,

but the algorithms and approaches to managing garbage have gotten more accurate and faster. The pauses

during program execution simply aren‘t there anymore. More importantly, however, programmers have

come to realize that a price comes attached to the power of explicit memory management: programmers

have to explicitly manage memory. Some project surveys have revealed that a C++ project spends over

50% of its development lifecycle in the practice of memory management: ensuring allocated objects are

freed, taking care not to make use of pointers after they‘ve been deallocated, and tracking down bugs that

emerge from dangling pointers. To avoid spending this much time on a task that most would consider to be

purely plumbing, many programmers now willingly surrender some control and take advantage of

automated memory management.

Memory Management Matters
For a real-world look at how much effort can go into memory management, look carefully at the

many different allocation and reclamation mechanisms in Rotor. An object instance and its

associated type information, for example, commonly occupy memory from five or more distinct

heaps. Instance memory is found on the garbage collector heap, except for the instance‘s

SyncBlock record, which is allocated within the execution engine itself. The MethodTable

for the object is located in the high-frequency heap of its application domain, while the EEClass

and associated FieldDescs and MethodDescs are located in its low-frequency heap. (The

names attached to these heaps refer to frequency of access.) Native code produced by the JIT

compiler is found in a code heap, which is shared by all application domains. Finally, related

items such as stubs are allocated from within a separate region of execution engine memory.

Each memory manager or heap exists for good reason, but keeping track of this level of minutiae

can be quite burdensome. Even harder is tracking down bugs that result from incorrect usage; it is

not always obvious who should free memory that has been passed from consumer to consumer, for

example. Eliminating these concerns by relying on the automated memory management service

that is a built-in feature of the CLI is one great reason to use garbage-collected languages.

Chapter 9: Managing Memory Within the Execution Engine | 236

Is it possible for a general-purpose garbage collection mechanism to serve the decidedly nongeneral

patterns of memory usage that algorithms dish out in an efficient enough way to be practical? For the early

designers of the CLI, the answer to this question was obvious. Fresh from the nightmare of COM reference

counting, which relies to this day on programmers‘ good behavior for correctness, it was clear that a

system-mediated, automatic mechanism was not only desirable, it was an absolute requirement. Garbage

collection is not just about programmer convenience—it also has excellent reliability benefits and recovery

characteristics in the presence of bugs or malicious code. Security plays into this, as well, since the decision

to relieve programmers of the burden of memory management also relieves them of the necessity to deal

with memory locations directly (except under tightly controlled circumstances, such as interop). Because of

all of these factors, the decision to use automatically managed memory was one of the first decisions made

when specifying the CLI.

Memory and Resource Management

C or C++ programmers are already very familiar with the three different types of memory allocation that

are commonly used by programming languages, and probably don‘t give them much thought. Static

allocation, stack-based allocation, and dynamic allocation each represent a slightly different approach to

allocating and manipulating values, and all three are available to those using the computational model

exposed by the CLI.

Static allocation was the first form of memory allocation used by venerable programming languages such

as FORTRAN. It is a simple mechanism, by which a name is bound to a region of memory for the entire

lifetime of a program (or in the case of the CLI, for the entire lifetime of a type within an application

domain). Regardless of where in the code a static variable is referenced, its location in the local address

space will remain the same. In the CLI, static memory is associated with types and referenced by using

metadata tokens, as shown in Example 9-1. Rotor also supports per-thread static memory, but this is not a

part of the CLI specification.

Example 9-1. Static allocation in CIL is associated with types.

.class private auto ansi beforefieldinit StaticExample

 extends [mscorlib]System.Object

{

 .field public static int32 aStatic

}

// CIL can access the value stored in the static variable

IL_0006: ldsfld int32 StaticExample::aStatic

// store the value 8 into the static memory location

IL_0000: ldc.i4.8

IL_0001: stsfld int32 StaticExample::aStatic

The concept of stack-based allocation appeared with the introduction of stack-based procedural

programming languages, in which variable lifetimes are tied to their lexical scope on an execution stack.

Local variables are automatically allocated on this stack when a call takes place, and automatically

deallocated when control returns. The advantage of stack-based allocation is also its disadvantage: the

lifetime of storage locations is tied directly to lexical scope, which restricts the expressive possibilities

presented to programmers by the computer language. The execution stack is heavily used by languages that

target the CLI, and memory is allocated from it in the form of method arguments and local variables. (In

addition, stack memory can be allocated using the localloc CIL instruction, although this results in

unverifiable code.) Example 9-2 shows instructions that access stack memory for argument values and local

variable values.

Example 9-2. Stack-based allocation is used for parameters and local variables

ExampleMethod(int32& Param1, int32 Param2)

{

Chapter 9: Managing Memory Within the Execution Engine | 237

 // This method has two parameters allocated on the stack // Two locals are also allocated on

the stack, and accessed by position .locals init (int32 V_0, int32 V_1)

 // Load argument 0 from the stack

 IL_0000: ldarg.0

 IL_0001: ldind.i4

 // Load argument 1 from the stack

 IL_0002: ldarg.1

 IL_0003: add

 // Store the result of addition into local 0

 IL_0004: stloc.0

 // Code skipped here

 // Later, load local 1 and return

 IL_000c: ldloc.1

 IL_000d: ret

}

Static and stack-based allocation, while useful, did not fully satisfy engineers designing programming

languages and the hardware on which these languages were to run. To fully round out their repertoire,

language designers introduced dynamic memory models, in which programmers could manipulate variable-

sized chunks of memory directly through the use of one or more heaps. In many popular implementations

of this approach, dynamic allocation and deallocation are completely under the control of the programmer,

and memory is accessed using either handles or pointers. Because programmers are mere mortals,

opportunities for mistakes, mischief, and mayhem abound, and yet the power and efficiency that results

from the use of pointers and dynamically allocated memory far outweighs its inconveniences. Because of

this, the CLI also rounds out its memory model by permitting languages to use pointers and manipulate

them, either in a typesafe way with typed references, or else directly using unverifiable memory access

operators. Example 9-3 shows the CIL involved in dynamic allocation.

Example 9-3. Types can be dynamically allocated on the heap

ExampleAllocator([out] object& o)

{

 // This method will return a newly allocated object in argument 0

 IL_0000: ldarg.0

 // Allocate a new object from the heap

 IL_0001: newobj instance void [mscorlib]System.Object::.ctor()

 IL_0006: stind.ref

 IL_001c: ret

}

In the context of the CLI, the lifetimes of all three types of memory can be automatically managed. The

CLI provides a garbage collector for this purpose, which enables programmers to shed the task of pointer

management, while still using dynamic allocation to structure memory. When using a garbage collector, the

programmer requests memory, the execution engine tracks its use, and the garbage collector reclaims it

when it is time to recycle. This simple technique is a boon for programmers.

Of course, programs written to leverage components not only use memory, but also share and manage

resources that are beyond the influence of the execution engine, such as files, window handles, and sockets.

Many programming scenarios demand that rigorous walls be in place between components, and in these

situations, the rules of sharing or transfer of control can be complex. Garbage collection can ease the details

of managing memory, but it doesn‘t ease the task of managing these resources, since their lifecycles are

―owned‖ by some other entity, usually the operating system.

From a programmer‘s perspective, any type defined to represent or wrap an external resource must be able

to both acquire and release that resource. In the case of a file, for example, a type depending on an external

file resource must explicitly obtain an open file handle by calling the operating system and close that

Chapter 9: Managing Memory Within the Execution Engine | 238

handle when its work is complete. The acquisition of the file is simple, but releasing it at the right time can

be more difficult, especially when depending on a garbage collector. Since the programmer no longer has

the responsibility (or the ability) to release the object instance, the system needs to provide that capability

somehow. Within the CLI, this can be done through one of several mechanisms. The simplest to understand

and most frequently used is actually built into the CLI garbage collection mechanism and is called

finalization.

During finalization, the garbage collector calls the Finalize method on any object that chooses to take

advantage of this service. By defining a Finalize method, taking no parameters and returning no value,

an object declares its interest in cleaning up after itself. In the SSCLI implementation, at some point after

an object is classified as recyclable by the garbage collector, but before its underlying memory has been

released, the object will be placed into a data structure called the finalization queue . This queue is then

emptied by a background thread called the finalization thread , each object awaiting finalization being

called in turn. (Finalization is built directly into the C# language as destructors, which implement the

Finalize method automatically.)

Finalization is necessary only when managing external resources. Because all garbage-collected objects fall

under the allocator‘s jurisdiction, a type needs to implement a finalizer only when it needs to release

external resources as part of its cleanup. Note that finalization is by no means a complete solution; in many

cases explicit programmatic attention, such as calling a dispose method when finished, continues to be

necessary to ensure good resource management.

Organizing and Allocating Dynamic Memory

The choice of a discipline for component memory allocation is deeply tied to component lifetimes. Control

structures, such as the CLI‘s threads and application domains, offer simple and efficient disciplines for

managing component lifetimes and memory and, as we have seen, are used by the CLI as locations for

storing both static and stack-based information. As already pointed out, however, storage strategies based

on these mechanisms will work only when the lifetimes of the components and resources being allocated

are in sync with the lifetimes of the control structures. There are many cases when this is not the case.

There are also many times when storing large amounts of data in runtime control structures might cause

resource exhaustion problems or bad locality of reference.

Heaps, of course, solve these problems by using regions of memory that are managed by allocating

subblocks to clients and tracking these so that the clients can later release their subblocks in arbitrary order,

at any time. When used manually, a programmer ―checks out‖ subblocks of heap memory with a function

like malloc, holds them as long as necessary, and then frees them explicitly, which makes the memory

available for recycling. Heaps that are managed using garbage collection, on the other hand, permit clients

to release their subblocks by simply abandoning references to them. When quantities of heap memory run

low, the garbage collection service can take care of locating memory that has been abandoned and

recycling it, as shown in Figure 9-1.

Figure 9-15. A heap that is ready for recycling (dead objects are shaded).

The heap in the SSCLI is periodically renewed by identifying dead objects and then fusing contiguous runs

of dead objects into blocks of memory to be reallocated. The approach used for locating dead objects is

called tracing; by following and recording all live references to heap memory, the garbage collector can

easily deduce that the leftover memory is available for reclamation. Live objects are found by looking for

heap pointers on all of the stacks, in all statically allocated memory, within all object instances, and in a

few other well-known execution engine data structures. Whenever a live pointer is found, the memory that

Chapter 9: Managing Memory Within the Execution Engine | 239

it refers to is itself examined for more pointers, and if more are found, they are likewise followed until the

entire set of live objects is known. This procedure is called tracing the roots, and results in the transitive

closure over the set of live objects, as shown in Figure 7-2.

Figure 9-16. Recursively following live object references (“tracing the roots”) in

preparation for garbage collection

Often, all that is needed when recycling memory is to replenish the heap by locating blocks of memory that

are ready for reuse, as outlined in the previous paragraph. This simple approach to replenishment is called

mark-and-sweep collection—during the trace, live objects are marked, after which unused memory is

―swept‖ into a free list. Mark and sweep collection, while simple and effective, can result in a fragmented

heap over time, which can lead to heap exhaustion. To cure this tendency, compacting collection was

invented. During the simplest kind of compacting collection, the heap is compacted by removing dead

objects and pockets of unused memory by sliding live objects down towards the low-address end of each

heap segment, or moving them elsewhere, and then repairing any dangling pointers with corrected values.

As shown in Figure 9-3, compacting the heap in this way collects available memory together into

contiguous stretches and can have the additional positive side effect of maintaining object creation order in

memory, which can improve locality of reference; by grouping all live objects close to each other, less

virtual memory needs to be paged into the system as those objects are used.

Figure 9-17. Compacting a heap

Simple compacting collection is not used in the SSCLI implementation. Instead, a variation of the

compacting mechanism is used, called copying collection, in which live objects are periodically moved into

an entirely new heap, after which the old heap is discarded or recycled. This technique has several

advantages over futzing with object placement within a single heap: because every object is copied into a

new heap, the very simple allocation algorithm can be based on a high-water mark, and no elaborate fit-

finding tactics are needed. In addition, by compacting into a new heap, good virtual memory locality should

result. The main drawback to compacting-and-copying collection strategies is the expense of copying

objects and then fixing up references to the objects that have been moved (as well as the need for twice as

much raw heap space).

Actually, the expenses of copying can be reduced drastically (or at least amortized) by using an

enhancement of the technique called generational collection, in which objects are divided into

―generations‖ marked by the passage of time. Generational collection is more complex than simple mark-

and-sweep or compacting collection, but it has become the technique of choice for most systems, since the

Chapter 9: Managing Memory Within the Execution Engine | 240

partitioning involved results in shorter interruptions than using other techniques. Generational collection

exploits the fact that objects have different lifetime characteristics—some live very short lives, some live

very long lives—depending on what they are and how they are used. Objects also vary in size. By dividing

the heap into zones that are designated to house objects that exhibit matching lifetime characteristics, and

by then collecting these zones using frequencies or algorithms that minimize the cost of collection by

exploiting the specificity of the zones, more efficient use of both processor and memory can result. Zones

are collected at different times and at different frequencies, and thus the entire heap does not need to be

scanned, nor need all objects be copied.

When a pure generational approach is taken, objects are initially allocated in the youngest generation

(which is called this because it houses the youngest objects). If they survive past a collection cycle, then

they are promoted to an elder generation by copying them. The refinement of this technique over

compacting collection is that objects in the youngest generation have a low survival rate, while objects in

the oldest generation have a high survival rate. Because the objects are split into two distinct locations,

different techniques can be used to scavenge for free memory. A noncopying, noncompacting collector

works best for the elder generation because copying the survivors would be a lot of work for little gain.

(Many objects survive in this generation, and fragmentation is low.) However, in the youngest generation, a

compacting or copying approach is often the right choice.

The Shared Source CLI uses exactly this approach to collection. It has a simple, two-generation collector,

with added support for large object segregation. The younger generation is copy-collected, while the elder

generation (and the large object heap that is conceptually part of the elder generation) is collected using a

mark-and-sweep algorithm. Garbage collection is triggered by allocation volume or memory scarcity; when

heap resources run low, the roots are traced, and either one or both generations are scavenged for memory.

There is actually an entirely separate second garbage collector in the SSCLI distribution,

which manages the lifetimes of components being used for cross-domain computation

and distributed computing. These components are managed by a service that is part of the

SSCLI remoting library. (The objects within this subsystem are also, of course, managed

by the execution engine‘s regular garbage collector as well, once they have been released

by the remoting layer.) A deep discussion of the algorithms used by the remoting library

is beyond the scope of this book, but they use leases and a service that implements lease

management. The code for both leases and the lease manager can be found in

sscli20/clr/src/bcl/system/runtime/remoting.

Garbage collection is well worth the complexity and the effort—it pays off handsomely in both program

reliability and programmer productivity. However, since maintaining good application performance while

using fully automatic memory management is complex, the design of the SSCLI‘s memory manager

pervades nearly every aspect of the execution engine, from its runtime data structures to its JIT compiler.

These mechanisms are the subject of the rest of this chapter.

Object Allocation by Generation

In the SSCLI, the garbage collector‘s heap is made up of one or more heap segments, which are blocks of

memory procured from system virtual memory. Heap segments themselves are divided into various

regions, whose layout is dynamically determined by demand for memory and the kinds of allocations being

done. As memory is needed, the heap is expanded by either adding memory from reserves within the

current heap segment or by adding entirely new segments. Initially, a single heap segment serves all needs.

It is laid out as shown in Figure 9-4.

Chapter 9: Managing Memory Within the Execution Engine | 241

Figure 9-18. The heap is initially subdivided into two generations, reserved additional

memory, and a large object area

Heap segments begin with a heap_segment header, shown in Example 9-4. This header occupies the

first region of the segment and is used to keep track of subregion boundaries, as well as additional segments

created during execution. Both the initial heap_segment and the large object heap are created back-to-

back in a single allocation of virtual memory; note that the large object heap is not tracked as part of the

heap_segment structure.

Example 9-4. The heap_segment class (defined in clr/src/vm/gcsmppriv.h)

class heap_segment

{

public:

 BYTE* allocated;

 BYTE* committed;

 BYTE* reserved;

 BYTE* used;

 BYTE* mem;

 heap_segment* next;

 BYTE* plan_allocated;

 BYTE* padx;

 BYTE* pad0;

#if ((SIZEOF_OBJHEADER+ALIGNFIXUP) % 8) != 0

 BYTE pad1[8 - ((SIZEOF_OBJHEADER+ALIGNFIXUP) % 8)];

#endif

 plug mPlug;

};

Heap segments can be chained together, and each has an instance of the heap_segment class, followed

directly by the actual heap, aligned appropriately for the local processor. The heap_segment header is

utilized throughout the CLI code via inlined accessor functions; to obtain the memory being used for object

storage in a segment, for example, the following function is used:

 inline

 BYTE*& heap_segment_mem (heap_segment* inst)

 {

 return inst->mem;

 }

These accessor functions are all declared along with their backing classes in gcsmppriv.h. A segment

contains various, self-explanatory pointers to allocated memory, and it also has a field named used which

points to the end of the currently initialized portion of the segment. (This is significant because the memory

lying beyond the used pointer is known to be zero initialized and hence does not need to be zeroed when

first used.) The other fields in heap_segment are used for calculating padding and offsets. Since the

garbage collector views objects as nothing more than chunks of memory, there is a fair amount of pointer

arithmetic required during access to the heap. To make this arithmetic efficient, quad-word alignment is

used.

Chapter 9: Managing Memory Within the Execution Engine | 242

As already discussed, live objects are partitioned into two generations. Objects allocated within the

quantum between two passes of the garbage collector are defined as being the same age, and once an object

has survived for the length of this quantum without becoming garbage, it is promoted to elder status.

Generational collectors operate on the assumption that elders do not need to be checked for liveness as

often as their younger counterparts. Because of this, the younger generation is referred to as the ephemeral

generation, since the younger the object, the more likely it is to become garbage. Although the SSCLI is

configured to have just two generations, the code is written to be very general, and can easily be changed to

accommodate more generations, as shown in Example 9-5.

Example 9-5. The generation class (defined in clr/src/vm/gcsmppriv.h)

class generation

{

public:

 // Don't move these first two fields without adjusting the references

 // from the _ _asm in jitinterface.cpp.

 alloc_context allocation_context;

 heap_segment* allocation_segment;

 BYTE* free_list;

 heap_segment* start_segment;

 BYTE* allocation_start;

 BYTE* plan_allocation_start;

 BYTE* last_gap;

 size_t free_list_space;

 size_t allocation_size;

};

An object‘s generation can be determined simply by comparing its address to the addresses of the

ephemeral generation boundaries. Not surprisingly, the member fields of generation include a segment

pointer and an allocation context, which is a small, zeroed out region of the segment from which objects are

allocated. When the allocation context pointer exceeds its internal limit, the allocator will make a call to get

another chunk of zeroed memory, which may trigger a collection. Also in the class are a free list and

bookkeeping fields, the use of which will become more obvious when we talk about reclamation later in

this chapter.

As demand for memory grows, the boundaries of both generations change. The growth of the ephemeral

generation is limited, since in the SSCLI this generation never spans more than one segment. However, if

there is not enough space for new objects within the original heap_segment, the heap is expanded by

adding additional segments to the elder generation. Because of expansion, the elder generation can

eventually consist of many heap segments chained together. Within any of these additional heap segments,

the oldest objects can usually be found at the lowest addresses, but the order may be scrambled because of

the effects of mark-and-sweep garbage collection or because of the presence of pinned objects, which are

objects that cannot be moved due to the existence of external pointers to their contents.

To avoid polluting the ephemeral generation with pinned objects, generation zero is always created afresh

after every collection. The memory that had belonged to the previous incarnation is either recycled into the

segment‘s reserved memory or else is added to the memory already used by the elder generation.

Understanding this detail should help understand why the generations are laid out in reverse order in the

initial heap segment: generation zero follows generation one in memory to simplify the expansion of the

generation one and reallocate generation zero from the reserve simple.

Large Object Allocation

Although it is convenient to think in terms of the garbage collector as a single heap partitioned into

generations, the actual implementation of the SSCLI is not this simple. The performance impact of garbage

collection can be huge, and it was important for implementers to capture opportunities to improve

performance, when possible. The performance characteristics of the garbage collector and the execution

engine are tightly interwoven, and because of this, the Shared Source CLI implementation employs a few

Chapter 9: Managing Memory Within the Execution Engine | 243

specialized strategies, the first of which is to treat very large objects differently than objects of more

―normal‖ size.

As previously explained, the garbage collector slices and dices its heap into multiple regions, reserving the

large object heap for objects over a certain size. The large object heap itself is further subdivided into an

area for objects that contain pointers to other objects and an area for objects that contain no pointers. Any

object that doesn‘t contain internal pointers does not need to be scanned recursively when the roots are

traced at collection time. Since in large objects the act of scanning for pointers can be very expensive, this

segregation makes sense. The two heaps that result can be seen in the gc_heap class, which is shown in

Example 9-6.

Example 9-6. Large object features of the gc_heap class (excerpted from clr/src/vm/gcsmppriv.h)

class gc_heap

{

public:

 static l_heap* make_large_heap (BYTE* new_pages, size_t size, BOOL managed);

 static CObjectHeader* allocate_large_object (size_t size,

 BOOL pointerp, alloc_context* acontext);

protected:

 static BYTE* allocate_in_older_generation (size_t size);

 static l_heap* lheap;

 static gmallocHeap* gheap;

 static large_object_block* large_p_objects;

 static large_object_block** last_large_p_object;

 static large_object_block* large_np_objects;

 static size_t large_objects_size;

 static size_t large_blocks_size;

 // many other fields and methods omitted

A singleton instance of the gc_heap class manages both the large object heap and the heap segments used

by the generational collector. To keep these separate, it implements two distinct methods for doing

allocation: allocate and allocate_large_object. Beside the two lists of large objects—lheap,

gheap, large_p_objects with internal pointers and large_np_objects without internal

pointers—this class has other members that relate to special-casing large object allocation, including the

threshold large_objects_size (defined in gc.h as 85,000 bytes) used to determine whether an object

should be allocated in the large-object heap.

The large-object heap itself is implemented using an open source malloc-style heap implementation, which

can be found in gmheap.hpp. Since this heap does not implement compaction, a long-running process that

has many large objects might experience some performance degradation from fragmentation of the heap.

How does the allocator know whether the large object being created contains internal pointers? Objects are

allocated based on their types, which are partially represented by a MethodTable at runtime (see Chapter

5). When the MethodTable for a type is created from metadata, the metadata is examined for references

to other types, and this is noted (along with whether the type qualifies for ―large object‖ status) in its flag

bits. Metadata comes to the rescue once again.

The Write Barrier

It is not uncommon that the only live reference to an object is found in an object that lives in a different

generation, a so-called cross-generational reference. By tracking which objects contain cross-generational

references, and by visiting these objects when performing a trace, the collector can scan the heap for these

root pointers very efficiently. The SSCLI‘s write barrier exists to facilitate exactly this approach.

A write barrier, as the name implies, is an entity that detects writes into memory when they occur. Such a

mechanism can be (and is) used for many different system-level purposes, including cache management

and virtual memory features. When used in the SSCLI, the write barrier is used to watch for any writes into

the heap of object references so that these heap-based roots can be located and so that pointers that refer to

Chapter 9: Managing Memory Within the Execution Engine | 244

them can be updated easily when their locations change. The write barrier narrows the amount of heap to be

scanned during garbage collection. Without a write barrier, the entire heap would need to be scanned to

correctly ferret out objects kept alive in the younger generation by intergenerational pointers, which would

be very expensive.

Since the CLI is a strongly typed execution environment with a carefully designed set of opcodes, all

pointer manipulations done by a piece of CIL code can be caught during compilation and made to use the

write barrier. Whenever the JIT compiler encounters an operation that stores a reference, it emits code not

only to perform the store, but also code to update a carefully maintained bitmap called a card table, which

reflects the pointer contents of the GC heap, as shown in Figure 9-5. (The origin of ―card table‖ might be

colorful, but alas, it is unknown to the authors.)

Card tables use 1 bit to represent 128 bytes of heap; the code in the SSCLI that implements the write barrier

actually works at a coarser grain than this, updating 1 byte at a time, which means that in actuality the

minimum unit tracked by the card table is a 1 KB region of the heap (128 bytes times 8 bits). The x86

assembly code used for this can be found as OrMaskUP in clr/src/vm/i386/asmhelpers.asm and is

implemented as a simple or instruction:

 or dword ptr [ecx], edx

Figure 9-19. A card table is a bit index for the GC heap

If the pointer value being written refers to an object in the ephemeral generation (which is the only

generation from which objects are copied), then the card table must be updated to reflect the location of this

pointer. The bit location to be updated is obtained using the gcard_of function, and 0xFF is masked into

it. Of course, this masking operation must correctly reflect the endian-ness of the processor.

The JIT compiler emits a helper function whenever memory containing a reference to an object in the

ephemeral generation is updated. This simple helper function, shown in simplified form in Example 9-8,

first updates the pointer and then calls FastInterlockOr.

Example 9-7. The JIT helper function that implements the write barrier (simplified from

clr/src/vm/gcee.cpp)

void JIT_WriteBarrier(Object **dst, Object *ref)

{

 *dst = ref;

 setCardTableEntryInterlocked(*(BYTE**)&dst, *(BYTE**)&ref);

}

There are several flavors of this helper function, but all are used in the same way. With the card table in

place and being updated, the garbage collector uses it during collection to search for object references that

are embedded in objects in the heap. For example, the function

copy_through_cards_for_segments (which we will revisit shortly) uses this technique. The

function, that scans every object in the elder generation designated by the write barrier as possibly updated,

Chapter 9: Managing Memory Within the Execution Engine | 245

takes a single parameter which is a callback function. This callback is invoked for each object found. Not

every object found will qualify (or will even have contained pointers), but overscanning is a safe strategy

to use, and the card table helps narrow the search. There is a corresponding function for large objects,

named copy_through_cards_for_large_objects.

A brick table is somewhat related to the card table; it is another interesting indexing structure and is

maintained alongside the card table in gcsmp.cpp. Brick tables are arrays of 16-bit signed integers that

cover the entire GC heap, much like a card table. Unlike the card table, which is a bitmap, each entry in a

brick table can be one of three things: a 16-bit positive offset, a negative displacement within the brick

table itself, or a special reserved value that is used as a flag. When the heap isn‘t being collected, a positive

entry means that there is an object at that offset in the 2 KB range that the entry describes. A negative

number, on the other hand, means that there is no object, but if you use the entry as a displacement in the

brick table, backing up as many slots as specified, you will find an object in that position. The flag value is

simply a marker that is used for initialization and large-object designation. Brick tables are used by the

collector to locate objects on the heap, given a range of addresses. For example, during a scan of the elder

generation using copy_through_cards_for_segments, the brick table is used to locate the first

valid object in a region marked as updated in the write barrier via the find_first_object function.

Both brick tables and card tables are kept up to date on the fly; much like a cache, they are not guaranteed

to be completely consistent.

Reclaiming Memory

Reclamation in the SSCLI consists of two principal steps: the copying of promoted ephemeral objects into

the elder generation, followed optionally by a sweep of the elder generation for dead objects. A copy

collection performed without a sweep is called an ephemeral collection to contrast it to a full collection. For

either kind of collection, an initial liveness trace is used to distinguish live from dead objects within the

generations that have been condemned (designated for collection); generation zero is traced alone for

ephemeral collection, while both generations are traced for full collection.

The SSCLI garbage collector, like many of the runtime services, is heavily instrumented

in logging . Not only does this help find and fix bugs, but it can also be very useful for

understanding how it works. Try setting the COMPlus_LogLevel environment

variable to 9 and the COMPlus_LogFacility environment variable to 0x80001

(which is a combination of the flag for logging the roots found and the flag for logging

collection itself) and both COMPlus_LogToConsole and COMPlus_LogEnable to

1, to watch the garbage collector in action when running your programs. If you really

want to go crazy, set COMPLus_GCtraceStart to 1, and you will see a live play-by-

play trace of every action. See sscli20/docs/techinfo/logging.html for detailed

documentation on logging.

To quickly and safely visit all objects during the trace, all threads running managed code are suspended

(except, of course, for the thread performing the GC). Each thread is brought to a ―GC safe‖ place before

being stopped by the execution engine and scanned for object references, as shown by the code in Example

9-5. Of course, suspending all threads is a very expensive operation and shouldn‘t be done lightly. Many of

the important implementation choices in building a garbage collector have to do with deciding when and

how to interrupt the flow of the running program‘s execution, and the mechanism that the SSCLI uses to do

this will be covered in more detail later in this chapter.

Promoting Ephemeral Survivors

The first step in any collection, after suspending all managed threads, is to promote all surviving live

objects from the ephemeral generation into the elder generation by copying them. The promotion algorithm

is straightforward: live objects are located using a recursive scan, copied into the elder generation, and

finally, any references to these copied objects are then updated to reflect their new locations. The code for

Chapter 9: Managing Memory Within the Execution Engine | 246

promoting objects to the elder generation can be found in the first half of the copy_phase method,

shown in Example 9-9.

Example 9-8. The first step in garbage collection is to promote the live objects in generation zero to the

elder generation (extracted from gc_heap::copy_phase in clr/src/vm/gcsmp.cpp)

 // Promote any objects referred to by cross-generational pointers

 copy_through_cards_for_segments (copy_object_simple_const);

 copy_through_cards_for_large_objects (copy_object_simple_const);

 // Promote any objects found on the stack or in the handle table

 CNameSpace::GcScanRoots(GCHeap::Promote, condemned_gen_number,

 max_generation, &sc, 0);

 CNameSpace::GcScanHandles(GCHeap::Promote, condemned_gen_number,

 max_generation, &sc);

 // Promote any object referred to from the finalization queue

 finalize_queue->GcScanRoots(GCHeap::Promote, heap_number, 0);

First, the elder generation and the large-object heap are scanned for references in the ephemeral generation.

If such roots are found, each object containing references is marked as live (for use by later mark-and-

sweep scans), and then the object(s) to which they refer are copied, using the

copy_object_simple_const callback function. After this, GCScanRoots walks the stack for each

managed thread, calling GCHeap::Promote for ephemeral object references that it finds.

The function GCScanHandles demands more explanation. Besides the heap and the stacks, there is an

additional control structure called the handle table that needs to be traced in the SSCLI. The execution

engine and other unmanaged code carefully track the differences between memory that is part of the

garbage-collected heap and memory that came from other sources. To do this, they use object handles to

hold references to managed component instances.

To facilitate the tracing of these handles, they are kept in tables associated with the application domain in

which the referenced object resides. (Handles are implemented in ObjectHandle.cpp in the

sscli20/clr/src/vm directory.) Since these tables contain pointers to heap-allocated memory, they are traced

as part of the garbage collector‘s search for the roots. However, since code that knows nothing about the

semantics of garbage collection may be using the memory referred to in these handles, the handles

themselves come in different flavors, each named after the client behavior that they have been designed to

accommodate. They are listed in Example 9-10, along with the macros that unmanaged code uses to

manipulate them.

Example 9-9. Common handle types and macros for manipulating them (ObjectHandle.h in

sscli20/clr/src/vm)

#define ObjectFromHandle(handle) HndFetchHandle(handle)

#define StoreObjectInHandle(handle, object) HndAssignHandle(handle,

object)

#define InterlockedCompareExchangeObjectInHandle(handle, object, oldObj) \

 HndInterlockedCompareExchangeHandle(handle, object, oldObj)

#define StoreFirstObjectInHandle(handle, object) HndFirstAssignHandle(handle,

object)

#define ObjectHandleIsNull(handle) HndIsNull(handle)

#define IsHandleNullUnchecked(pHandle)

HndCheckForNullUnchecked(pHandle)

#define HNDTYPE_DEFAULT HNDTYPE_STRONG

#define HNDTYPE_WEAK_DEFAULT HNDTYPE_WEAK_LONG

#define HNDTYPE_WEAK_SHORT (0)

#define HNDTYPE_WEAK_LONG (1)

#define HNDTYPE_STRONG (2)

#define HNDTYPE_PINNED (3)

Chapter 9: Managing Memory Within the Execution Engine | 247

In the same way that managed code shares the stack with unmanaged code, managed-heap memory must be

capable of holding pointers to unmanaged memory and resources, and unmanaged memory should be able

to hold pointers into the managed heap. The different handle types defined by these macros represent

different usage scenarios.

Strong references are ―normal‖ object references—they represent a pointer to memory, this pointer can be

moved as part of a compacting operation, and the pointer will always be traced. Pinned references, on the

other hand, are strong references that would be unsafe to move for some reason. In particular, pinned

references are often used to interoperate with code that is unaware of the conventions of the execution

engine; a pinned reference being used in this way will always need to stay in the same place so that the

external code can safely access the memory location directly. This, of course, prevents the memory from

being available for relocation; an object in this state can prevent compaction from consolidating unused

areas in a heap segment into a single range. Fortunately, pinning is relatively infrequent. Weak references

are object references that track, but do not keep an object alive. They are useful when implementing

finalization and other runtime services, and there are actually two different types of weak reference: weak

short and weak long. (We will talk more about the specifics of these in the ―Finalization‖ section of this

chapter. They are exposed through the System.WeakReference type in the Base Class Libraries,

which can be found in clr/src/BCL/System/WeakReference.cs.)

Returning once again to the promotion algorithm, the final place that is searched for ephemeral roots is the

finalization queue. Any objects that are referred to from objects awaiting finalization must be kept alive.

Even if the finalization queue is the only valid reference, they cannot be eliminated until finalization has

occurred.

Relocation Fix-Up

After ephemeral objects have been copied, outstanding references to them must be updated. The code that

does this is shown in Example 9-11.

Example 9-10. After ephemeral objects have been copied, references to them must be updated (extracted

from gc_heap::copy_phase in clr/src/vm/gcsmp.cpp)

// Fix up cross-generational pointers

copy_through_cards_for_segments (get_copied_object);

copy_through_cards_for_large_objects (get_copied_object);

// Fix up references on the stack and in the handle table

CNameSpace::GcScanRoots(GCHeap::Relocate, condemned_gen_number,

 max_generation, &sc);

CNameSpace::GcScanHandles(GCHeap::Relocate,condemned_gen_number,

 max_generation, &sc);

// Fix up references in objects awaiting finalization

finalize_queue->RelocateFinalizationData (condemned_gen_number, 1, FALSE, __this);

The same root locations that were visited during the trace are now visited to update references that were

found. During the original trace, when objects were being copied from the ephemeral generation into the

elder generation, the object instances being moved were updated so that their abandoned syncblock indexes

no longer contained valid integers but rather forwarding addresses for the new copies. (Note that this

implementation choice introduces a hard requirement: the syncblock index must be able to contain a

pointer.) As the relocation phase unfolds in Example 9-?, each of the original references is found once

again, and as they are found, a call to CObjectHeader::GetRelocated is used to update their

contents with the forwarding value from the old, now-invalid object:

 if (!IsPinned())

 return (BYTE*)*(((DWORD**)this)-1);

 else

 return (BYTE*)this;

Chapter 9: Managing Memory Within the Execution Engine | 248

After each reference is visited and updated with a forwarding address, all references will refer to object

locations in the elder generation. At this point, the ephemeral generation can be recycled or added to the

elder generation if pinned objects are found. With the exception of those pinned objects (which do not

move and hence need no updating), all ephemeral objects have been moved.

Marking the Elder Generation

The SSCLI garbage collector uses a mark-and-sweep algorithm as its reclamation strategy for the elder

generation. The tracing of live objects follows a similar path as did the ephemeral generation, although

cross-generational references does not need to be visited, since the objects containing these references will

have had their mark bits set as part of the preceding copying collection. Example 9-12 is a simplified

version of the code that performs the elder generation trace.

Example 9-11. Marking the elder generation (extracted from gc_heap::mark_phase in

clr/src/vm/gcsmp.cpp)

// Set up accumulator structure

reset_mark_stack();

// Mark objects referred to from the stacks or the handle tables

CNameSpace::GcScanRoots(GCHeap::Promote, condemned_gen_number,

 max_generation, &sc, 0);

CNameSpace::GcScanHandles(GCHeap::Promote, condemned_gen_number,

 max_generation, &sc);

// Mark objects referred to from the finalization queue

finalize_queue->GcScanRoots(GCHeap::Promote, heap_number, 0);

This code is nearly identical to what we saw for the ephemeral generation. Note that the trace uses the same

GCHeap::Promote callback function that was used during copying. Rather than using

copy_object_simple_const to do the work, however, during the mark phase, this callback uses

mark_object_simple to recursively set the mark bit on live objects. The call to

reset_mark_stack sets up a simple stack structure that is used as an accumulator during this recursive

visit. Stacks, handle tables, and the finalization queue are all marked, just as they were for the ephemeral

generation.

After a number of calls that perform bookkeeping (which we will examine at the end of this chapter), the

sweeping phase is begun with a call to sweep_large_objects, which removes any dead large objects

from the two linked lists containing large objects. At the conclusion of this function, all live objects in the

elder generation, whether newly copied, in the large object heap, or already resident, will have their mark

bit set for use during reclamation.

Reclaiming Memory by Sweeping

The gc_heap::sweep_phase function performs the actual reclamation of memory, during which dead

objects are converted into free list entries, ready to be used for the allocation of new objects in the elder

generation. The ephemeral generation, since it is created anew after every garbage collection, can use a

simple and fast allocation technique: new objects are appended from space at the end of its heap. The elder

generation, however, does not move the objects that it contains and, because of this, must use a more

complicated allocation algorithm. In this case, fragmentation is avoided by coalescing dead objects together

when possible (when they are contiguous), and then linking these dead zones together into a freelist, which

is used for first-fit allocation.

The SSCLI uses a nonobvious strategy for constructing this freelist. Since objects lie tightly packed in the

heap, and since the garbage collector uses knowledge of this to traverse the heap, it is desirable for dead

zones to appear to contain valid objects, even when these regions have been constructed through the

coalescence of multiple instances. To do this, the garbage collector converts the instances found in these

dead zones into a single instance of a reserved type used specifically to represent entries in the freelist. This

Chapter 9: Managing Memory Within the Execution Engine | 249

type is held in the global variable g_pFreeObjectMethodTable. Since each instance can be a

different length, the type is a subtype of System.Array. You can see how this type is constructed in

InitializeGarbageCollector, part of which is shown in Example 9-13.

Example 9-12. Constructing the special freelist MethodTable (excerpt from InitializeGarbageCollector in

clr/src/vm/ceemain.cpp)

// Build the special Free Object used by the Generational GC

g_pFreeObjectMethodTable =

 (MethodTable *) new (nothrow) BYTE[sizeof(MethodTable) - sizeof(SLOT)];

if (g_pFreeObjectMethodTable == NULL)

 return (E_OUTOFMEMORY);

// As the flags in the method table indicate there are no internal references

// in this filler object, which means that there is no gc descriptor, which in

// turn means that there is no need to adjust GCDesc.

// Since the instances need to vary in size, they should be Arrays

g_pFreeObjectMethodTable->m_BaseSize = ObjSizeOf (ArrayBase);

// This MethodTable needs no metadata - it is internal to the execution engine

g_pFreeObjectMethodTable->m_pEEClass = NULL;

g_pFreeObjectMethodTable->m_wFlags = MethodTable::enum_flag_Array | 1;

Using the g_pFreeObjectMethodTable to identify dead zones, and the array size field that occupies

the first word of instance data to hold the length of each zone, the heap remains tightly packed and

traversable. The second word of instance data is then used by the gc_heap::scavenge_phase

function (called from copy_phase) to link freelist objects together. All of this is shown schematically in

Figure 9-6.

Figure 9-20. Dead objects in the elder generation are coalesced and threaded together to

make up the freelist

The code that performs the final sweep, and sets up the pointers that link the freelist objects together, is

shown in Example 9-14 and is abridged from clr/src/vm/gcsmp.cpp.

Example 9-13. Sweeping the elder generation

void gc_heap::sweep_phase (int condemned_gen_number)

{

 generation* condemned_gen = generation_of (condemned_gen_number);

 // Reset the free list

Chapter 9: Managing Memory Within the Execution Engine | 250

 generation_free_list (condemned_gen) = 0;

 generation_free_list_space (condemned_gen) = 0;

 // Elder generation can have multiple heap segments, which are swept in order.

 heap_segment* seg = generation_start_segment (condemned_gen);

 BYTE* end = heap_segment_allocated (seg);

 BYTE* first_condemned_address = generation_allocation_start (condemned_gen);

 // Start with the first object on the heap

 BYTE* x = first_condemned_address;

 // The "plug" is a contiguous ranges of live objects. The "end of the plug"

 // refers to the start of a dead zone. When starting the traversal,

 // the only safe hypothesis is that the first object is garbage, making

 // the end of the plug equal to the current object. Plug_end will normally

 // point to the last live object in the last run of live objects.

 BYTE* plug_end = x;

 while (1) {

 // Whenever the end of the plug coincides with the end of the segment,

 // move to the next segment, if there is one.

 if (x >= end) {

 assert (x == end);

 heap_segment_allocated (seg) = plug_end;

 if (heap_segment_next (seg)) {

 seg = heap_segment_next (seg);

 end = heap_segment_allocated (seg);

 plug_end = x = heap_segment_mem (seg);

 continue;

 } else {

 break;

 }

 }

 if (marked (x)) {

 // Whenever a live (marked) object is found, start a new "plug"

 BYTE* plug_start = x;

 // Thread_gap builds the freelist to reflect the space between the end

 // of the last plug and the newly found live object. It also resets the

 // brick table. This, and clearing the marked and pinned bits, is the

 // real work of the sweep phase.

 thread_gap (plug_end, plug_start - plug_end);

 // Now build up the new plug, starting from first marked object.

 BYTE* xl = x;

 while (marked (xl) && (xl < end)) {

 // While building the plug, clear the mark and pin bits, since this is

 // the last time that they are used during this collection cycle.

 clear_marked_pinned (xl);

 xl = xl + Align (size (xl));

 }

 // Reset x and plug_end for next iteration before leaving

 x = xl;

 plug_end = x;

 } else {

 // Skip over objects that are not marked (which make up the free list)

 // There should normally be only one, of type g_pFreeObjectMethodTable.

 BYTE* xl = x;

 while ((xl < end) && !marked (xl)) {

 xl = xl + Align (size (xl));

Chapter 9: Managing Memory Within the Execution Engine | 251

 }

 // Reset x to be last dead object in run of dead objects.

 x = xl;

 }

 // Continue the traversal

 }

}

The sweep_phase function does three important things: it clears the mark and pin bits for live objects, it

threads the freelist together, and finally, it cleans up the brick table to reflect the disappearance of dead

objects that were converted into free space.

At the conclusion of the scan, the mark and pin bits, set during the trace, must be cleared, since they are

masked into the same memory location that holds an object‘s MethodTable pointer during normal

execution. Because these bits take up space in a value that is normally interpreted directly as a pointer, it is

critical that the bits be zeroed so that the address is not corrupted.

It is also important for the elder generation allocator to be able to walk the freelist, looking for blocks of

memory when new objects are allocated. This scan is enabled by writing a pointer value into the instance

data of freelist objects that points to the next entry. This pointer value follows the array size and occupies

the second word of instance data, and is used to find the next available block of memory. The freelist is

reconstructed after every mark-and-sweep cycle, to fold newly created gaps into the list.

By this point, it should be obvious that a tracing garbage collector needs to be able to find the complete set

of root objects to perform its trace. As you can see from the previous code, the roots for the SSCLI can be

found in the process stacks, the heaps, the handle table, and the finalization queue. We‘ve also seen the

code that handles intergenerational references, which are references that emanate from fields within

reference-typed objects. There is a final form of reference that is also a source of roots: interior pointers.

The SSCLI can handle stack-based interior pointers; it cannot refer to locations on the heap. Compilers can

pass references to these interior pointers as byref parameters in the same places that object references to

heap-allocated types can be passed.

Structuring Metadata for Collection

We have already touched on object layout in other chapters, but we should now look at it again in more

detail. All object instances begin with a pointer to their method table; as we have seen, the space allocated

for this pointer is overloaded during garbage collection to contain two critical bit flags, one for marking the

object as live and the other for marking the object as pinned. It is guaranteed that the normal activity of the

execution engine will be suspended during a collection, leaving the collector free to monkey around with

memory. Because of this, the garbage collector can get away with overlaying bit flags directly; the pointer

itself will always contain zeros in the necessary locations because of the way that memory is laid out, and

the execution engine will not try to redirect through the pointer during collection.

The MethodTable, as we saw in Chapter 5, contains more than just a table of method pointers. It is also

a useful place to store additional information related to garbage collection that is per-type rather than per-

instance. As an example of this kind of per-type information, a set of flag bits for MethodTable can be

seen in Example 9-15.

Example 9-14. MethodTable flags include garbage collection information (defined in clr/src/vm/class.h)

 enum

 {

 enum_flag_Array = 0x10000,

 enum_flag_large_Object = 0x20000,

 enum_flag_ContainsPointers = 0x40000,

 enum_flag_ClassInited = 0x80000,

 enum_flag_HasFinalizer = 0x100000,

 enum_flag_Sparse = 0x200000,

 enum_flag_Shared = 0x400000,

Chapter 9: Managing Memory Within the Execution Engine | 252

 enum_flag_Unrestored = 0x800000,

 enum_TransparentProxy = 0x1000000,

 enum_flag_SharedAssembly = 0x2000000,

 enum_flag_NotTightlyPacked = 0x4000000,

 enum_CtxProxyMask = 0x10000000,

 enum_InterfaceMask = 0x80000000,

 };

Both the flag for finalization and the flag used to designate objects with contained object references are

checked during collection. The large object flag is used by the SSCLI only for debugging; the large object

allocator uses a value that is defined in gc.h to determine membership in this set. The information about

proxies is also used during some collection phases, since proxies do not have instance data.

MethodTable can also contain data that is located at a negative offset to its this pointer, in the same

way that object instances were shown to store their syncblock index at a negative offset in Chapter 5. The

variable-length data associated with MethodTable, if present, consists of an instance of the

GCDescSeries class, seen in Example 9-16, which describes the location of object references within

instances of the type. (This information is per-type rather than per-instance.)

Example 9-15. The GCDesc structure (defined in clr/src/vm/gcdesc.h)

struct val_serie_item

{

 HALF_SIZE_T nptrs;

 HALF_SIZE_T skip;

 void set_val_serie_item (HALF_SIZE_T nptrs, HALF_SIZE_T skip)

 {

 this->nptrs = nptrs;

 this->skip = skip;

 }

};

class CGCDescSeries

{

public:

 union

 {

 size_t seriessize; // adjusted length of series

 val_serie_item val_serie[1]; // coded serie for value class array

 };

 size_t startoffset;

 // class continues

The garbage collector relies on the information in the CGCDesc to locate object references that are stored

in instance variables and arrays. To see how it is used, consider the go_through_object macro in

Example 9-17.

Example 9-16. go_through_object uses CGCDesc to find contained pointers (defined in

clr/src/vm/gcsmp.cpp)

#define go_through_object(mt,o,size,parm,exp) \

{ \

 CGCDesc* map = CGCDesc::GetCGCDescFromMT((MethodTable*)(mt)); \

 CGCDescSeries* cur = map->GetHighestSeries(); \

 CGCDescSeries* last = map->GetLowestSeries(); \

 \

 if (cur >= last) \

 { \

Chapter 9: Managing Memory Within the Execution Engine | 253

 do \

 { \

 BYTE** parm = (BYTE**)((o) + cur->GetSeriesOffset()); \

 BYTE** ppstop = \

 (BYTE**)((BYTE*)parm + cur->GetSeriesSize() + (size)); \

 while (parm < ppstop) \

 { \

 {exp} \

 parm++; \

 } \

 cur--; \

 \

 } while (cur >= last); \

 } \

 else \

 { \

 SSIZE_T cnt = (SSIZE_T)map->GetNumSeries(); \

 BYTE** parm = (BYTE**)((o) + cur->startoffset); \

 while ((BYTE*)parm < ((o)+(size)-plug_skew)) \

 { \

 for (SSIZE_T __i = 0; __i > cnt; __i--) \

 { \

 HALF_SIZE_T skip = cur->val_serie[__i].skip; \

 HALF_SIZE_T nptrs = cur->val_serie[__i].nptrs; \

 BYTE** ppstop = parm + nptrs; \

 do \

 { \

 {exp} \

 parm++; \

 } while (parm < ppstop); \

 parm = (BYTE**)((BYTE*)parm + skip); \

 } \

 } \

 } \

}

This macro walks through the pointer series contained in the CGCDesc instance to locate contained object

references and is used when tracing roots that emanate from cross-generational pointers. The CGCDesc is

also used when tracing the stack; when a value type or an array is encountered, the stackwalk uses it to find

any interior references that need to be added to the mark set. The CGCDesc runtime structure is filled in

when the MethodTable is initially populated; see the BuildMethodTable method of EEClass in

class.cpp for the gory details.

Scheduling Collection

We‘ve already seen the JIT compiler‘s role in maintaining the write barrier on behalf of the garbage

collector. The compiler has another equally important role to play with regard to garbage collection

scheduling in the SSCLI. Garbage collection, although it is triggered by the allocator running out of space,

can occur only when all threads are at safe points in their execution and yield control to the collector. In

Rotor, your thread will trigger a GC only when it asks for a collection explicitly, when it performs an object

allocation, or else when it is running JIT-compiled code that polls. The last case involves generating calls

from within the JIT compiler that offer to yield the thread if necessary. The helper function that the JIT

inserts to implement polling is shown in Example 9-18.

Example 9-17. The JIT compiler marks good places to perform a collection (summarized from

clr/src/vm/jithelpers.cpp)

void JIT_PollGC()

{

 FC_GC_POLL_NOT_NEEDED();

Chapter 9: Managing Memory Within the Execution Engine | 254

 Thread *thread = GetThread();

 if (thread->CatchAtSafePoint()) // Does someone wants this thread stopped?

 {

 HELPER_METHOD_FRAME_BEGIN_NOPOLL(); // Set up a frame

 CommonTripThread(); // Indicate we are at a GC safe point

 HELPER_METHOD_FRAME_END();

 }

}

The JIT emits calls to this trap in places that might cause a piece of code to take a long time to complete. It

uses one simple rule to place these calls: trap at all backward branches in the execution path (conditional

branches, jumps with negative offsets, or leave operations). CommonTripThread indicates to the

thread-scheduling machinery that it would be safe to suspend the thread and perform a collection. For

example, consider the following simple C# application:

 class MainApp {

 public static void Main() {

 int i = 0;

 do {

 i++;

 } while (i < 1000);

 }

 }

When compiled using the JIT compiler in the SSCLI, the x86 code for the loop portion (extracted using the

SOS debugger extension that ships as part of the SSCLI distribution) is as follows:

 02d42d3b e2fc loop 02d42d39

 02d42d3d 33c0 xor eax,eax

 02d42d3f 8945f0 mov [ebp-0x10],eax

 02d42d42 8b45f0 mov eax,[ebp-0x10]

 02d42d45 50 push eax

 02d42d46 b801000000 mov eax,0x1

 02d42d4b 59 pop ecx

 02d42d4c 03c1 add eax,ecx

 02d42d4e 8945f0 mov [ebp-0x10],eax

 02d42d51 8b45f0 mov eax,[ebp-0x10]

 02d42d54 50 push eax

 02d42d55 b8e8030000 mov eax,0x3e8

 02d42d5a 50 push eax

 02d42d5b b8dbd43779 mov eax,0x7937d4db

 02d42d60 ffd0 call eax (mscorejt!JIT_PollGC)

 02d42d62 58 pop eax

 02d42d63 59 pop ecx

 02d42d64 3bc8 cmp ecx,eax

 02d42d66 0f8cd6ffffff jl 02d42d42

Don‘t fret if you don‘t know x86 assembler. Because the do loop had a backwards branch at the while

keyword, the compiler emitted this polling operation into the instruction stream to ensure timely garbage

collection.

When the JIT compiler emits traps, it is asserting that the code is at a safe point, and that it has made sure

that the scratch registers do not contain any object references. In addition, if collection is triggered

immediately after a method return instruction that returns an object reference, it must be sure to protect the

exposed object reference from being incorrectly scavenged.

Chapter 9: Managing Memory Within the Execution Engine | 255

Finalization

There is an obvious problem with using automatic memory management in conjunction with pointers to

unmanaged resources: when components hold references to nonmanaged resources that need to be

explicitly disposed of, it is necessary to make sure that the resource is disposed of before the object is

collected. The CLI supports a concept called finalization to solve this problem. Finalizable objects are

placed on a special weak reference list when created. The collector monitors this list and when all strong

references to a finalizable object are released, moves the reference from the weak list to the finalization

queue, which continues to keep the object alive. (We saw the finalization queue appear in numerous scan

examples earlier in this chapter.) The finalization thread will go though the list of objects in a lazy fashion

and call the finalization method on each object. If an object does not become reachable again as a result of

being finalized (remember, arbitrary code is being run within the finalization method that can reestablish

references!), the finalization reference will be released, and the object will be collected in a normal fashion.

One interesting issue for programmers is that garbage collection happens at unpredictable

times, depending on the algorithm and the load. Because of this, it is sometimes desirable

to go beyond finalization and revert to an old-fashioned disposal pattern, in which

programmers are required to explicitly ―close‖ resources by calling a Dispose method

directly. The code for the Base Class Libraries that is contained in sscli20/clr/src/bcl uses

this convention in many places, and it is well documented in the .NET SDK

documentation.

To make a component eligible for finalization, it should override the Object.Finalize method, as in

Example 9-19. (In C#, finalization is done using the object destructor syntax, which produces code that

overrides Finalize.) The Finalize method can have a negative impact on performance, however,

since there is extra bookkeeping involved. Because of this, the mechanism should be used only when

necessary.

Example 9-18. Adding a destructor to the echo component will trigger its finalization

 ~ Echo {

 System.Console.WriteLine("Echo component is finalizing!");

 // if any external resources were being held, release here

 }

The C# compiler turns the destructor body into a method named Finalize that has the correct signature.

But how is this method called at the correct time? The heart of the finalization thread, which watches for

objects that are ready for finalization, is shown in Example 9-20.

Example 9-19. The SSCLI finalization loop (excerpt from clr/src/vm/gcee.cpp)

FinalizerThread->SetBackground(TRUE);

BOOL noUnloadedObjectsRegistered = FALSE;

while (!fQuitFinalizer) {

 // Wait for work to do...

 FinalizerThread->EnablePreemptiveGC();

 WaitForFinalizerEvent (GCHeap::hEventFinalizer);

 // The finalizer thread is a good place to do small work items

 if (FinalizerThread->HaveExtraWorkForFinalizer()) {

 FinalizerThread->DoExtraWorkForFinalizer();

 }

 FinalizeAllObjects(NULL, 0);

 // Schedule any objects from an unloading app domain for finalization

 // on the next pass, even if they are reachable. It may take several passes

Chapter 9: Managing Memory Within the Execution Engine | 256

 // to complete the unload, if new objects are created during finalization.

 if (GCHeap::UnloadingAppDomain != NULL) {

 if (!FinalizeAppDomain(GCHeap::UnloadingAppDomain,

 GCHeap::fRunFinalizersOnUnload)) {

 if (!noUnloadedObjectsRegistered) {

 // There is nothing left to schedule. However, there are

 // possibly still objects left in the finalization queue.

 // We might be done after the next pass, assuming

 // we don't see any new finalizable objects in the domain.

 noUnloadedObjectsRegistered = TRUE;

 } else {

 // We've had 2 passes seeing no objects - we're done.

 GCHeap::UnloadingAppDomain = NULL;

 noUnloadedObjectsRegistered = FALSE;

 }

 } else {

 noUnloadedObjectsRegistered = FALSE;

 }

 // Anyone waiting to drain the queue can now wake up. Note that there is a

 // race in that another thread starting a drain, as we leave a drain, may

 // consider itself satisfied by the drain that just completed. This is

 // acceptable.

 SetEvent(GCHeap::hEventFinalizerDone);

}

Note that reclamation will require at least two garbage collection cycles. On the first pass, objects from the

finalization queue that are ready for finalization are detected and marked as ready for finalization. In the

interim, the finalization thread becomes active and calls FinalizeAllObjects, which ultimately

results in a call to the CallFinalizer method on the MethodTable class. This, in turn, will cause the

object‘s Finalize method to be called from the context of the finalizer thread, as shown in Example 9-

21. At this point, a future garbage collection will find the dead finalized objects, since all references, both

weak and strong, have been eliminated. (The object is no longer in the queues, nor anywhere else in the GC

root set.)

Example 9-20. Constructing the call to the finalizer (defined in clr/src/vm/methodtable.cpp)

void MethodTable::CallFinalizer(Object *obj)

{

 MethodTable *pMT = obj->GetMethodTable();

 if (pMT == g_pThreadClass)

 {

 // Finalizing Thread object requires ThreadStoreLock. It is expensive if

 // we keep taking ThreadStoreLock. This is very bad if we have high

retiring

 // rate of Thread objects.

 // To avoid taking ThreadStoreLock multiple times, we mark Thread with

TS_Finalized

 // and clean up a batch of them when we take ThreadStoreLock next time.

 // To avoid possible hierarchy requirement between critical finalizers, we

call cleanup

 // code directly.

 CallFinalizerOnThreadObject(obj);

 return;

 }

 // Notify the host to setup the restricted context before finalizing each object

 HostExecutionContextManager::SetHostRestrictedContext();

 // Determine if the object has a critical or normal finalizer.

 BOOL fCriticalFinalizer = pMT->HasCriticalFinalizer();

Chapter 9: Managing Memory Within the Execution Engine | 257

 // There's no reason to actually set up a frame here. If we crawl out of the

 // Finalize() method on this thread, we will see FRAME_TOP which indicates

 // that the crawl should terminate. This is analogous to how KickOffThread()

 // starts new threads in the runtime.

 SLOT funcPtr = pMT->GetSlot(g_pObjectFinalizerMD->GetSlot());

 OBJECTREF orThis = ObjectToOBJECTREF(obj);

 GCPROTECT_BEGIN(orThis);

 MethodDescCallSite objectFinalizer(g_pObjectFinalizerMD, &orThis, TypeHandle(),

 fCriticalFinalizer);

 ARG_SLOT arg = ObjToArgSlot(orThis);

 objectFinalizer.Call(&arg);

}

Since the finalization method is standard, its MethodDesc can be shared, and it is stored in a static

variable. After many marks and moves, the object is told to eviscerate itself, and life goes on.

There is one final wrinkle to finalization, which has to do with object handles. Objects that are being

tracked using weak handles have two options with regard to their finalization behavior. In particular, since

there is latency involved with objects resting in the finalization queue, it is possible to resurrect objects that

had been eligible for collection. Of course, these objects may or may not have had their Finalize

methods called. To give programmers control over this, there are two different flavors of weak handles—

weak short and weak long. Weak long handles are designed to track resurrection, while weak short do not.

In Example 9-22, we revisit the copy_phase method one last time to see how handles are checked (there

is similar code in mark_phase). After objects have been left for dead, weak short handles can be cleaned

up, and the dead objects must be added to the finalization queue if necessary. This code shows where these

bookkeeping activities are performed.

Example 9-21. Finalization housekeeping (extracted from gc_heap::copy_phase in clr/src/vm/gcsmp.cpp)

 // After promotion check to see whether short weak pointers can be eliminated

 CNameSpace::GcShortWeakPtrScan(condemned_gen_number, max_generation, &sc);

 // After promotion, check for objects that can now be finalized

 finalize_queue->ScanForFinalization (condemned_gen_number, 1, FALSE, __this);

Summary

We‘ve seen many ways in which Rotor provides automatic memory management on behalf of managed

code. The JIT compiler colludes with the code manager (for stack walking) and the metadata system to

track every object reference that exists in code being managed by the execution engine. Any object instance

that is in use will have at least one outstanding reference to it; because of this, instances that are no longer

needed can be detected by recursively ―tracing the roots,‖ or walking all known live references. The

difference between the complete set of object references and the set of live references yields garbage, or

memory that can be reclaimed.

Rotor uses a hybrid generational copying strategy for memory reclamation. When an object is allocated, the

new instance is classified as either a normal object or a large object. Large objects are allocated from a

special pool of memory and are managed as a simple linked list. Normal objects are allocated first within

the ephemeral generation, a compact heap that uses a fast and simple allocation scheme. Instances with

short lifecycles can come and go in this generation during the span of a single collection cycle; since the

heap that backs the generation is fully reallocated on every cycle, their memory is reclaimed as old

instances are overwritten. To avoid clobbering live objects, any object in the ephemeral generation that is

found to be live when collection occurs has new space allocated for it in the elder generation and is

relocated. Elder objects are never again moved; objects in this generation that are no longer needed are

discovered during tracing and moved onto a freelist, from which their space can be recycled.

Chapter 9: Managing Memory Within the Execution Engine | 258

The process of finding root references and tracing from them is complex but fascinating. The runtime stack,

since it holds variables and parameters (as well as internal object instances such as the security object), is a

fertile source of roots. The JIT compiler, as it computes the layout of method activation records, notes

where object references will occur in a method‘s activation record. This information, along with similar

information provided by frames on the stack, is used by the garbage collector when it is seeking live

objects. The objects themselves can also contain subreferences. When type metadata is loaded and memory

layout is computed, the class loader doing the work builds descriptions of the locations at which object

references will be found within the type being loaded. This information is used by the garbage collector as

it searches for live objects.

The heap used by the garbage collector is also a source of roots. The collector keeps several indexing

structures, known as brick tables and card tables, to accelerate the process of scanning the heap for live

objects. These indexes are maintained not only during garbage collection, but also at runtime. The JIT

compiler assists in this process by emitting code that maintains a write barrier: every time an object

reference is assigned a new value from managed code, the emitted code records this fact in the card table

on behalf of the garbage collector. Using cards and bricks, the heap can be scanned efficiently.

Other sources of roots are the handle tables that belong to application domains and the finalization queue.

During collection, these are visited and scanned for live objects, just as the stack and heap are scanned.

The garbage collector is triggered by resource scarcity (or by programmatic invocation) and begins its

search for root objects by suspending the execution of all managed threads. Once all roots have been traced,

the garbage collector promotes any surviving ephemeral objects to elder status, updates object references to

reflect these relocations, executes finalization code as necessary, and prepares its freelist for further use by

the allocator by sweeping any dead objects in the elder generation into it. At this point, execution can be

resumed until another collection cycle is triggered.

Chapter 10: Interlude: Enabling Component Integration with Metadata | 259

10. Interlude: Enabling Component

Integration with Metadata

We‘ve now met all of the major actors in the CLI component model. Types, which are programmers‘

specifications about component structure and behavior, are the core around which the CLI is built.

Transforming these types into processor-specific values and weaving these values into the native

instruction stream is the runtime task of the CLI‘s execution engine, and is done using a combination of

loaders, runtime services, and the JIT compiler.

In the data-driven world of the CLI, the representation of types constantly unfolds during the process of

loading and execution. There is an incremental, but constant, build-up of data associated with types. This

build-up is caused by the collaboration between the facilities of the execution engine as type metadata is

poked, prodded, transformed, augmented, and annotated. While the CLI lays out data and creates code, and

ushers types and their instances through their lifecycles, the execution engine not only consumes metadata,

but also produces large volumes of it.

Altering Metadata Representation

Consider the process of moving type information into and out of assemblies. If you carefully examine the

code that makes up the metadata implementation, you will discover that there are two completely different

codepaths: one for creating and modifying editable metadata, and another for mapping read-only metadata

into memory. Programmers know that the existence of two implementations often implies conflicting

requirements. In this case, easily editable metadata must take on a radically different runtime shape than the

compact, fast-loading, and efficiently searchable metadata that is loaded from disk with assemblies. For

editable metadata, the data structures are connected using pointers, since they are frequently altered and

rearranged. For read-only metadata, the data is carefully arranged using optimized layouts in advance, since

speed and size make all the difference. It makes sense to have multiple views, escpecially from a

performance prospective where significant speed gains can be made by keeping readily accessed data ―hot‖

in the on-chip caches of the CPU.

As metadata is used throughout the CLI execution engine, additional specialized views are built that

augment what is already there. Remember from Chapter 5 that a separation exists between ―hot‖ data that is

used constantly at runtime versus ―cold‖ data that is used when compiling methods or reflecting. The

organization of metadata within the execution engine, since it is most often used to provide efficient

runtime access to type information, bears little resemblance to the assembly metadata from which it is

derived. Within an assembly, metadata is structured to be ready to scan and efficient to map from

secondary storage directly into memory, while within the execution engine, the same data is factored into a

pointer-based graph that facilitates traversal by various execution engine services. The metadata contained

in the EEClass and the MethodTable, although derived directly from assembly metadata, has been

transformed.

Likewise, when a type is loaded, the data that represents its structure is moved from abstract, passive form

into a processor-specific form. In this case, the assembly metadata is also actually augmented by the

execution engine‘s built-in knowledge of the local execution environment. For example, native byte order

and processor word length are pieces of knowledge that the execution engine implementation adds to the

original processor-independent metadata to give more specific context.

Chapter 10: Interlude: Enabling Component Integration with Metadata | 260

Transforming Metadata in the CLI

The sequence of annotation, transformation, and continuous refinement results in constant production of

metadata and interpretation of that metadata. As we mentioned in Chapter 1, this sequence defines a data-

driven architecture, onto which it is easy to graft new services. The integration costs of a data-driven

architecture for extensibility are low compared to one based on API definitions, and since component

integration is the most important feature enabled by the CLI specification, a data-driven architecture is the

right choice for the task. Using this approach, one subsystem‘s data becomes another subsystem‘s

executable code. (The programming community has known this since the fifties, and it is as good an idea

now as it was then.)

Figure 10-1 shows some of the transformations and augmentations that occur in the SSCLI. Starting from

the left, an abstract type, written as code in a high-level programming language, is transformed by a high-

level compiler into CIL and type metadata, which is bundled into an assembly. After this, file loaders,

module loaders, and class loaders sequentially transform an on-disk PE file to an in-memory structure that

is optimized for the JIT compiler and the execution engine. With these structures in place, the JIT compiler

can produce native code from the intermediate representation. Unlike traditional compilers, a JIT compiler

makes decisions in the context of the current execution environment; as it generates native code it also

verifies for typesafety and makes layout decisions. It enriches already present in-memory data structures

with new information for the code access security engine, the garbage collector, and the exception-handling

mechanism.

Figure 10-21. The CLI’s sequential transformation and augmentation of types.

Once native code has been produced, this code is executed under the control of the execution engine. The

execution engine continues to annotate the type, maintaining information about its memory use and

injecting frames and exception handlers into the runtime stack. The runtime bookkeeping, of course, is

based on information that was originally provided by the high-level language compiler, the loaders, and the

JIT compiler. The execution engine simply builds on what was available. As components are created and

referenced by other components, the execution engine allocates and tracks resources for their use, cleans up

after their demise (whether clean or exceptional), and protects them from one another.

The chain of metadata augmentation and annotation does not need to stop at this point. In fact, two of the

most useful runtime services in the CLI, serialization and remoting, extend it even further.

Serializing Components by Using Metadata

To many programmers, the task of serializing component state is numbingly familiar. Every time that a

component needs to be ―saved,‖ whether for preservation in a database, for transmission via XML, or for

the purposes of copying the component into another process, its state needs to be squirreled away. In the

past, this was often a manual process, despite the repetitive nature and highly structured characteristics of

the task. Each component needed custom (and bug-prone) code to move its state from memory into a

stream or a file; this code was typically matched to a separate routine that could read the saved state back

into a new object during the process of reconstituting the original object.

The act of transforming a component‘s data so that it can be transferred or saved is often called either

serialization or externalization. In the CLI, thanks to the presence of metadata, externalization has become

considerably easier. To convert a component instance (or graph of instances) into some storage-oriented

format, an automatic serialization service only needs to examine the member types of the component and

apply a set of generic pickling routines to these members to move their values in and out of storage. When

pickling values in this way, moving state from a component instance into storage is typically what‘s called

Chapter 10: Interlude: Enabling Component Integration with Metadata | 261

serialization, though the term tends to be used somewhat more generally, and when moving state from

storage back into an instance, deserialization. The service that performs both serialization and

deserialization in the SSCLI is implemented in the System.Runtime.Serialization namespace,

and features a set of types that have been engineered to provide pickling via Formatter objects and

serialization via the ISerialize interface and the Serializable custom attribute.

Creating Proxies Using Metadata

Besides having the information needed to externalize component state, the execution engine also has

enough metadata to create proxy objects, which mimic other objects by conforming to the type signature of

the object that they mimic. Instead of implementing type-specific behavior, proxies generically forward any

and all operations to other objects, as shown in Figure 10-2.

Figure 10-22. Forwarding proxy objects can be created automatically using metadata.

In Figure 10-2, a proxy object forwards operations to a ―real‖ instance of its underlying type. By doing this,

the proxy appears to behave exactly as though it were an instance of the underlying type. Proxy objects

such as this are frequently used in distributed computing to provide location transparency. The proxies

stand in for remote object instances that cannot or should not be moved, giving the impression that local

instances exist. The SSCLI has a complete remoting subsystem, including support for this kind of

transparency. The code is complicated but worth examining; generic behavior can be automatically

provided by using metadata to create fields and methods that stand in for their remote counterparts.

Even when running in a single process, proxies are used to provide isolation between application domains

in the SSCLI. The implementation of a proxy lives in code implemented as part of the execution engine,

and because of this, the SSCLI can rely on it to stand between instances that reside in different domains and

enforce safe separation.

Types are always loaded in the context of an application domain, and that application domain serves to

isolate type implementations from one another. Isolation itself is implemented by using frames on the stack

to mark transitions, by enforcing code access security, and by automatically emitting special code that

creates and uses proxy-based communication. With remoting barriers in place, components can

communicate safely without leaving themselves vulnerable to faults or malicious behavior.

Metadata in Action

The thing that programmers spend the most time doing today is jiggering and adapting code for the

purposes of integration: moving from format to format, from place to place, from API to API, or from

operating system to operating system. Programming was once largely about algorithms and clever

performance tricks, but in today‘s connected world in which programs are built by combining third-party

components, it is much more about mapping, copying, integrating, and communicating intelligibly.

Rich, runtime-available metadata makes it possible to do such operations automatically, by ―rule.‖ On the

surface, this would seem to be a statement about programmer productivity, but it is actually deeper, since

metadata standards enable meaningful communications in an extensible way. By providing standard ways

to refer to types and behaviors across processor types and across time, the CLI enables stable

interoperability, and once stable interoperability is available, large component ecosystems will form.

Appendix A: The Platform Adaptation Layer | 262

Appendix A: The Platform Adaptation

Layer

The SSCLI 2.0 distribution had no major Platform Adaption Layer updates or changes, so

what was originally Chapter 9 of this book, has now been attached as an appendix.

Because we wanted to focus on shipping as early as possible after the production CLR

went live (Whidbey 2.0 CLR), we decided it was best to concentrate on the platforms

with the widest reach: x86 and Windows. As a result, the PowerPC and FreeBSD PAL

code remain unchanged (but still attached to the 2.0 distribution).

Portability is a key design goal for Rotor. To achieve portability , all of the code in the distribution is

written against an API layer, called the Platform Adaptation Layer (PAL), which hides the differences

between underlying operating systems and provides consistent operating semantics. Since Rotor started life

as a large Win32 application, it should come as no surprise that the PAL mimics a subset of the Win32

API. Only the subset absolutely required by the SSCLI and its supporting tools is implemented, however,

which means that there is does not need to be any support for graphics, most of COM, the Windows

registry, Active Directory, or other features commonly used by Windows programmers.

This chapter, rather than act as a comprehensive catalog of the PAL‘s nooks and crannies, will instead visit

the areas most crucial to understanding the CLI mechanisms described in earlier chapters, since Rotor‘s

runtime infrastructure heavily depends on the operating systems constructs provided by the PAL. In

Chapter 6, for example, the sections ―Threads,‖ ―Synchronizing Concurrent Access to Components,‖ and

―Handling Component Exceptions” referred repeatedly to the PAL‘s threading and synchronization model,

as well as its structured exception-handling facilities. Chapter 7, in its discussion of ―Organizing and

Allocating Dynamic Memory,” highlighted the reliance of Rotor‘s heaps on virtual memory (and how

different uses of virtual memory features can impact application performance). By examining the PAL

implementation from an internal perspective, the implications of design choices made in higher-level code

should become clearer.

PAL Overview

The PAL is actually two things: a specification and an implementation of that specification. The

specification, located in docs/techinfo/pal_guide.html, describes the minimum subset of the Win32 API that

a PAL implementation must provide. (Writing a richer PAL would be fine, but the code in Rotor

wouldn‘t care.) It also specifies, on a per-API basis, which features of a function need to be implemented.

Those who need to understand the PAL specification in detail will need to read it with a

copy of Microsoft‘s MSDN documentation near at hand. The PAL specification is written

to call out differences in behavior from the baseline Win32 API rather than as a

standalone description of correct behaviors.

In addition to the PAL, Rotor includes the code for a dynamically loadable library referred to as the PAL

runtime, which implements a number of additional Win32 APIs. These implementations do not depend on

Appendix A: The Platform Adaptation Layer | 263

the hosting operating system; they are completely implemented within their library and do not need to

interact with external resources. Since they are self-contained, they do not need to be reimplemented for

each new PAL; they are essentially internal support functions for the SSCLI implementation.

The Rotor distribution provides two PAL implementations: one for Win32 (XP and Windows 2000) and

one for Unix operating systems that has been ported and tested on FreeBSD (Versions 4.5-4.7) and Mac OS

X (Version 10.2).

Could another Win32 API layer or emulator be used to support Rotor? The PAL

specification calls out the Win32 APIs that must be implemented in order for Rotor to run

correctly, and the existence of two distinct implementations in the code has proven that

this approach works. In theory, other Win32 layers could be linked against Rotor to

replace the PAL, although it is highly likely that many bugs and subtle compatibility

problems would have to be fixed to make this work. PAL-specific functions would also

have to be implemented, and the Rotor build process modified, to accommodate this

change. Nonetheless, another new PAL implementation could certainly be created by

adapting code from other sources.

One might question why a PAL is provided for Win32, since the API is literally a subset of the Win32 API

plus a small number of additional functions. There are four reasons:

PAL-specific APIs

There are 20 APIs in the PAL that are not in Win32 at all. These APIs can be identified by the PAL_

prefix to their names. Good examples of these APIs are the PAL_Initialize and

PAL_Terminate APIs, located in pal/win32/win32.c. These APIs are called by the program hosting

the PAL before the first and after the last PAL API is used, and encapsulate startup and termination

tasks.

More portable abstractions

In several cases, Win32 does not provide a distinct and separable set of APIs for a given task, although

the task is needed within the CLI implementation. For this small number of cases, it made sense to

construct new abstractions in the PAL layer. PAL_Random and

PAL_GetUserConfigurationDirectory are two examples of this approach.

Development conveniences

During the development of the SSCLI, having a PAL allowed the development team to catch cases in

which code was inadvertently using functionality that was outside the PAL specification, through the

use of parameter validation in the checked build. The code to do this was left in the Win32 PAL so that

anyone making future modifications to the SSCLI could do the same kinds of validation on their own

modifications.

Event logging

One extremely powerful debugging technique for a complex system, such as the SSCLI, is to log

important events that occur during execution to narrow down the source of a problem. The

development team implemented a logging mechanism in both the Win32 and the Unix PALs to assist

in debugging failures.

An important design point for the PAL was that, with the exception of C runtime calls, calls from the

SSCLI should flow through the PAL before using operating system resources, making it a place where

impedance-matching code could be placed. The thickness of this impedance-matching code varies,

depending on the services offered by an underlying operating system and how closely they match the

semantics specified by the PAL. Not surprisingly, the Win32 PAL is quite thin, while the Unix PAL is

much more substantial. Unless otherwise noted, the remaining sections of this chapter refer to the Unix

PAL.

Appendix A: The Platform Adaptation Layer | 264

Common Infrastructure

Before going through the sections of the PAL that support the subsystems already discussed in this book,

two areas need to be explored that are important plumbing details but not directly seen by PAL consumers:

shared memory and the handle manager . Remember that although the PAL is represented by an API, the

API has code behind it that manages operating system resources on behalf of the programmer. In the case

of the Unix PAL, the visibility of Windows resources is very different than the visibility of resources

within the Unix process hierarchy. To implement the looser Windows semantics, shared memory is used

by the Unix PAL to make data available to any Unix process that is using the services of the CLI execution

engine. A set of one or more processes that share a shared memory segment in the Unix PAL are referred to

collectively as a PAL process group .

The term ―process group‖ can be confusing, since a process group does not always need

to consist of multiple Unix processes. In fact, it is normal for a single Rotor PAL process

to live within a single Unix process. Even when this is the case, we will refer to this

singleton process as a process group in an effort to differentiate PAL processes, Unix

processes, and shared process groups .

Many of the Win32 resources within a PAL process group are represented to programmers using opaque

handles. Handles are used as parameters to the calls that manipulate them, such as WriteFile or

SuspendThread. (Not all APIs use handles. The WinSock API, for example, exposes and manages its

own opaque token, called a socket.) The handle manager tracks the handles that are in use, and maintains

the associations between internal data structures and their handles.

Sharing Memory Between Unix Processes

A PAL process group uses a segment of shared memory to share its state between Unix processes. A

debugger, for example, might need to share operating system state with the managed processes under its

control. The PAL would use its shared memory as a shared database of system resources to support this

scenario. (There is also a small amount of shared configuration information that can be computed directly

and does not need to occupy shared memory.) Figure 9-1 shows how sharing is implemented for a single

PAL process group.

There are a number of structures that are stored in the shared memory:

SHMPROCESS

Defined in pal/unix/thread/process.h, this is used to keep track of PAL processes that are members of a

process group.

SHM_NAMED_OBJECTS

This is a list of named objects associated with a given PAL process group. (See the later section ――The

Handle Manager‖― in this chapter for a discussion.)

Appendix A: The Platform Adaptation Layer | 265

Figure Error! No text of specified style in document.-23. Many operating system

processes may share a single PAL process group and its shared memory segment.

SHMFILELOCKS

Defined in pal/unix/include/pal/file.h, this is used to keep track of access rights to open files associated

with a PAL process group.

HREMOTEOBJSTRUCT

This is used by the handle manager and can be found in pal/unix/handlemgr/handle.c.

GLOBAL_FILE_MAPPING_OBJECT

Found in pal/unix/map/map.c, this enables other processes to access memory-mapped objects.

GLOBAL_EVENT_SYSTEM_OBJECT

This is used when working with events to access named events from other processes. It can be found in

pal/unix/sync/event.h.

GLOBAL_MUTEX_SYSTEM_OBJECT

Defined in pal/unix/include/pal/mutex.h, this is used to make mutexes accessible to other processes.

The implementation of shared memory can be found in pal/unix/shmemory/shemory.c. It is based on the

Unix mmap system call. Access to shared memory is controlled by a lockfile (see SHMInitialize) and a

spinlock mechanism (see SHMLock and SHMRelease). Each PAL process that joins a process group is

responsible for determining whether shared memory has been initialized.

Processes hosting the Unix PAL will share the same memory segment if they are run using the same

dynamically loaded library and a matching user ID. The uid at the time that the process was launched,

along with the inode of librotor_pal .so on FreeBSD, or librotor_pal.dylib on Mac OS X,

determine this. PAL processes don‘t need to have an ancestor/child relationship to share their state. As long

as the same uid is used to launch them and the same librotor_pal runs both, they use the same shared-

memory region.

How Much to Share?
The criteria that determine when a PAL is shared, the user ID and the library‘s inode, may not be

appropriate for all situations. The current settings keep different implementations of the PAL and

their users quite isolated, which is good for experimentation during development. Security settings

are also scoped to user identity (as can be seen in the code for the caspol utility), which is an

important factor.

Appendix A: The Platform Adaptation Layer | 266

If the SSCLI were to be used in other settings, it might make sense to make its PAL more shared,

perhaps by dropping its user ID partitioning.

A file to back the shared-memory region is created from within the SHMInitialize call, which uses

PALGetPalConfigDir to find the directory in which to place this file. The config directory itself comes

from INIT_InitPalConfigDir in pal/unix/init/pal.c, which creates directories that follow a

/tmp/.rotor-pal-<uid>-<inode> convention.

Once a PAL process has been initialized, SHMLock enters a critical section (discussed in ―Synchronizing

Processes and Threads‖) to ensure that only one of the process‘ threads is attempting to obtain the lock.

Having obtained the critical section, it then calls InterlockedCompareExchange (defined in

pal/unix/arch/<architecture>/interlock.c) on a spinlock located in the shared-memory header. If the

spinlock is set to 0, no one holds it; otherwise, it will contain the process ID of the lock holder. If some

other process holds the lock, SHMLock will loop, testing the value until the lock is released. To enable

other threads and processes to run without waiting, the code makes calls to the operating system to yield its

time to other processes. SHMRelease simply resets the spinlock to 0 and releases the critical section

obtained in the SHMLock code.

The use of a spinlock might seem like an odd choice; why not use a SysV mutex instead?

Originally, this was the design choice, but on FreeBSD 4.5, the mutex implementation is

not pthread-friendly. When any thread in the process blocked on a SysV mutex, the

kernel would stop scheduling the entire process until the mutex was unblocked. The

spinlock code works correctly on all platforms, but there is a good efficiency argument to

be made for looking for better mechanisms on other platforms.

The PAL‘s shared memory segment is structured as a series of segments, as shown in Figure 9-2, to which

pointers can be found in shm_segment_bases in shmemory.c.

Each segment contains a SHM_SEGMENT_HEADER , which contains the name of the next segment and an

array of pointers that reflect the beginnings and ends of memory pools within the segment. There are four

different memory pools in each segment, one each for 16-, 32-, 64-, and 520-byte objects. (520 is twice the

value of Windows‘ MAX_PATH, so long Unicode strings used for pathnames will fit in a buffer of this size.

The mismatch between Unix and Windows maximum path lengths might cause problems; this is something

to be aware of.) The total size of each of these pools is determined when the segment is added to the shared

memory region; initially, the calculation in SHMInitialize divides the available memory in the

segment evenly between each of the pools. Subsequent additions in SHMAddSegment allocate memory to

each pool in a new segment using the ratio of memory currently in use by all pools in all other segments

that contain the same-sized objects. Once allocated, the pool size in a segment cannot be changed. Since

each pool contains fixed-sized objects, once the pool size is set and the end pointer is established, the

memory manager can treat the pool as an array of fixed-size elements.

The first segment is distinguished from any that follow, because it contains three additional pieces of

information in memory after its SHM_SEGMENT_HEADER. The first of these is the location where the

segment‘s spinlock can be found. After this, for each of the pools, an array header points to the size-

specific free block lists. Finally, there is an array of pointers to linked lists containing the three classes of

data stored in shared memory: SHMPROCESS, SHM_NAMED_OBJECTS, and SHMFILELOCKS.

The free lists are created initially when pools are reserved for each segment. If a block is free, it contains a

next pointer to another free block (which is initially the next item in the pool). When subsequent segments

are allocated, the additional pools that they contain are added to this list. A count

Appendix A: The Platform Adaptation Layer | 267

Figure Error! No text of specified style in document.-24. The PAL’s shared-memory

layout.

of free items in each pool across all segments is also maintained as part of the SHM_POOL_INFO structure

in the first segment, which is shown in Example 9-1.

Example Error! No text of specified style in document.-1. The structure of a shared-memory pool

(defined in pal/unix/shmemory/shmemory.c)

typedef struct

{

 int item_size; /* size of 1 block, in bytes */

 int num_items; /* total number of blocks in the pool */

 int free_items; /* number of unused items in the pool */

 SHMPTR first_free; /* location of first available block in the pool */

} SHM_POOL_INFO;

When an allocation is requested, SHMalloc determines which pool‘s item_size will be large enough

to contain the allocation and then consults the number of free_items in that pool. If free blocks exist,

the block at the head of the list is returned and the number of free blocks is decreased. Otherwise a new

segment is allocated. (It is important to note that the SHMPTR that is returned actually contains two pieces

of data: the segment ID from which the allocation came and the offset into the segment. Thus, the pointer

cannot be used directly, but instead must be dereferenced through the macro SHMPTR_TO_PTR.)

For SHMFree, the SHMPTR is first decomposed to recover the segment to which the allocation belongs.

After this, a series of sanity checks are performed on the SHMPTR‘s offset to ensure that the block was

Appendix A: The Platform Adaptation Layer | 268

actually handed out by the shared-memory allocator and to identify the pool to which it belongs. The block

is inserted as the first free block in the free block list, the current head pointer is injected into the freed

block as a next pointer, and the head pointer is updated. Finally, the number of free blocks is increased by

1.

The linked lists of SMHPROCESS, SHM_NAMED_OBJECTS, and SHMFILELOCKS are each built by the

respective portions of the PAL that store these data structures. The array in the first segment is provided for

their use—no other portion of the shared memory keeps track of those lists.

The Handle Manager

The PAL makes extensive use of handles to identify the resources that the PAL creates, operates on, and

destroys. The HANDLE data type is defined in pal/rotor_pal.h as a void*, to be opaque. The consumer of

a HANDLE does not need to understand what backing data structure the HANDLE refers to—but only that it

is an identifier for the object in question. The PAL itself can internally disambiguate the type of a handle by

examining the type field in the handle header, as shown in Example 9-2.

Example Error! No text of specified style in document.-2. The HOBJSTRUCT used to represent PAL

handles, along with their valid types (defined in pal/unix/include/pal/handle.h)

typedef enum

{

 HOBJ_PROCESS,

 HOBJ_THREAD,

 HOBJ_FILE,

 HOBJ_MAP,

 HOBJ_SEMAPHORE,

 HOBJ_EVENT,

 HOBJ_MUTEX,

 HOBJ_LAST, // this is not a type, it is a convenience value

} HOBJTYPE;

struct _HOBJSTRUCT

{

 HOBJTYPE type;

 /* callback functions for type-specific work */

 DUPHANDLEFUNC dup_handle;

 CLOSEHANDLEFUNC close_handle;

};

The handle manager, located in pal/unix/handlemgr/handle.c, is responsible for tracking handles and their

backing data. At the core of the handle manager is an array, handle_table, of HANDLE_SLOT

structures. Each HANDLE_SLOT contains three fields: a pointer to the HOBJSTRUCT shown in Example 9-

2, a lockcount used to track the number of times that the handle has been locked so that it is not

incorrectly deleted or modified, and a field named closing used to signal when the handle is being

closed.

To generate the value for a handle, the index into handle_table is offset by 1 and multiplied by 4,

duplicating the Win32 semantics in which all handles are multiples of 4, and 0 represents a null handle.

Using this scheme, the handle code can easily convert a handle into an index in handle_table. The

macros HANDLE_TO_INDEX and INDEX_TO_HANDLE perform this conversion.

The HOBJSTRUCT structure has a type field of HOBJTYPE, which enumerates all possible resource types:

PROCESS, THREAD, FILE, MAP, SEMAPHORE, EVENT, and MUTEX. For each handle type, there is a

corresponding structure defined in the portion of the PAL that deals with that type, such as the

MUTEX_HANDLE_OBJECT. Each of these data structures defines an HOBJSTRUCT as its first field. By

doing this, any of these structures may be cast to an HOBJSTRUCT, and the handle code does not need to

know anything about their details.

Appendix A: The Platform Adaptation Layer | 269

The two additional fields in HOBJSTRUCT, close_handle and dup_handle, contain function

pointers used to close the resource and duplicate the handle. These functions are supplied by the subsystem

in the PAL that defines the type-specific handle. Again, code does not need to understand the details of

each handle type to close or duplicate handles. It simply defers to a PAL subsystem using the helper

functions provided. (This is good, old-fashioned ANSI C object-oriented code. Perhaps C++ is good for

something after all.)

Handles are allocated in a way that helps catch bugs that arise from handle recycling (which are

characterized by code that frees a handle, allocates another, and depends on the second to be the same as

the first). The allocator maintains a singly linked list of free handles in the handle table; the head is in

free_handle_list and free_handle_list_tail is the final element. These values hold indexes

in the handle_table array. Handles on the free list use the object field to hold the index in the next

free element in the list.

Initially, all handles are on the free list. When a handle is allocated, the handle at the head of the list is

used, and the object field points to a resource-specific handle data structure. When a handle is released,

it is placed at the tail of the linked list. The allocation and freeing of the resource-specific handle data

structure is the responsibility of the PAL subsystem responsible for the resource in question.

As with Win32, the opening or creation of a handle occurs during a resource-specific API, such as

OpenFile. Duplication and closing, as we have seen, are general routines. (Not every handle can be

duplicated. The PAL specification calls out those that can be.) Handles are closed when their

lock_count, maintained by HMGRLockHandle/HMGRUnlockHandle, reaches 0 and their closing

flag is set. The actual call to the handle-specific close_handle routine is made by

HMGRUnlockHandle. If there are any handles still open when HMGRStopHandleManager is called

during PAL shutdown, the corresponding close_handle calls are made unconditionally.

Processes and Threads

The SSCLI provides a rich set of threading features to the developer, and because of this, it makes some

heavy demands on the operating system beneath its PAL. The PAL specification requires support for:

 Process creation

 Process termination

 Process exit code access

 Interprocess memory access

 Interprocess communication using memory mapping

 Interprocess communication using events

 Inheritance of standard handles through process creation

Between the C runtime, POSIX system calls, and pthreads (the POSIX threads package), the Unix PAL has

most of what it needs to implement these features on Mac OS X and FreeBSD.

PAL Processes

The model for process isolation in the PAL is simple: each process created is mapped to an underlying

operating system process. The first process is created by a program that wishes to host the PAL, which can

then create additional subordinate processes by calling CreateProcess . (CreateProcess, as with

many Win32 APIs, comes in two related flavors: CreateProcessA for use with ANSI string arguments

and CreateProcessW for use with Unicode string arguments.) The API ensures that the executable file

being used is either a valid CLI PE file or else a native executable. If it is a CLI executable, the name of the

application launcher, clix, is prepended to the command line. From there, the Unix PAL uses fork to

create the new process and execve to launch it, inheriting standard filehandles if requested.

Appendix A: The Platform Adaptation Layer | 270

Information about processes is divided between two important data structures defined in

pal/unix/thread/process.h: the PROCESS and the SHMPROCESS . Processes also contain an additional

structure, INITIALPROCINFO, which contains the command line and current directory used to launch the

process. One PROCESS structure is allocated for the initial process, as well as for each Win32 process that

is created via a call to CreateProcess or OpenProcess. The SHMPROCESS structure is shared

across the PAL process, primarily for the use of debuggers, and so it is allocated in shared memory and

reference-counted. (It is deleted by the closeProcessHandle helper when all outstanding references

are removed.) Each PROCESS structure contains a pointer to its corresponding SHMPROCESS structure.

All of these relationships are demonstrated in Figure 9-3, which shows two Unix processes, one

subordinate to the other, sharing a single PAL process group. Process 1 belongs to the program hosting the

PAL, while Process 2 was created with a call to CreateProcess. Within Process 2, there are two

process handles pointing to the same PROCESS, implying a call to DuplicateHandle.

Figure Error! No text of specified style in document.-25. The relationship of PROCESS,

INITIALPROCINFO, and SHMPROCESS.

The first PROCESS within a program hosting the PAL is created by a call to PAL_Initialize, which in

turn calls PROCCreateInitialProcess to set up necessary scaffolding within a hosting process.

Initialization can be performed automatically on Unix by including the header file clr/src/inc/palstartup.h.

Using simple macrology, this header file redefines the main entrypoint as PAL_startup_main and

then interposes its own main function, shown in Example 9-3, which takes care of initialization and that

the PAL_Terminate function will be called when the process exits. Lastly, this function does is chain to

the ―real‖ main from within a call to exit, which executes the hosting program transparently.

Example Error! No text of specified style in document.-3. The PAL is initialized by hooking a hosting

program’s main entrypoint (defined in clr/src/inc/palstartup.h)

int _ _cdecl main(int argc, char **argv) {

 if (PAL_Initialize(argc, argv)) {

 return 1;

 }

 atexit((void (_ _cdecl *)(void)) PAL_Terminate);

 exit(PAL_startup_main(argc, argv));

 return 0;

}

Looking at the PROCESS structure itself, which is reproduced in Example 9-4, notice how the

HOBJSTRUCT header for this handle is embedded as the first element of the structure. This layout

technique of beginning with the handle header, which enables easy access via casting and was discussed in

the section entitled ―The Handle Manager,‖ is used throughout the PAL for entities represented by handles.

Example Error! No text of specified style in document.-4. The PROCESS structure is used to track Unix

processes associated with the PAL (defined in pal/unix/thread/process.h)

typedef struct _PROCESS

Appendix A: The Platform Adaptation Layer | 271

{

 HOBJSTRUCT objHeader;

 HANDLE hProcess;

 DWORD dwMagic;

 DWORD processId;

 DWORD refCount;

 CRITICAL_SECTION critSection;

 INITIALPROCINFO *lpInitProcInfo;

 SHMPROCESS *shmprocess;

 PROCESS_STATE state;

 DWORD exit_code;

} PROCESS;

Within the PROCESS structure, the handle‘s type will always be HOBJ_PROCESS, and its type-specific

close and duplicate helper routines will be closeProcessHandle and dupProcessHandle, which

can be found in pal/unix/thread/process.c. The handle manager is called to assign the actual handle value

found in hProcess, as follows:

 lpProcess->hProcess = HMGRGetHandle((HOBJSTRUCT *) lpProcess);

To track the underlying process, the processID field contains the value returned by getpid. Calls to

the PAL API GetCurrentProcessID return this field directly. The refCount field is used to keep

track of the number of references to a process, and is increased by calls to dupProcessHandle and

decremented by closeProcessHandle. Once the refCount goes to 0, the underlying process is

freed.

The exit_code and state fields are used to implement the routine GetExitCodeProcess. The

PAL uses the system routine waitpid to obtain the exit code of a child process. The catch is that once a

process has exited, waitpid may only be called once. If the data is needed at some later time, it must be

stored. Since Win32 allows a PAL consumer to call GetExitCodeProcess on a process handle as

often as it likes, the implementation of this API first checks the state field, which it uses to determine

whether an exit code has been cached in the exit_code field. If the state is set to PS_DONE, the

exit_code field already contains the exit code for the process. Otherwise, exit_code is filled by

calling waitpid in nonblocking mode, as shown in Example 9-5.

Example Error! No text of specified style in document.-5. Retrieving a process exit code (Extracted from

pal/unix/thread/process.c)

wait_retval = waitpid(process->processId, &status, WNOHANG);

if (wait_retval == process->processId) {

 /* success; get the exit code */

 if (WIFEXITED(status)) {

 *exit_code = WEXITSTATUS(status);

 } else {

 *exit_code = EXIT_FAILURE;

 }

 *state = PS_DONE;

}

Finally, the dwMagic field within the PROCESS structure deserves some explanation. A field of this name

is used to perform validity checking, not only for processes, but also for threads, semaphores, and events.

Each has a dwMagic field following its HOBJSTRUCT header and each sets the dwMagic field to a

known value that is unique for its type—PROCESS_MAGIC in the case of a process object. When the Unix

system entity that they track is no longer valid, their dwMagic field will be set to NULL.

Appendix A: The Platform Adaptation Layer | 272

The dwMagic field is checked by type-specific routines named isValidsystypeObject. These

routines check that the dwMagic field is non-NULL and that it matches the known value for the type, and

are called before operations that depend on the underlying system object being valid.

Controlling PAL Processes

Once a PAL process has been created, it can be further manipulated using the Win32 process APIs that are

implemented as part of the PAL. These include GetCurrentProcess, OpenProcess,

ExitProcess , and TerminateProcess.

GetCurrentProcess returns the handle of the current process. Following the definition of this API in

the PAL specification, the handle that is returned is a special handle that the PAL recognizes as the current

process. The handle‘s value is taken from the variable hPseudoCurrentProcess and has the value

0xFFFFFF01.

In the PAL API subset, OpenProcess is used only to support debuggers or other development tools. (If

you are not building tools, you will probably never need to call it.) Given a processID, OpenProcess

will return a process handle that can then be used with other APIs. Only PAL processes within the same

process group may be opened in this way. The SHMPROCESS structures for a process group are searched,

and if a matching process is found, a new PROCESS structure is created, the refcount is incremented, and

the process handle is returned.

ExitProcess is the main PAL function for shutting down a process cleanly and is shown in Example 9-

6.

Example Error! No text of specified style in document.-6. ExitProcess is the main PAL shutdown function

(summarized from pal/unix/threads/process.c)

ExitProcess(IN UINT uExitCode)

{

 DWORD old_terminator;

 old_terminator = InterlockedCompareExchange(&terminator,

 GetCurrentThreadId(),0);

 if(GetCurrentThreadId() == old_terminator) {

 if (!PALIsInitialized()) {

 exit(uExitCode);

 } else {

 PROCEndProcess(GetCurrentProcess(), uExitCode, FALSE);

 }

 } else if(0 != old_terminator) {

 // If another thread ending process, sleep for a really long time

 poll(NULL,0,INFTIM);

 }

 if (PALInitLock() && PALIsInitialized()) {

 PROCQueueDllMainCalls(); LOADCallDllMain(DLL_THREAD_DETACH);

PROCEndProcess(GetCurrentProcess(), uExitCode, FALSE);

 } else {

 exit(uExitCode);

 }

 /* this should never get executed */

 PALInitUnlock();

}

A normal exit begins with the highlighted call to PROCQueueDllMainCalls, which ensures that

DLL_THREAD_DETACH events are posted to each dynamically loaded library. (Note that there is no

guarantee that these events will actually be received by the libraries on any thread besides the calling

thread, as the PAL specification makes clear.) After this, the DllMain entry point for each library is called

Appendix A: The Platform Adaptation Layer | 273

directly with DLL_PROCESS_DETACH as a parameter. Finally, TerminateProcess is called from

within PROCEndProcess.

TerminateProcess is a simple routine, whose real work is done in a call to PROCCleanupProcess,

which first corrals other threads in the process by suspending them (discussed later in ――Suspending and

Resuming PAL Threads‖―). After the process‘ threads are under control, any libraries loaded through

LoadLibrary and still resident are unloaded, all mutexes are abandoned, and PALShutdown is called.

Having successfully shut down the PAL, HMGRStopHandleManager is invoked to stop the handle

manager and close any currently open handles, and finally SHMCleanup is called to shut down access to

shared memory and remove the current process from the list of client processes that make up the PAL

process group.

TerminateProcess is a lower-level entry point and should be used by PAL consumers only in extreme

situations where immediate exit with no cleanup is required. Internally, TerminateProcess is used

when a critical error occurs for which the only solution is to kill off the process.

Threads

Rotor‘s C# frameworks depend on the CLI‘s threaded execution model for concurrency, and the Rotor

implementation itself makes heavy internal use of threads within the execution engine and within its build

tools. The semantics of threading , however, vary widely from operating system to operating system. The

PAL takes care of hiding these differences beneath a single set of APIs.

Like PAL processes, PAL threads have a one-to-one correspondence with an underlying thread. The Unix

PAL uses the pthreads library for this purpose, backing each PAL thread with a matching pthread.

Although the pthreads library provides a solid basis, there are a number of areas in which the PAL‘s

threading requirements differ from the features provided by the pthreads package, including interthread

synchronization. There are also Win32 features for which there are no pthread equivalents, such as queued

Asynchronous Procedure Calls (APCs). To support the additional features demanded by the PAL

specification, a fairly thick layer of code wraps and extends the pthreads package within the Unix PAL.

The representation of PAL threads within the PAL is very similar to the representation of PAL processes.

The thread itself has a THREAD structure that contains its state and that begins with an HOBJSTRUCT

followed by a handle and a dwMagic field. Also contained in this struct is a field named dwThreadID,

which is used to store the pthread‘s thread identity number, and a field to contain the thread‘s current

THREAD_STATE, named thread_state. Valid thread states are defined as follows:

TS_STARTING

A thread with this state is being created. It is used for debugging purposes.

TS_RUNNING

A thread with this state is in the normal running state.

TS_FAILED

This state is used to indicate that a thread has failed initialization. It is used as an internal signal

between CreateThread and the worker function THREADEntry (whose use is described shortly,

in the discussion of CreateThread).

TS_DONE

A thread with this state has finished executing and is either being destroyed or has been destroyed. It is

used to prevent reentrancy problems that would result from other threads accessing its state during

destruction and to keep the THREAD structure alive after the destruction of its underlying pthread so

that its exit code can be retrieved.

Appendix A: The Platform Adaptation Layer | 274

TS_DUMMY

This special state indicates that the THREAD represents a process as a whole rather than a pthread. The

PAL uses this type of thread when creating a process that starts in a suspended state.

Much like GetCurrentProcess, the PAL reserves a special handle to represent the current thread,

which has a value of 0xFFFFFF03 and is stored in the variable hPseudoCurrentThread. This handle

is returned by the GetCurrentThread API.

Threads are created using the CreateThread API, which is actually implemented as two mutually

dependent, but distinct, functions: THREADCreateThread and THREADEntry. The first of these is

called directly, allocating and initializing a THREAD structure and handle and requesting that a platform-

specific thread be created on its behalf. The second function, however, is not called directly. Instead, it is

called from the new thread once it has been spawned. THREADEntry allocates and initializes any runtime

resources that must be associated with the context of the new thread.

There are three reasons for creating threads using this two-step mechanism:

Thread-specific initialization

Some of the thread initialization sequence needs to occur prior to a new pthread being created, while

other parts must occur in the new thread‘s context, such as the initial setup for structured exception

handling.

Initially suspended threads

The pthread_create function does not support creating threads in a suspended state. To

implement this feature for the PAL, there needs to be point at which control can be suspended before

any client code is run.

Graceful failure

While some of the code in THREADCreateThread could migrate to THREADEntry, the general

strategy is to do work that might need to be undone prior to creating the actual pthread. In this way,

backing out of THREADCreateThread remains as simple as possible.

Once a thread has been created, it is scheduled based on its priority. Mapping the PAL‘s concept of thread

priority to the POSIX thread priority scheme takes a little work. PAL thread priorities run from

THREAD_PRIORITY_IDLE to THREAD_PRIORITY_TIME_CRITICAL (which correspond to the

integer range -15 to 15). In the POSIX world, however, there are no fixed minimum and maximum thread

priorities. Instead, a thread runs with a scheduling policy that has its own concept of minimum and

maximum priority. To map the Win32 approach onto the POSIX approach, SetThreadPriority

retrieves the underlying pthread‘s scheduling policy as well as its minimum and maximum limits. The

requested PAL priority is then normalized against the reported range and added to the minimum pthread

priority. The underlying pthread is updated with the normalized number, while the originally requested

(nonnormalized) thread priority is stored in the threadPriority field in the THREAD.

PAL threads, like PAL processes, can either exit gracefully (via ExitThread) or be terminated abruptly

(via TerminateCurrentThread). ExitThread calls DllMain for each loaded library with a

parameter value of DLL_THREAD_DETACH and cleans up other runtime structures, such as the thread‘s

hostent structure (used by the networking code). As with processes, most of the real work of

ExitThread is performed by the lower-level termination function. In TerminateCurrentThread,

outstanding mutexes are abandoned, support buffers are freed, and threads that are waiting on the thread

being terminated are removed from the waiting thread list and are awakened. After these tasks have been

performed, the number of remaining threads in the process is checked, and if the thread being terminated is

the final thread, TerminateCurrentProcess is called. Otherwise, the thread is removed from the list

of threads in the process, and the thread-specific data that remains is cleaned up. As with all handle-based

objects, the thread data structure does not disappear automatically—if there are outstanding references to

the object, it remains allocated until the final reference is released (or until the process closes).

Appendix A: The Platform Adaptation Layer | 275

Thread Local Storage

Thread Local Storage (TLS) is a useful feature that allows a PAL consumer to associate data with a

particular thread, so it can be retrieved later in that thread‘s context. To use TLS, a programmer requests a

slot by calling TlsAlloc. If a slot is available, an LPVOID-sized piece of memory is allocated in each

thread in the process, which can have its value set using TlsSetValue and be retrieved with

TlsGetValue. The PAL implements TLS as a process-wide 64-bit bitmask, sTlsSlotFields, which

is used to keep track of slot reservations, and a per-thread array, tlsSlots, which is a member of the

THREAD structure.

The pthreads package has an API named pthread_key that could have been used to implement TLS

slots, but this approach was rejected in favor of the simple, array-based mechanism described here. In

particular, the SSCLI implementation depends on having zeroed memory in TLS slots, and bugs on some

flavors of Unix prevented this from always being true.

Synchronizing Processes and Threads

The CLI was designed to provide programmers with numerous design alternatives when creating

components and when grouping components together into collaborative systems. Many of these have to do

with using boundaries, such as processes, threads, and application domains, to package and protect

component instances. To enable collaboration between components protected in this way, the PAL must

not only support creating the boundaries, but also communicating across them. To complement the several

kinds of isolation provided by the PAL to component implementers, the PAL also provides a rich set of

synchronization primitives.

The Win32 synchronization mechanisms provided by the PAL are:

Critical sections

Critical sections are regions of code that are protected in such a way that only one thread at a time may

enter the region and execute code.

Mutexes (mutual exclusion objects)

Mutexes are locks used to protect resources that guarantee ownership by a single thread at a time. A

mutex can be used by multiple processes simultaneously; one thread from one process will be given

ownership at a time.

Events

Events allow the programmer to send a message from one thread to another. Events can be used to

communicate between threads in different processes.

Semaphores

Semaphores act as a gate and allow a limited number of threads (up to a programmable maximum) to

enter. Rotor‘s PAL limits the use semaphores to a single process.

Processes and threads

The PAL has the ability to wait for the termination of a process or a thread, which is a form of

synchronization.

To implement these mechanisms in the PAL, a bewildering number of mapping choices were available in

the form of Unix synchronization primitives. After evaluation, the venerable Unix pipe, a workhorse that is

portable, works both cross-thread and cross-process, and has the blocking granularity of a single thread,

was selected as the basis for all of the PAL‘s synchronization mechanisms, save critical sections , which are

implemented using the pthread package‘s own mutex mechanism. We will discuss both approaches in turn.

Appendix A: The Platform Adaptation Layer | 276

Critical Sections

A critical section (often referred to in the code as a critsec) is a programming device used to enforce

mutual exclusion between threads. A thread that is running code protected by a critical section is

guaranteed that no other thread in its process can be running the same code at the same time. Once a critsec

is released, there is no guarantee as to which pending thread will be granted ownership. In addition, there is

no mechanism for detecting when a critsec has been abandoned by a thread that has exited, which means

that deadlocks can occur when threads unexpectedly terminate. The structure used to represent a critical

section in the PAL is shown in Example 9-7.

Example Error! No text of specified style in document.-7. Critical sections are widely used in the PAL’s

multithreaded code (defined in pal/rotor_pal.h)

typedef struct _CRITICAL_SECTION {

 PVOID DebugInfo;

 LONG RecursionCount;

 HANDLE OwningThread;

 HANDLE LockSemaphore;

} CRITICAL_SECTION, *PCRITICAL_SECTION, *LPCRITICAL_SECTION;

Calls to EnterCriticalSection and LeaveCriticalSection are used to bracket sections of

code to be protected. They can be acquired recursively by a single thread (typically in nested calls), and the

RecursionCount field is used to record the number of times the critical section has been acquired in

this way. A critsec that has been acquired multiple times on a thread must be released the same number of

times. The OwningThread field contains a handle to the thread that currently owns the critical section,

with NULL being used to indicate no owner.

While the LockSemaphore field looks as though it might be a handle to a PAL object, it is actually a

pointer to a pthread_mutex_t, which is a type defined by the POSIX threading library. Each PAL

critical section has a corresponding pthread mutex. The pthreads implementation maps quite well to the

Win32 critical section APIs: pthread_mutex_lock corresponds to EnterCriticalSection,

pthread_mutext_unlock corresponds to LeaveCriticalSection, and

pthread_mutex_trylock corresponds to TryEnterCriticalSection.

The pthreads mutex implementation is very different from the Win32-style mutex

implementation found in the PAL. The PAL‘s implementation is described in the later

section ――Mutexes‖.‖

The routines EnterCriticalSection and LeaveCriticalSection are wrappers over the PAL‘s

SYNCEnterCriticalSection and SYNCLeaveCriticalSection routines. These two functions

are used internally within the PAL, and each take an additional parameter that is used to indicate when a

call is being made from within the PAL. This distinction is important for the implementation of thread

suspension and resumption, which is discussed in the ――Suspending and Resuming PAL Threads‖― section

of this chapter.

The BlockingPipe and the ThreadWaitingList

Every THREAD has a single pipe associated with it, called its blocking pipe. The file for this pipe, created

by createBlockingPipe, can be found in the configuration directory for the PAL process group, and

the filename is a

Exploring Lock Contention

Appendix A: The Platform Adaptation Layer | 277

The DebugInfo field is part of a useful piece of debugging infrastructure for detecting and

reporting lock contention , which is a situation where threads are blocked excessively, because

they are all trying to access the same shared resource at the same time. (The use of this field for

lock contention analysis is specific to the PAL. On Windows, this field is opaque to the

programmer.)

The contention-detection code for critical sections is conditionally compiled under the

REPORT_LOCK_CONTENTION macro and is not normally enabled. DebugInfo is a count that

is incremented each time a thread attempts to enter the critsec and fails. When the critsec is

destroyed, if the DebugInfo count is greater then 1, a message is printed to stderr reporting the

address of the critsec and the value of the critsec‘s DebugInfo. For critsecs with very high lock

counts, the code using the critsec should be inspected to see if the locking can be removed or

performed over a smaller range of code.

combination of the process ID, the thread ID, and the string .rotor_pal_threadpipe. For example, a

thread with a PID of 1064 and a TID of 657840 might have the name /tmp/.rotor-pal-503-

1067299/.rotor_pal_threadpipe-1064-657840. Using canonical names like this, it is easy for one PAL

process to locate the thread pipe for a thread in another process using only information that it has in its

handles.

Threads signal one another in various communication patterns by using synchronization objects as

notification channels. When a thread wishes to be signaled by a synchronization object—for example, in

response to a call to WaitForSingleObject—a thread adds itself to a structure called a thread waiting

list, which is associated with the object in question. This is done using an object-specific routine, such as

MutexAddThreadToList. After adding itself to this list, the thread then blocks by calling poll on its

blocking pipe. Eventually, when the object wishes to wake up the thread by signaling from a different

thread, the signaling object opens the blocking pipe and writes a wakeup code, which brings the thread

back from the poll call. At this point, the original thread can remove itself from the object‘s thread

waiting list, again using an object-specific routine such as MutexRemoveWaitingThread.

As you can see from this discussion, waiting on the blocking pipe is central to the operation of almost all of

the PAL‘s synchronization mechanisms. The data structure ThreadWaitingList, shown in Example 9-

8, is used to represent the outstanding synchronization requests within the PAL. It is used by

synchronization objects to keep track of the blocking pipes for its clients.

Example Error! No text of specified style in document.-8. The ThreadWaitingList data structure is used

to implement synchronization objects (defined in pal/unix/include/pal/thread.h)

typedef struct _ThreadWaitingList {

 DWORD threadId;

 DWORD processId;

 int blockingPipe;

 union

 {

 SHMPTR shmNext;

 struct _ThreadWaitingList *Next;

 }ptr;

 union

 {

 SHMPTR shmAwakened;

 LPBOOL pAwakened;

 }state;

} ThreadWaitingList;

The threadId and processId fields of ThreadWaitingList contain the thread and process IDs

associated with a synchronization object, and the blockingPipe field contains the file descriptor of the

pipe used for synchronization on the thread wishing to be signaled. The blockingPipe is used to wake

up a thread when it is being signaled, but the value in this field, since it is a file descriptor, is only valid

within the process that initialized the list. When the process being signaled is not the same as the process in

Appendix A: The Platform Adaptation Layer | 278

which the synchronization object resides, the threadId and processId are used to locate the pipe to

be used, and the blockingPipe field is not referenced.

ThreadWaitingList structures are strung together into a singly linked list whose root can be found in

the synchronization object with which they are associated. Depending on the nature of the synchronization

object, this structure can reside in process memory (the case for threads and semaphores) or in shared

memory (the case for mutexes and events). Thus the ptr field is a union of a SHMPTR and pointer to the

ThreadWaitingList structure.

There is a potential race condition in the window between the return from poll and the thread‘s removal

from the thread waiting list during which the thread could be resignaled, which would interfere with

completion of the wakeup procedure already underway. The solution for this is to store a pointer to the

thread‘s waitAwakened field in the list entry. This field can be used to track the thread‘s execution state

and to check it during signaling (see THREADInterlockedAwaken in pal/unix/thread/thread.c for

more details). Since this pointer may need to reference threads that live in other processes, a union of a

shared-memory pointer and process pointer is once again used.

Semaphores

A semaphore object maintains a count between 0 and a specified maximum value. This value is

incremented each time a thread releases the semaphore and is decremented each time a thread completes a

wait on the semaphore. The initial value of the count can be specified at creation time.

The Semaphore structure, shown in Example 9-9, contains the usual fields for a PAL entity, the

objHeader, dwMagic, and refCount fields. The critSection field is used internally to guarantee

atomic updating of the structure. Since this is a waitable entity, the waitingThread field acts as a head

pointer for its thread waiting thread list. The waiting list is maintained as a FIFO (first-in, first out) queue

by the semaphore implementation, and only allows references to threads that reside in the same process as

the Semaphore.

Example Error! No text of specified style in document.-9. The Semaphore structure (described in

pal/unix/sync/semaphore.h)

typedef struct _Semaphore

{

 HOBJSTRUCT objHeader;

 DWORD dwMagic;

 INT refCount;

 LONG semCount;

 LONG maximumCount;

 CRITICAL_SECTION critSection;

 ThreadWaitingList *waitingThreads;

} Semaphore;

The PAL has several wait functions (although all are implemented using

WaitForMultipleObjectsEx). When a wait function is called on a semaphore, the semCount, if

greater then 0, is decremented and the function returns immediately, indicating that the semaphore was

acquired. If semCount is 0, the thread is put on the semaphore‘s thread waiting list, and the thread blocks.

To increment the semCount, ReleaseSemaphore is called. As long as the value remains less then

maximumCount, the value is increased and the semaphore is released. If the value is at its maximum, the

first waiting thread in the thread waiting list is signaled. Since the thread waiting list is maintained as a

FIFO, threads are awakened in the order in which they acquired the semaphore.

Due to the limited definition of semaphores in the PAL, their implementation is fairly

straightforward. When compared with the Win32 implementation, which requires cross-

Appendix A: The Platform Adaptation Layer | 279

process capabilities and the OpenSemaphore API, the PAL version appears trivial. The

simpler requirements of the SSCLI allowed the Rotor team to keep the design simple.

Events

Events are signaled using the SetEvent and ResetEvent APIs. These APIs enable one thread to signal

another thread directly, as a message. Events come in two flavors: the manual-reset event and the auto-

reset event. A manual-reset event is like an on/off switch; when SetEvent is called, it signals all threads

waiting on it to proceed and continues to do so until ResetEvent is called. An auto-reset event is very

different; when SetEvent is called, the event signals a single thread from its thread waiting list and then

immediately returns to an unsignaled state.

Events may be shared between processes, which makes them trickier to implement then semaphores. (By

default, an event that is named is accessible to other processes.) Events are represented within the PAL as

two related data structures: the Event, which is the in-process portion, and the

GLOBAL_EVENT_SYSTEM_OBJECT, which is the shared-memory portion. Both are shown in Example

9-10.

Example Error! No text of specified style in document.-10. The paired data structures for events (defined

in pal/unix/sync/event.h)

typedef struct _Event

{

 HOBJSTRUCT objHeader;

 DWORD dwMagic;

 SHMPTR info;

 INT refCount;

} Event;

typedef struct _GESO

{

 SHM_NAMED_OBJECTS ShmHeader;

 INT refCount;

 BOOL state;

 BOOL manualReset;

 SHMPTR waitingThreads;

 SHMPTR next;

}GLOBAL_EVENT_SYSTEM_OBJECT, * PGLOBAL_EVENT_SYSTEM_OBJECT;

The Event structure itself is minimal, including the same objHeader, dwMagic, and refCount fields

described in the discussion of PAL processes earlier in this chapter. Its only real purpose, besides enabling

handle management for the event itself, is to provide a place to put a pointer to an associated

GLOBAL_EVENT_SYSTEM_OBJECT structure that is stored in shared memory.

Important fields in GLOBAL_EVENT_SYSTEM_OBJECT are the state field, which indicates whether

the event is signaled and the manualReset field, which indicates the event‘s type. The object name is

stored in the SHM_NAMED_OBJECTS

The Impact of Shared Memory
Unlike the Semaphore object, there is no critical section field in Event or Mutex structures.

Instead, since the code that implements synchronization for these entities uses shared memory, it

must call SHMLock on that shared memory prior to access and SHMRelease when it is done.

These calls bracket access to the memory in the same way that critical sections bracket access to

sections of code. Shared memory locks are much heavier weight than critical sections, however,

and their use impacts more client threads of the PAL in the event that they are competing for

resources.

Appendix A: The Platform Adaptation Layer | 280

In addition to this, since both Event and Mutex entities have portions of their data stored in

shared memory that is accessed by name, the names that they use must be created in a way that

doesn‘t conflict with other processes using the same shared-memory segment. Each PAL process

group must implement its own unique namespace so that its events will not mysteriously appear in

other PAL process groups using the same shared memory.

Name disambiguation is accomplished by mangling all occurrences of a name, using the

MangleObjectNameW function. This function prepends the name passed to it with a string that

is the hash of the fully qualified path to the PAL library binary, keeping the resulting string to 40

characters so that it doesn‘t run afoul of Windows‘ relatively short MAX_PATH limit for names.

The hash is performed once at PAL startup by the routine HashPath, and the result is stored in

the global NameManglerW variable for quick retrieval.

structure. When threads are waiting to be signaled, they occupy a thread waiting list, whose head can be

found in the waitingThreads field.

Events are created using CreateEvent, although this API defers first to OpenEvent to ensure that the

name has not already been used. If the event does not already exist, a paired set is created consisting of a

GLOBAL_EVENT_SYSTEM_OBJECT in shared memory and an Event in local memory. Events may be

created without a name, in which case the handle must be passed among all parties wishing to use the

event.

Mutexes

A mutex is a PAL entity that is used as a lock when accessing resources. The name is a contracted form of

―mutual exclusion,‖ which is the principle that a mutex enforces: only one thread can own the mutex at a

time. Mutexes implement a simple toggle; they are unsignaled when no thread owns them and signaled

when owned by a thread. (When unsignaled, they can be acquired without waiting. When signaled, a thread

must wait for access.) Like critical sections, mutexes are used to coordinate access between multiple

threads. Unlike critical sections, mutexes can be used by multiple processes, and because of this, mutexes

share implementation similarities with events. Mutexes also differ from critical sections in that they have a

well-defined order in which clients are granted access. (Critical sections do not guarantee wake order.)

Like events, a mutex may be created with or without a name. Unlike events, the name does not govern the

cross-process visibility of the mutex: all mutexes are available in shared memory to other PAL processes

within a process group. This is done to support the PAL_LocalHandleToRemote API, which can be

used to pass a mutex handle to another process. (This is used when debugging. An unnamed mutex is

created and then duplicated using this API for the debugger to use.) The pair of structures used to represent

a mutex is shown in Example 9-11.

Example Error! No text of specified style in document.-11. The paired data structures that represent

mutexes (defined in pal/unix/include/pal/mutex.h)

typedef struct _MHO

{

 HOBJSTRUCT HandleHeader;

 UINT Ref_Count;

 SHMPTR ShmKernelObject;

 struct _MHO * pNext;

 struct _MHO * pPrev;

} MUTEX_HANDLE_OBJECT, * PMUTEX_HANDLE_OBJECT;

typedef struct _GMSO

{

 SHM_NAMED_OBJECTS ShmHeader;

 SHMPTR ShmWaitingForThreadList;

 UINT Ref_Count;

Appendix A: The Platform Adaptation Layer | 281

 UINT Mutex_Count;

 BOOL abandoned;

 struct {

 DWORD ProcessId;

 DWORD ThreadId;

 } Owner;

} GLOBAL_MUTEX_SYSTEM_OBJECT, * PGLOBAL_MUTEX_SYSTEM_OBJECT;

MUTEX_HANDLE_OBJECT is the in-process data structure that acts as a local proxy for the

GLOBAL_MUTEX_SYSTEM_OBJECT. It contains the usual HOBJSTRUCT and Ref_Count found in all

objects and described in the section on PAL processes in this chapter. Its ShmKernelObject field is the

pointer to shared memory in which the actual mutex object resides.

GLOBAL_MUTEX_SYSTEM_OBJECT is used to represent the mutex in shared memory. Its Ref_Count

field holds a count of all outstanding references, its ShmHeader field contains the mutex‘ name, and its

ShmWaitingForThreadList field contains the head of the thread waiting list for the mutex. This list

is managed as a FIFO queue, in the same way that semaphores managed their waiting threads, guaranteeing

that threads are granted access to the mutex in the order they initiate waiting.

The Mutex_Count field deserves explanation. After all, if only one thread can gain ownership of the

mutex at a time, why have a count? The reason is that the specification requires that a thread be able to

acquire the mutex multiple times. Mutex_Count keeps track of these references. Each call to acquire the

mutex must have a matching call to ReleaseMutex, which decrements this counter.

There are two other fields that are unique among synchronization entities: the pNext and pPrev fields of

the MUTEX_HANDLE_OBJECT. In addition to being held in the handle table, in-process mutex objects are

joined as a doubly-linked list that is rooted in the process global pMutexHandle. This list is used when a

thread exits while holding a mutex, a process known as abandonment . Abandoning a mutex is the

equivalent of calling RelaseMutex until the mutex‘s Mutex_Count reaches 0. To abandon the

mutexes held by a thread, the routine MutexReleaseMutexes traverses the list, examining each

ProcessId and ThreadId looking for a match with the current process and thread. The abandoned

field in the GLOBAL_MUTEX_SYSTEM_OBJECT is also set when the mutex is abandoned, and is reset

only when a new thread takes ownership.

Implementing Signaling

The PAL provides a number of waiting functions for threads. All of these (WaitForSingleObject,

WaitForMultipleObjects, Sleep, and SleepEx) are implemented using

WaitForMultipleObjectsEx . Because of this, this section will step through only

WaitForMultipleObjectsEx. You will understand how signal waiting is done in the PAL if you

understand how this function, defined in pal/unix/sync/wait.c, works.

The code for WaitForMultipleObjectsEx can be tricky to trace at runtime, due to

its use of indirect recursion, as well as its use of a worker thread when waiting for a

process to terminate.

Here is the function prototype for WaitForMultipleObjectsEx:

 WaitForMultipleObjectsEx(

 IN DWORD nCount,

 IN CONST HANDLE *lpHandles,

 IN BOOL bWaitAll,

 IN DWORD dwMilliseconds,

 IN BOOL bAlertable)

Appendix A: The Platform Adaptation Layer | 282

The arguments lpHandles and nCount combine to specify an array containing the handles of all objects

to wait on. If all objects must signal before the function returns, bWaitAll is set to true; otherwise, the

first object to signal will cause the function to return. The dwMilliseconds argument is used to indicate

how long a timeout to use before returning, regardless of success. This argument may be INFINITE, in

which case the wait will return only when all wait conditions have been met. Finally, bAlertable

indicates that the wait may be terminated by a queued APC, which is discussed in the later section

――Asynchronous Procedure Calls‖.‖

The first thing done in WaitForMultipleObjectsEx is to validate the handles passed in the

lpHandles argument and lock them. A check is made that the handles are waitable, which means that

they are of type PROCESS, EVENT, SEMAPHORE, MUTEX, or THREAD, but not FILE or MAP. A check is

also made to make sure that there is at most one process object in the list to wait on. (The one-process

limitation was specified because the SSCLI never needs to wait on more then one process, and this

limitation greatly simplifies the implementation.) The code looks like this:

 for (i = 0; i < nCount; i++) {

 // Create a local copy of lpHandles before locking, since

 // caller might change out from under us.

 hHandles[i] = lpHandles[i];

 hObjs[i] = HMGRLockHandle(hHandles[i]);

 if (hObjs[i] == NULL) {

 SetLastError(ERROR_INVALID_PARAMETER);

 goto WaitFMOExit;

 }

 handles_locked++;

 if ((hObjs[i]->type != HOBJ_PROCESS) &&

 (hObjs[i]->type != HOBJ_EVENT) &&

 (hObjs[i]->type != HOBJ_SEMAPHORE) &&

 (hObjs[i]->type != HOBJ_MUTEX) &&

 (hObjs[i]->type != HOBJ_THREAD)) {

 SetLastError(ERROR_INVALID_HANDLE);

 goto WaitFMOExit;

 }

 // Remember index of process handle

 if(HOBJ_PROCESS == hObjs[i]->type) {

 if (-1 == process_index) {

 process_index = i;

 } else if(!bWaitAll) {

 // There must never be more than 1 process handle

 ASSERT("found more than 1 process handle in the array!\n");

 }

 }

 }

After this, a check is made to see whether the wait is alertable and if there are any queued APCs. If these

conditions are met, the queued APCs are called, any handles are unlocked and the wait returns with

STATUS_USER_APC. Notice that if an APC is queued to a thread while the thread is waiting on other

objects, the wait will be cut short and the APC called:

 if (bAlertable) {

 NumAPCCalled = THREADCallThreadAPCs();

 if (NumAPCCalled == -1) {

 ERROR("Failed in calling APCs for the current thread\n");

 goto WaitFMOExit;

 } else if (NumAPCCalled > 0) {

 retValue = STATUS_USER_APC;

Appendix A: The Platform Adaptation Layer | 283

 goto WaitFMOExit;

 }

 }

The code then classifies the wait into one of three cases:

1. There is one object to wait for (nCount == 1), the object is a process, and the wait is nonalertable

(bAlertable is false).

2. There is more then one object to wait on (nCount > 1), and the programmer has requested waiting

for all of them (bWaitAll is true).

3. All other waits.

The first two cases are clearly subsets of the third case. What is useful about these two subsets is that they

can be implemented more optimally than the general case. For the first case, WFMO_WaitForProcess is

called with appropriate parameters. The routine calls GetExitCodeProcess inside an infinite loop,

which breaks out when either the timeout has expired or the process exits. (GetExitCodeProcess does

not wait for the process to end. It returns immediately, either with an exit code or with STILL_ACTIVE to

indicate that the process is alive.) We will skip the code for this case, since it is straightforward.

Here is the start of the code that implements the second case, which can be found in the

WFMO_WaitForAllObjects function:

 // Save current time, so that we can know when the timeout is elapsed

 old_time = GetTickCount();

 // Step 1 : wait for processes and threads.

 for(i=0;i<nCount;i++) {

 if (HOBJ_PROCESS == hObjs[i]->type || HOBJ_THREAD == hObjs[i]->type) {

 ret = WaitForSingleObject(lpHandles[i], dwMilliseconds);

 if (WAIT_TIMEOUT == ret) {

 return WAIT_TIMEOUT;

 }

 } else {

 // Build arrays of "resettable" handles (mutexes, events, semaphores)

 resetables[resetable_count] = lpHandles[i];

 resetable_objs[resetable_count] = hObjs[i];

 resetable_count++;

 }

 // If we have a timeout value, adjust it

 if (0 != dwMilliseconds && INFINITE != dwMilliseconds) {

 WFMO_update_timeout(&old_time, &dwMilliseconds);

 if (0 == dwMilliseconds) {

 return WAIT_TIMEOUT;

 }

 }

 }

 // If only process and thread objects were given, we can stop here

 if(0 == resetable_count) {

 return WAIT_OBJECT_0;

 }

The list of valid object types for case 1 can be divided into two groups: handles that can have their signal

state reset, which are events, semaphores, and mutexes, and handles that cannot have their signal reset,

which are threads and processes. (The signal is the exit code in these cases.) Since the termination criterion

for this particular case is that every handle must signal, there is no point in worrying about handles that

might set and reset their signals (perhaps multiple times) until the handles that cannot reset their signals

have signaled.

Appendix A: The Platform Adaptation Layer | 284

WFMO_WaitForAllObjects calls WaitForSingleObject on any process or thread that is in its

list. In a not-entirely-unexpected display of recursion, WaitForSingleObject bottoms out in a call to

WaitForMultipleObjectsEx, but with a single handle and with bWaitAll and bAlertable

both set to False. For the purpose of this discussion, it is important to know that calls to

WaitForSingleObject with a thread or a process handle are synchronized, and so each call will wait

for its thread or process to actually terminate before the next object is checked. Before proceeding, the

timeout value is updated to account for the time spent waiting on nonresettable objects.

Now that process and thread handles have signaled, the code drops into a large loop to wait on the

remaining objects. First, there is a call to WaitForSingleObject on the current

blocking_object, which is initialized as the index of the first item in the list of resettable handles.

(WaitForSingleObject will recursively make a synchronized call to

WaitForMultipleObjectsEx.)

 blocking_object = 0;

 while(1) {

 ret = WaitForSingleObject(resetables[blocking_object], dwMilliseconds);

 if (WAIT_TIMEOUT == ret) {

 return WAIT_TIMEOUT;

 }

 got_abandoned = was_abandoned[blocking_object] = WAIT_ABANDONED==ret;

 // function continues

The list of resettable handles is then walked, and WaitForSingleObject is called on each with a

timeout of 0 (skipping the blocking_object). The objective is to check for handles that have already

signaled. If none of the waits return WAIT_TIMEOUT, then all handles have signaled, and the routine

returns successfully. Otherwise, the wait that returns WAIT_TIMEOUT causes the walk to halt, and the

handle that caused this return is marked as the blocking object:

 for(i=0; i<resetable_count;i++) {

 // Skip the first object we waited on, it's already signalled

 if (i == blocking_object) {

 continue;

 }

 // Wait on all others without blocking, to see if they're signaled

 ret = WaitForSingleObject(resetables[i], 0);

 if (WAIT_TIMEOUT == ret) {

 resetables[i]);

 break;

 }

 was_abandoned[i] = WAIT_ABANDONED == ret;

 if (was_abandoned[i]) {

 got_abandoned = TRUE;

 }

 }

 // function continues

The list of resettable objects is now walked backwards from the handle before the blocking_object to

the start of the list. Since all of these handles have already signaled, they are released so that other waiting

threads may be unblocked.

Mutexes that were acquired due to abandonment are released with WTC_ABANDON as their wakeup code

for the next thread waiting. Other mutexes and semaphores are released normally, and events are placed

into a signaled state by calling SetEvent:

Appendix A: The Platform Adaptation Layer | 285

 // If the for loop completed normally, all object were signal

 if (i == resetable_count) {

 if (got_abandoned) {

 return WAIT_ABANDONED;

 }

 return WAIT_OBJECT_0;

 }

 // We'll wait on object that wasn't signalled next pass.

 blocking_object = i;

 // Give up ownership or re-signal all events we succesfully waited on

 for(; i>=0;i--) {

 switch(resetable_objs[i]->type) {

 case HOBJ_MUTEX:

 if (was_abandoned[i]) {

 // Re-flag as abandoned if that's how it was

 MutexReleaseMutex((MUTEX_HANDLE_OBJECT *)resetable_objs[i],

 WUTC_ABANDONED, FALSE);

 } else {

 ReleaseMutex(resetables[i]);

 }

 break;

 case HOBJ_SEMAPHORE:

 ReleaseSemaphore(resetables[i], 1, NULL);

 break;

 case HOBJ_EVENT:

 SetEvent(resetables[i]);

 break;

 default:

 break;

 }

 }

 // If we have a timeout value (not infinite), update

 if (0 != dwMilliseconds && INFINITE != dwMilliseconds) {

 WFMO_update_timeout(&old_time, &dwMilliseconds);

 if (0 == dwMilliseconds) {

 return WAIT_TIMEOUT;

 }

 }

 }

Finally, the timeout value is updated by subtracting the time spent on this pass. The loop continues until all

handles have signaled or the timeout is reached.

Broadly speaking, the PAL‘s implementation of signal waiting can be divided into two types of code, the

first of which, as we have just seen, involves process waiting by polling, and the second deals with the

general case. The code for the first, with its polling loops, is more complicated than the general case, but

there is a good reason to break it out.

There is an impedance mismatch between the Unix process model and the PAL process model. In Win32, a

wait on a process is the same as a wait on another handle, and any handle can terminate a call to

WaitForMultipleObjectsEx. In the Unix PAL, process terminations must be treated very

differently than other handles, and catching them requires heavy software machinery in the form of a new

thread. The expense of creating a new thread is why the PAL attempts to avoid the general-case solution.

The code for the general case will make the differences clear. At its start, the list of handles to wait on is

checked for the presence of a process. If one is included, a set of expensive resources is created (if they do

not already exist) that will be used to enable the wait on the process, as follows (error handling has been

removed for readability):

Appendix A: The Platform Adaptation Layer | 286

 // If there is a process handle, get ready to use a worker thread

 if (-1 != process_index) {

 if (NULL == worker_handle) {

 // First-time initialization : create worker thread and event

 DWORD tid;

 keep_going = TRUE;

 process_handle = NULL;

 worker_event = CreateEventW(NULL, FALSE, FALSE, NULL);

 }

 // Create event used to indicate worker thread is going to standby mode

 standby_event = CreateEventW(NULL, FALSE, FALSE, NULL);

 // Create event used by worker thread to signal process termination

 process_event = CreateEventW(NULL, FALSE, FALSE, NULL);

 // Create the worker thread itself

 worker_handle = CreateThread(NULL, 0, &WFMO_workerthread, NULL, 0, &tid);

 }

 // Tell worker thread which process to wait on, and how long

 process_handle = hHandles[process_index];

 worker_timeout = dwMilliseconds;

 // Housekeeping code to set up wait state deleted

 for (i = 0; i < handles_locked; i++) {

 if (i == process_index) {

 // Reached the index of the process handle. Tell worker thread to wait,

 // and wait on event as proxy.

 ret = WaitOn(HOBJ_EVENT, process_event, shmThreadWaitState);

 SetEvent(worker_event);

 } else {

 ret = WaitOn(hObjs[i]->type, *(hHandles+i), shmThreadWaitState);

 }

 if (WOC_SIGNALED == ret || WOC_ABANDONED == ret) {

 // One object was signaled, we are done

 if (WOC_SIGNALED == ret) {

 retValue = WAIT_OBJECT_0 + i;

 } else {

 retValue = WAIT_ABANDONED_0 + i;

 }

 StopWaitingOnObjects(hObjs, hHandles, i, process_index);

 // Rest of function not shown

Two events and a thread are needed to properly catch process termination in a nonsynchronized fashion. A

thread (worker_thread) acts as the proxy for the process while waiting, the standby_event is used

to signal from the worker thread to the waiting thread that the process has terminated and is entering

―standby‖ mode, and the process_event is used by the waiting thread to signal the worker thread to

begin waiting on the process. The standby_event becomes a proxy handle for the process that can be

waited on like other PAL handles. This is an expensive solution indeed, but once it is in place, the rest of

WaitForMultipleObjectsEx is straightforward.

With the process proxy in place, the list of handles to wait on is walked, and WaitOn is called on each.

WaitOn is a dispatcher function that defers to handle-specific routines to set up the wait. If there are no

errors and no objects have already signaled, ThreadWait is called which in turn calls

PollBlockingPipe to enter a polling loop, waiting for a wakeup code to be written to the thread‘s

blocking pipe.

Appendix A: The Platform Adaptation Layer | 287

Once WaitOn returns, StopWaitingOnObjects is called to clear the pending waits. The wait may

have stopped due to an object signaling, an APC being queued (since this is an alertable wait), the time

limit being exceeded, or a mutex being abandoned. Each case is converted to an appropriate exit code, and

if the object that signaled was the worker_event, this signal is mapped back to the original process

object. At this point, control is returned to the caller, as WaitForMultipleObjectsEx returns.

Suspending and Resuming PAL Threads

Now that we have discussed synchronization and signaling within the Unix PAL, we can see them in action

in the way that PAL threads are suspended and resumed. Although the POSIX threads package meets most

of the PAL‘s requirements, the pthread API does not contain a standard way to suspend or resume a thread.

To further complicate matters, PAL threads must be able to suspend themselves, and they should be

capable of tracking and recovering from multiple requests for suspension by maintaining a suspend count.

(Nonstandardized extensions to pthreads certainly exist, such as FreeBSD‘s pthread_suspend_np and

pthread_resume_np functions, but none of these fully capture the PAL‘s Win32 semantics.)

To implement self-suspension, the code in SuspendThread waits on the thread‘s blocking pipe until

another thread calls ResumeThread , which resumes the thread by writing to the pipe. Since this use of

the blocking pipe (an expensive resource to allocate on a per-thread basis) is shared with the signaling

mechanism described in ―Implementing Signaling,‖ the SuspendedWithPipeFlag in the THREAD

structure is used to indicate when the pipe is being utilized for suspension rather than for waiting.

When suspending another thread, platform-specific approaches are used. On FreeBSD, SuspendThread

utilizes the pthread_suspend_np routine, keeping a suspension count in the field

dwSuspendCount. On Mac OS X, the pthread_t is converted to a Mach thread ID, and

thread_suspend is called. (These calls, conditionally compiled, can be seen in Example 9-7.)

The code in the Unix implementations of SuspendThread and ResumeThread is very susceptible to

deadlocks, due to the PAL‘s internal use of critical sections to serialize access to its data structures when

using and updating them. The danger arises when a thread is suspended while it holds a PAL-internal

critical section; subsequent threads attempting to access the same structure will block until the first thread

is resumed. Under the worst case scenario, for example, a thread might hold a critical section on a structure

required to resume execution, resulting in deadlock. (The Win32 PAL does not share this problem, since it

defers to the Windows implementation of SuspendThread and ResumeThread, which are written

without the use of critical sections.)

To avoid the deadlock problem, each thread maintains a count of the number of PAL-internal critical

sections it has entered. By keeping this count, the PAL can implement a conservative strategy through

which a thread will not be suspended until its critical section count has gone to 0. When SuspendThread

is called, the code immediately enters spin lock, as follows:

 while(0 != InterlockedCompareExchange(&lpThread->suspend_spinlock,1,0))

 sched_yield();

The lock guarantees that only one thread will gain access to the code following the spinlock. Normally, you

would use a critical section to ensure this restricted access, but since you are trying to avoid using critical

sections, the more conservative (and expensive, because of its processor usage) spinlock approach makes

sense.

After acquiring the spinlock, the critical section count must go to 0. The code that accomplishes this is

shown in Example 9-12.

Example Error! No text of specified style in document.-12. SuspendThread must reduce the target

thread’s critical section count to zero before suspending (extracted from pal/unix/thread/thread.c)

if(0 != lpThread->critsec_count) {

 pthread_mutex_lock(&lpThread->suspension_mutex);

Appendix A: The Platform Adaptation Layer | 288

 pthread_mutex_lock(&lpThread->cond_mutex);

 lpThread->suspend_intent = TRUE;

 // Let the thread run until it releases all its critical sections

#if HAVE_PTHREAD_NP

 pthread_resume_np((pthread_t)lpThread->dwThreadId);

#elif HAVE_MACH_THREADS

 thread_resume(pthread_mach_thread_np((pthread_t) lpThread->dwThreadId));

#endif

 // Wait for signal

 pthread_cond_wait(&lpThread->suspender_cond,

 &lpThread->cond_mutex);

 // Once mutex is tripped, it is safe to suspend

#if HAVE_PTHREAD_NP

 pthread_suspend_np((pthread_t)lpThread->dwThreadId);

#elif HAVE_MACH_THREADS

 thread_suspend(pthread_mach_thread_np((pthread_t) lpThread->dwThreadId));

#endif

 lpThread->suspend_intent = FALSE;

 // Allow target thread to acquire the mutex and continue when resumed

 pthread_mutex_unlock(&lpThread->cond_mutex);

 pthread_mutex_unlock(&lpThread->suspension_mutex);

}

The pthread_mutex_lock API is used to lock the suspension_mutex and cond_mutex

mutexes, both of which are fields of the THREAD structure. Once both mutexes have been acquired, the

suspend_intent field in the target thread is set to true and the target thread is resumed using

pthread_resume_np on FreeBSD and thread_resume on Mac OS X. The calling thread then

blocks until the outstanding critical sections are released.

Having been resumed, the target thread is now running. Every time the routine

SYNCLeaveCriticalSection (the code used to exit a critical section) is executed, the

critsec_count is decremented and checked to see whether it is zero. When this constraint is met, the

code sequence in Example 9-13 is executed.

Example Error! No text of specified style in document.-13. The handshake used to protect

SuspendThread from deadlock (extracted from pal/unix/sync/critsect.c)

// Wait until the suspender thread is calling pthread_cond_wait

pthread_mutex_lock(&pCurrentThread->cond_mutex);

pthread_mutex_unlock(&pCurrentThread->cond_mutex);

// Let suspender thread suspend this thread

pthread_cond_signal(&pCurrentThread->suspender_cond);

// Wait for the suspender to unlock AND for the resumer to resume

pthread_mutex_lock(&pCurrentThread->suspension_mutex);

// We have been resumed; release the mutex.

pthread_mutex_unlock(&pCurrentThread->suspension_mutex);

The two mutexes are being used as a handshake mechanism between the thread wishing to suspend and the

thread that will be suspended. The target thread signals the suspender via pthread_cond_signal, and

then attempts to lock the suspension_mutex where it will remain until the ResumeThread is called.

Once the suspender thread is signaled, SuspendThread resumes. Using pthread_suspend_np, it

once again suspends the target thread and then unlocks the two mutexes. (Unlocking the mutexes has no

effect on the target thread because it is now suspended.) After incrementing dwSuspendCount and

releasing the spinlock, SuspendThread returns.

Appendix A: The Platform Adaptation Layer | 289

Asynchronous Procedure Calls

Asynchronous Procedure Calls (APCs), which provide a way to execute code within the context of a

specific thread, are used by Rotor‘s threading implementation. (Specifically, they provide a way to politely

interrupt threads that are busily beavering away at something else.) They are implemented as callback

functions, which always have the signature:

 VOID CALLBACK APCProc(ULONG_PTR dwParam);

An APC is queued to a thread, where it is scheduled for execution. While not strictly a synchronization

mechanism, the queuing of an APC has an effect similar to synchronization.

The QueueUserAPC API adds the APC passed as a parameter to a per-thread queue of functions to be

called. A thread will call its APCs only when it is alertable, which is defined to be after it uses

WaitForMultipleObjectsEx or SleepEx with the alertable parameter set to True. APCs are

called in FIFO order.

In the Unix PAL, the thread maintains its queue as a singly linked list of APC_TRACKER structures:

 typedef struct _APC_TRACKER

 {

 PAPCFUNC pfnAPC;

 ULONG_PTR pAPCData;

 struct _APC_TRACKER *pNext;

 } APC_TRACKER, *LPAPC_TRACKER;

The root of this list can be found in the lpAPCTracker field of THREAD.

Since each APCProc takes a ULONG_PTR argument, each element of the APC tracker list must hold onto

the function argument in addition to the function pointer. The routine THREADCallThreadAPCs

handles the calling of the APC functions and is called in three places: before the thread starts actually

waiting on handles in WaitForMultipleObjectsEx, before the DLL_THREAD_ATTACH call in

THREADEntry, and after the blocking pipe has been released in ThreadWait.

Handling Exceptions in the PAL

The SSCLI implementation uses Win32 Structured Exception Handling (SEH) heavily, and because of this,

the PAL must provide an implementation of this feature for its use.

Before launching into the details of how the PAL implements SEH portably, a quick review is in order.

SEH takes the following form in Win32 code:

 _ _try {

 <guarded code>

 }

 _ _except (<filter>) {

 <exception handler>

 }

 _ _finally {

 <termination handler>

 }

The filter and its exception handler are executed if an exception occurs during the execution of the guarded

code; if an exception occurs within the try block, the filter is used to determine whether the except

block should be run. The termination handler is an optional piece of code that is executed whenever control

moves out of the guarded section; as control moves out of the try block for any reason, the finally block

is executed. Any code blocks may themselves contain try blocks,exceptblocks, orfinally blocks (or

Appendix A: The Platform Adaptation Layer | 290

call functions that contain such blocks), and because of this, handlers may be, and often are, nested to an

arbitrary depth.

The algorithm for exception handling is as follows:

1. An exception is raised.

2. The system looks at the hierarchy of active exception handlers and executes the filter of the handler

with highest precedence. This is the exception handler most recently installed and most deeply nested.

3. If the filter passes control by returning EXCEPTION_CONTINUE_SEARCH, execution returns to step

1 but at the next highest precedence exception handler.

4. If the filter returns EXCEPTION_CONTINUE_EXECUTION, execution continues where the exception

was raised

5. If the filter returns EXCEPTION_EXECUTE_HANDLER, then:

a) Each termination handler on the stack is executed in order of precedence, up to the scope of the

current exception handler.

b) The stack is unwound, clearing all stack frames between the currently executing code (in which

the exception was raised), and the stack frame that contains the exception handler gaining control.

c) The exception handler is executed.

d) Control passes to the line of code that follows the end of the exception handler.

The act of traversing the exception handlers and running the filter functions is commonly referred to as the

first pass of exception handling. The act of executing the termination handlers, unwinding the stack, and

executing the exception handler is commonly called the second pass of exception handling. (This is the

same terminology used in Chapter 6 when discussing exception handling in the execution engine.)

Win32 SEH is not available on non-Windows platforms, although C/C++ exception handling is. One

seemingly obvious implementation alternative for the PAL would be to use C++ exception handling to

implement Win32 SEH. Unfortunately, C/C++ exception handling lacks several of the features of Win32

SEH, which renders this choice untenable. The missing features are:

Two-pass semantics

The two-pass semantics of Win32 SEH are hard to emulate using single-pass C/C++ exception

handling.

Very low-level hooks

Special hooks are necessary to handle exceptions in JIT-compiled code. These hooks must provide a

level of control comparable to x86 Windows, in which the chain of exception handlers can be

manipulated directly.

Order of execution

The Rotor execution engine depends on subtle details such as the fact that a termination handler is

executed before the stack is unwound. These details are hard to guarantee using generic C/C++

exception handling.

Because of this, the Rotor team decided to implement SEH as part of the PAL. It is exposed as a set of

macros to use as though they were the Win32 constructs. The complete set of macros and their differences

from the Win32 SEH constructs are documented in the PAL specification and in Appendix D, and the

macro definitions can be found in rotor_pal.h. For a quick taste of the use of these macros, Example

9-14 contains pseudocode for both Win32 SEH code and corresponding PAL SEH code.

Example Error! No text of specified style in document.-14. Win32 SEH and PAL SEH compared

// Win32-style exception handling

// local variable declarations

_ _try {

Appendix A: The Platform Adaptation Layer | 291

 // code which references locals from above

} _ _except (ExceptionFilter(GetExceptionInformation(), pData)) {

 // code which references locals from above

}

// PAL-style exception handling

// local variable declarations

PAL_TRY {

 // code which references locals from above

} PAL_EXCEPT_FILTER(ExceptionFilter, pData) {

 // code which references locals from above

} PAL_ENDTRY

To implement SEH, the PAL defines five new routines:

 PAL_TryHelper

 PAL_EndTryHelper

 PAL_SetBottommostRegistration

 PAL_GetBottommostRegistration

 PAL_GetBottommostRegistrationPtr

The PAL specification describes signatures for all of these functions.

Handling Signals with Exception Handlers

On Windows, SEH provides a unified way to handle exceptions arising from hardware faults, the operating

system, and user code. The PAL provides the same unification on Unix by mapping synchronous Unix

signals into exceptions.

During PAL startup, PAL_Initialize calls SEHInitialize, which in turn calls

SEHInitializeSignals to set up signal handlers. The handle_signal function is called to install

signal handlers for every signal that a user process is permitted to handle. Signal handlers are installed for

both signals that are transformed into exceptions, such as SIGKILL, SIGTRAP, SIGFPE, SIGBUS, and

SIGSEGV, and for events that are transformed into application termination by the PAL, such as SIGINT

and SIGQUIT. All signals that the PAL handles have the SA_RESTART flag set, which tells the operating

system to automatically restart any restartable system call that is interrupted by a signal.

On Mac OS X, the PAL uses a worker thread to listen on a task‘s Mach exception port. When a message

arrives, the worker thread manipulates the contents of the faulting thread‘s registers to perform a nonlocal

goto to PAL_DispatchException and to set up an EXCEPTION_POINTERS structure on the

faulting thread‘s stack. While this is a lower-level interception mechanism than signals, it is used because

Mac OS X signal handlers don‘t receive the full processor context of the faulting thread, but Mach

exception handlers do.

When a signal that is being mapped to an exception is raised, the signal handler initializes an exception

record and converts the signal‘s siginfo and context into an exception code using the routine

CONTEXTGetExceptionCodeForSignal. The exception address and CONTEXT record, which are

architecture- and operating system-specific, are then associated with the exception and filled in from the

context that is passed to the signal handler.

The last task to be performed before an exception is actually raised is to check the thread‘s safe_state

flag to determine whether a signal is already being processed. If one is, the PAL assumes that this is a

major problem and the code in common_signal_handler will call ExitProcess to halt execution.

If no signal is being processed, safe_state is set to false, and the exception is raised by calling the

routine SEHRaiseException.

Appendix A: The Platform Adaptation Layer | 292

Managing Exception State

Before diving into the code for SEHRaiseException, you need to understand the data structures used

to represent exceptions and how they are managed. The PAL‘s SEH implementation uses a per-thread

linked list of exception handlers. The root of this list is the SEH_TLS_INFO structure, shown in Example

9-15.

Example Error! No text of specified style in document.-15. There is one SEH_TLS_INFO structure per

thread in the PAL

typedef struct

{

 PPAL_EXCEPTION_REGISTRATION bottom_frame;

 EXCEPTION_RECORD current_exception;

 BOOL safe_state;

 int signal_code;

} SEH_TLS_INFO;

There is one instance of this structure for each PAL thread, and a pointer to it is stored in each thread-local

storage. The bottom_frame field points to the bottom-most registration frame for this thread, while

current_exception contains a copy of the current exception record and signal_code contains a

copy of the code from the Unix signal (or 0 for user mode exceptions). Both values are copied into the

SEH_TLS_INFO structure, because the original record is typically created on the stack, where it quickly

becomes invalid as the stack is unwound. As discussed in the discussion on signal handling, safe_state

is used as a flag to indicate whether a signal is currently being processed.

A registration frame, shown in Example 9-16, is a structure that holds data about handlers. Registration

frames are arranged in a singly linked list, with the head pointer stored in the bottom_frame field of the

SEH_TLS_INFO for a thread.

Example Error! No text of specified style in document.-16. The PAL_EXCEPTION_REGISTRATION

structure holds data about exception handlers

typedef struct _PAL_EXCEPTION_REGISTRATION {

 // pointer to next exception record up the stack

 struct _PAL_EXCEPTION_REGISTRATION *Next;

 // pointer to the exception filter expression

 EXCEPTION_REGISTRATION_RECORD PFN_PAL_EXCEPTION_FILTER Handler;

 // parameter to pass verbatim to the filter function

 PVOID pvFilterParameter;

 // PAL_EXCEPTION_FLAGS_* constants

 DWORD dwFlags;

 // reserved for the PAL (typically a CRT jmp_buf or sigjmp_buf struct)

 char ReservedForPAL[PAL_TRY_LOCAL_SIZE];

} PAL_EXCEPTION_REGISTRATION, *PPAL_EXCEPTION_REGISTRATION;

The first parameter in the registration frame is a Next pointer, which is used to build up the linked list of

handlers. After this is an optional exception filter function, Handler, and the parameter to this function,

pvFilterParameter. The dwFlags that follows is treated as a 2-bit bitfield. The least significant bit,

PAL_EXCEPTION_FLAGS_UNWINDTARGET, is used to mark the frame that is handling an exception.

The other bit, PAL_EXCEPTION_FLAGS_UNWINDONLY, marks frames that need special stack

unwinding and are used by JIT-compiled code. The final field, ReservedForPAL is where data that

enables a jump to the handler using setjmp is stored.

New registration frames are added to the list when PAL_TryHelper is called and removed when

PAL_EndTryHelper is called. This can occur in the macros defined for PAL SEH, where PAL_TRY

Appendix A: The Platform Adaptation Layer | 293

allocates space for a PAL_EXCEPTION_REGISTRATION structure by declaring a local variable of that

type named PalSEHRecord, thus adding it to the current stack activation record. (This is safe to do; the

try block‘s lifetime is linked to the lifetime of the routine it is being run in.)

The PAL macros in pal/rotor_pal.h have an interesting structure created by using two nested do loops.

Their pseudocode skeleton, created by laying the macros back-to-back, is shown in Example 9-17. (Macro

boundaries are shown as comments in this pseudocode and are highlighted.)

Example Error! No text of specified style in document.-17. How the PAL exception-handling macros fit

together

// PAL_TRY \

PAL_SEH_DISPATCHER_STATE PalSEHDispatcherState = SetUpForSEH;

PAL_EXCEPTION_REGISTRATION PalSEHRecord;

volatile int PalSEHExceptionCode = 0;

int alloca; alloca = 0;

do {

 do {

 if (PalSEHDispatcherState == InTryBlock) {

// END OF PAL_TRY // PAL_EXCEPT_FINALLY_COMMON(__pfnFilter, _ _pvFilterParameter)

 break; // break out of do loop

 } else if (PalSEHDispatcherState == SetUpForSEH) {

 PalSEHRecord.Handler = (_ _pfnFilter);

 PalSEHRecord.pvFilterParameter = (_ _pvFilterParameter);

 PalSEHRecord.dwFlags = 0;

 PAL_TryHelper(&PalSEHRecord);

 PalSEHExceptionCode = PAL_setjmp(PalSEHRecord.ReservedForPAL);

 if (PalSEHExceptionCode == 0) {

// setjmp returned 0 - ready to run the "try" block

 PalSEHDispatcherState = InTryBlock;

 } else {

// setjmp returned nonzero - unwind in progress, so run the handler

 PalSEHDispatcherState = InExceptFinallyBlock;

 break; // break out of do loop

 }

 }

 } while(1);

 if(PalSEHDispatcherState == InExceptFinallyBlock) {

// run the handler block

// END OF PAL_EXCEPT_FINALLY_COMMON // PAL_ENDTRY

 }

 PalSEHDispatcherState = (PAL_SEH_DISPATCHER_STATE)

 PAL_EndTryHelper(&PalSEHRecord, PalSEHExceptionCode);

} while (PalSEHDispatcherState != DoneWithSEH);// END OF PAL_ENDTRY

Within the PAL SEH loops, PAL_EXCEPT_FINALLY_COMMON is used to do the bulk of the work. It first

sets up the filter and filter parameter if they exist. After this, the dwFlags word is zeroed, and

PAL_TryHelper is called to add the registration frame to the chain for the thread. Then the

ReservedForPAL field is populated by a call to PAL_setjmp, which will return 0 during normal

execution and a nonzero value when the stack is being unwound. This call is made after

PAL_TryHelper, because the stack unwind during the second pass will pop stack frames off the stack,

executing a siglongjmp for each unmanaged frame being removed that has a termination handler (the

data for which is stored in registration frame). When execution resumes at the longjmp, it will fall

Appendix A: The Platform Adaptation Layer | 294

through to the termination code. If PAL_TryHelper were called after PAL_setjump, control flow

would be incorrect.

Bracketing the termination handler code in Example 9-17 is the PAL_ENDTRY macro, with its call to

PAL_EndTryHelper that removes the registration frame originally put in place by

PAL_EXCEPT_FINALLY_COMMON. PAL_ENTRY will return with a value of 0 (DoneWithSEH) if the

exception handler has been reached (dwFlags is PAL_EXCEPTION_FLAGS_UNWINDTARGET), in

which case the while loop will be exited. Otherwise, it will call SEHUnwind, which will cause the next

frame to be removed, and execution will never return to this point in the code.

The SEH routines are also called before entering and after leaving JIT-compiled code. As discussed in

Chapter 6, all managed regions of the stack have an enclosing try block. To add the registration frame,

helper code calls the PAL_TryHelper function, setting dwFlags to

PAL_EXCEPTION_FLAGS_UNWINDONLY and supplying a special filter function that is used during

stack unwinding.

Raising Exceptions and Unwinding the Stack

We‘ve now seen how guarded regions of code can be set up using the PAL‘s exception macros, as well as

the runtime code that is produced by those macros. We‘ve also seen how Unix signals are converted into

exceptions. Only one important detail remains to be seen: how the exceptions themselves are raised and

propagated, and how the stack is unwound as a part of this process, when SEHRaiseException is

called.

SEHRaiseException and SEHUnwind correspond to the first and second pass of Win32 SEH.

SEHRaiseException uses a while loop to walk the frames for its thread, starting with the frame

returned by PAL_GetBottommostRegistration. As it walks up the chain of registration frames, it

calls the filter function for each frame that has one. This loop is shown in Example 9-18.

Example Error! No text of specified style in document.-18. Registration frames are walked to find

exception handlers (extracted from SEHRaiseException in pal/unix/exception/exception.c)

// code to initialize walk omitted

while(frame) {

// code to locate appropriate frames omitted

handler_retval =

 frame->Handler(lpExceptionPointers, frame->pvFilterParameter);

// more code omitted

 switch(handler_retval) {

 case EXCEPTION_EXECUTE_HANDLER:

 frame->dwFlags |= PAL_EXCEPTION_FLAGS_UNWINDTARGET;

 break;

 case EXCEPTION_CONTINUE_SEARCH:

 frame->dwFlags &= ~PAL_EXCEPTION_FLAGS_UNWINDTARGET;

 break;

 case EXCEPTION_CONTINUE_EXECUTION:

 TRACE("Filter returned EXCEPTION_CONTINUE_EXECUTION");

 return;

 default:

 ASSERT("Filter for frame %p returned an invalid value!\n", frame);

 break;

 }

 if (frame->dwFlags & PAL_EXCEPTION_FLAGS_UNWINDONLY) {

Appendix A: The Platform Adaptation Layer | 295

 memcpy(frame->ReservedForPAL, lpExceptionPointers->ExceptionRecord,

 min(sizeof(EXCEPTION_RECORD), PAL_TRY_LOCAL_SIZE));

 }

 if (frame->dwFlags & PAL_EXCEPTION_FLAGS_UNWINDTARGET) {

 break;

 }

 frame = frame->Next;

}

// Allow signal handling to resume

SEHSetSafeState(TRUE);

// If a handler was found, frame will hold the registration frame that was

// being examined when break caused us to fall through from the walk

if (frame) {

 SEHUnwind();

}

// function continues with default handling

A filter that returns EXCEPTION_CONTINUE_EXECUTION wishes to continue the execution. Execution

continues from the spot where the exception was thrown, possibly using a modified machine context if the

context passed as a parameter is modified by the filter. In this case, SEHRaiseException returns

immediately so that execution can continue; it is up to the calling function to determine what happens next.

If SEHRaiseException was called from common_signal_handler in response to a signal, this

routine will uninstall the signal handler and execute a sigreturn, thereby allowing default operating

system behavior to occur. If, on the other hand, the source of the exception was a call to

RaiseException, SEHRaiseException simply returns.

A filter that returns EXCEPTION_CONTINUE_SEARCH wishes the search for an appropriate handler to

continue. In this case, the value of the PAL_EXCEPTION_FLAGS_UNWINDTARGET bit is preserved, the

rest of the bitfield is cleared, and the walk continues.

A filter that returns EXCEPTION_EXECUTE_HANDLER wishes to schedule execution of the handler block

found in frame->Handler. To do this, the PAL_EXCEPTION_FLAGS_UNWINDTARGET bit of the

dwFlags bitfield is set to record the fact that this handler should be called during the second pass. The

frame thus becomes the target of the stack unwind process that is about to occur. With the target located,

execution of the loop is terminated (after the exception record is stored into the ReservedForPAL field,

if necessary).

Assuming a target was found, SEHUnwind is called to start the second pass. SEHUnwind revisits the

bottom-most registration frame and walks up the chain of frames in order, as shown in Example 9-19.

Example Error! No text of specified style in document.-19. The second-pass walk of a thread’s

registration frames (extracted from pal/unix/exception/exception.c)

jmp_frame = PAL_GetBottommostRegistration();

// loop until a frame to execute is found

while (NULL != jmp_frame) {

 if (jmp_frame->Handler == NULL) {

 // finally blocks have no filter entry

 // if this is a finally block, break out of loop and longjmp

 break;

 }

 // this case for JIT compiled (or special) code

 if(jmp_frame->dwFlags & PAL_EXCEPTION_FLAGS_UNWINDONLY) {

 // code for exceptions from JIT-compiled code omitted

 jmp_frame->dwFlags &= ~PAL_EXCEPTION_FLAGS_UNWINDTARGET;

Appendix A: The Platform Adaptation Layer | 296

 PAL_SetBottommostRegistration(jmp_frame);

 ep.ExceptionRecord = (PEXCEPTION_RECORD) jmp_frame->ReservedForPAL;

 ep.ExceptionRecord->ExceptionFlags |= EXCEPTION_UNWINDING;

 ep.ContextRecord = NULL;

 retval = jmp_frame->Handler(&ep, jmp_frame->pvFilterParameter);

 // this case for "normal" exception handling

 } else if (jmp_frame->dwFlags & PAL_EXCEPTION_FLAGS_UNWINDTARGET) {

 break;

 }

 jmp_frame = jmp_frame->Next;

}

// when loop is terminated using "break", execute the frame's handler

if (jmp_frame) {

 // get set for second pass to continue

 PAL_SetBottommostRegistration(jmp_frame->Next);

 siglongjmp((LPVOID)jmp_frame->ReservedForPAL,1);

}

The unwinding of the stack involves non-local transfers of control, which is accomplished by using Unix‘

longjmp mechanism. When the target frame is found, or when the Handler field is NULL (which

indicates that the frame is a termination handler that must be executed), the walk of registration frames is

terminated using break, and siglongjmp is called with the contents of the ReservedForPAL field.

The jump transfers execution directly to the frame‘s exception or termination handler. Before doing this,

the bottom-most handler in the chain of registration frames is reset to point to the Next registration frame

in the chain. If the handler that is the target of the jump is a termination handler, it will continue the

unwinding process; every termination handler will be called up the chain until the target frame is reached.

The code in the target frame‘s handler will be run at that point, after which normal execution can resume.

Careful examination of Example 9-19 will reveal an alternative unwinding strategy used by registration

frames that have their PAL_EXCEPTION_FLAGS_UNWINDONLY flag set. The filter function in this case

is an execution engine helper routine, and rather than jumping nonlocally, control is transferred using a

function call on the handler directly. Note that an EXCEPTION_RECORD is set up for this function, and

that the exception record has its EXCEPTION_UNWINDING flag set. By checking this value, the helper

can continue unwinding the chain of registration frames through managed regions of the stack.

Frames marked as ―unwind only‖ in this way are used to handle exceptions that occur in JIT-compiled

code. Every entry into JIT-compiled code is protected by the execution engine helper function, which will

dispatch exceptions to managed handlers as appropriate. If a regular PAL_TRY/PAL_EXCEPT were used

to protect JIT-compiled code, it would not be able to execute second-pass handlers, since their activation

records would have been eliminated from the stack by the call to longjmp. ―Unwind only‖ frames are

also much faster to set up than regular PAL_TRY frames, because they do not capture CPU state using

setjmp. Because of this, they are used internally by some execution engine functions. (See

Object::Validate in clr/src/vm/object.cpp for an example of this use.)

If no frame is found to handle an exception after two passes over the chain of registration frames, the

process is terminated by a call to TerminateProcess, unless the exception was raised by a signal. In

this case, the signal handler is removed and SEHRaiseException returns, allowing the signal to be

raised again, just as if EXCEPTION_CONTINUE_EXECUTION had been encountered. The advantage to

this approach is that unhandled PAL exceptions turn into Unix core dumps.

Appendix A: The Platform Adaptation Layer | 297

Managing Memory with the PAL

Memory is a fundamental computational resource, and not surprisingly, the PAL provides memory

allocation as a service to the SSCLI. The four Win32 routines, VirtualAlloc, VirtualFree,

VirtualProtect, and VirtualQuery, form the basis for this service and are what lie beneath the

intricate memory management mechanisms that we examined in Chapter 7. In the Unix PAL, the logical

implementation choice would seem to be to use the mmap functions as a basis for these APIs. This is, in

fact, ultimately the choice, although a few problems had to be solved along the way to get the code to work,

mostly having to do with the lower-level nature of mmap.

While mmap has the ability to allocate memory in a way that maps nicely to VirtualAlloc, there is no

standard equivalent to VirtualQuery. What is ore problematical is that some implementations of mmap

are unable to provide memory at a specific virtual address and, instead, assign the address unilaterally. (The

hint parameter, which is provided in the API for this purpose, is honored by most implementations but not

all.) VirtualAlloc, of course, has a nearly opposite usage: allocation either happens at the location

specified or the request fails.

The SSCLI depends on the VirtualAlloc approach, since several of its algorithms use structures that

have known starting addresses to simplify address calculations. Because of this, and because of the lack of

VirtualQuery functionality, the PAL implements extra infrastructure to keep track of the state of

memory, and additionally defines several platform-specific macros: MMAP_IGNORES_HINT and

HAVE_VM_ALLOCATE (for use with Mac OS X). The use of these flags causes the file

pal/unix/map/virtual.c to be a slightly gnarly combination of several solutions under #ifdef.

FreeBSD doesn‘t ignore mmap‘s address hint, but other Unix implementations do. To ensure

portable behavior, the general solution selected was to map a file into memory—the PAL uses its

own on-disk image for this purpose, since it is reasonably certain to exist—and to reserve a 1 GB

chunk of address space within that map. Memory can then be suballocated from the resulting

address range by using a local allocator and a free list to replace mmap allocation.

VirtualQuery and VirtualProtect can remain unchanged within this scheme, but

VIRTUALReserve and VirtualCommit must use the PAL routines in place of calls to mmap.

VirtualFree also needs to have a slightly different codepath.

Mac OS X ignores the address hint. On this operating system, however, there is an alternative

workaround. Rather then reimplement the allocator, the OS X PAL handles this case by calling

Mach‘s vm_allocate to allocate the memory at the requested address and, if successful, then

calls mmap at the same address. Not pretty, but it seems to work. (Of course, one good reason to

use an adaptation layer is to isolate such less-than-pretty bits from the main code base.)

There is only one data structure of note, the CMI list, which is used by the virtual-memory management

code. This list is a doubly linked list of CMI structures, shown in Example 9-20, which is rooted in the

global variable pVirtualMemory. Notice the use of HAVE_VM_ALLOCATE in this structure definition.

Example Error! No text of specified style in document.-20. CMI structures

typedef struct _CMI {

 struct _CMI * pNext; /* Link to the next entry. */

 struct _CMI * pLast; /* Link to the previous entry. */

 UINT startBoundary; // Start of page-aligned region.

 UINT memSize; // Size of the region

#if !HAVE_VM_ALLOCATE

 DWORD accessProtection; // Initial access protection

 DWORD allocationType; // Initial allocation type

Appendix A: The Platform Adaptation Layer | 298

 BYTE * pAllocState; // Per-page protection tracking

 BYTE * pProtectionState; // Per-page allocation type tracking #endif //

!HAVE_VM_ALLOCATE

}CMI, * PCMI;

The CMI list represents all virtual memory managed by the PAL. Each startBoundary field contains

the page-aligned starting location of the memory region for an entry, and memSize is its page-aligned size.

allocationType is used for the initial allocation type of the region, and is recorded directly from the

arguments to VirtualAlloc, and is one or more of the following: MEM_COMMIT, MEM_RESERVE, or

MEM_TOP_DOWN (which is ignored by the PAL). The initial allocation type for the region can be found in

the allocationType field, whose value is recorded directly from the call to VirtualAlloc.

There is a single critical section, virtual_critsec, to protect access to the CMI list. Locking is

designed to minimize lock contention.

Protecting Memory

The PAL provides memory protection to help minimize the chances of corrupting the contents of memory.

The accessProtection field of the CMI structure contains the initial access protection setting for a

range of memory, while the pProtectionState field points to an array of bytes, each of which

represents the protection state of a corresponding page of memory in the region. In the PAL, protection

setting can combine: PAGE_NOACCESS, PAGE_READONLY, PAGE_READWRITE, PAGE_EXECUTE,

PAGE_EXECUTE_READ, and PAGE_EXECUTE_READWRITE. The values stored in the

pProtectionState array are converted from these PAL-specified values to internal values defined in

the enum VIRTUAL_CONSTANTS.

The implementation of the VirtualProtect API is fairly straightforward. After protection flags are

checked for valid combinations, the requested starting address and size is page-aligned, and the CMI list is

consulted to see whether the starting address is known. If it is, the code ensures that all of the pages that are

covered by the request have been committed, and mprotect is called on the pages with new protection

flag values. Finally, the list‘s byte array is updated with the new protection values.

Reserving Versus Committing Memory

VirtualAlloc is actually a simple wrapper over two distinct functions: VIRTUALReserveMemory

and VIRTUALCommitMemory. In the Win32 model, pages of virtual memory are classified as free,

reserved, or committed. PAL programmers can reserve a range of addresses, using

VIRTUALReserveMemory, without actually requiring committed pages for those addresses until they

are needed, at which point VIRTUALCommitMemory can be called. Address reservation is separated

from page commitment in this way since contiguous ranges of addresses are often useful for algorithmic

efficiency, and yet the system resources required to back large ranges with physical memory can be

prohibitively expensive. Since the pages in a range are typically not needed all at one time, incremental

commitment is a good solution.

VIRTUALReserveMemory takes the same arguments as VirtualAlloc. After aligning to the nearest

64 KB boundary and adjusting the allocation size to be page-aligned (and increasing the size if necessary to

make up for starting alignment), this function calls mmap using MAP_ANON | MAP_PRIVATE. There is

a catch here, since mmap both reserves and commits memory in the same action, and most Unix memory

managers can overcommit memory. (Overcommitment means that the first time an application touches

some page, the memory manager may discover that it can‘t find a free physical page and is forced to

segfault!) In an attempt to mitigate this situation, VIRTUALCommitMemory writes a 0 to each page,

verifying that the physical page is available. (If it is not, the PAL fails, which is the desired behavior, since

the SSCLI is not built to expect segfaults that result from committing memory.)

VIRTUALCommitMemory uses the pAllocState field in Example 9-20 to track the status of the pages

being managed by the PAL. pAllocState contains a pointer to an array of bytes that represents a bitmap

Appendix A: The Platform Adaptation Layer | 299

over all of the pages in the region. This bitmap is used to implement the separate actions of page

reservation and page commitment; it records whether a page is committed.

VirtualFree also supports the separation between memory reservation and memory commitment.

Decommitting memory (bringing the memory back to the reserved state) and releasing memory (releasing

the reserve back to the operating system) are both possible. In fact, the two operations cannot be done at

one time; if this is attempted, an error occurs. This is a good example of a PAL-only simplification; on

Windows, recommitting and releasing memory may be combined into a single operation under some, but

not all, circumstances.

When releasing memory, the starting address supplied to the function must match the base address of a

CMI region, and the size parameter must be 0. VirtualFree calls munmap with the region‘s base

address and size, which is obtained from the CMI list. The region is removed from the CMI list via

VIRTUALReleaseMemory.

Updating Memory with Interlocked Instructions

The PAL includes a family of routines that is extremely valuable for implementing runtime infrastructure in

a multithreaded environment. Each of these routines guarantees that the action it performs, such as

incrementing or decrementing a memory location, is done atomically. Even if two threads in different

processes were to access a shared memory location, atomic operations guarantee that only one will be able

to read or write at a time, and no interleaving will occur.

Other mechanisms in the PAL, such as critical sections, achieve the same effect, but the routines in this

family are typically much more lightweight in terms of processor overhead. Their limitation is that they can

update only a single memory location, and exchange only two memory locations. Critical sections or

mutexes must be used for anything larger.

The interlocked routines must typically be implemented in assembler, and almost always leverage unique

processor characteristics. Consider one of the routines used in several places in the PAL:

InterlockedCompareExchange. The code for the Intel x86 version of this function can be found in

pal/unix/arch/i386/interlock.c:

 __asm__ __volatile_ _(

 "lock; cmpxchgl %2,(%1)"

 : "=a" (result)

 : "r" (Destination), "r" (Exchange), "0" (Comperand)

 : "memory"

);

Note that the cmpxchgl instruction is being used, which performs the compare and exchange in a single

operation, in combination with the lock prefix, which is required to cause an atomic update in a

multiprocessor environment. Now consider what this routine looks like in pal/unix/arch/ppc/interlock.s,

which is an implementation for the Motorola PowerPC chip:

 InterlockedCompareExchange

 lwarx r6, 0, r2

 cmpw r6,r5

 bne ContW

 stwcx. r4,0,r2

 bne _InterlockedCompareExchange

 ContW:

 sync

 mr r2,r6

 blr

The PowerPC has no single instruction equivalent to cmpxchgl, and so the compare and exchange is

implemented using load and store with reservation operations.

Appendix A: The Platform Adaptation Layer | 300

Exploring the Rest of the PAL

The rest of the PAL‘s implementation has much less impact on the algorithms and operation of the

execution engine than the topics already discussed in this chapter. It does, however, bear marks left by

higher-level design choices, and perusing the code looking for these marks can be a very interesting

exercise.

The code that provides network and file I/O, for example, is straightforward until the point where it hits

semantic differences between Unix and the programming model of the CLI‘s frameworks. As a final

source-code expedition, we will briefly outline two areas in which these semantic mismatches require the

PAL to install expensive impedance-matching code.

Locking File Regions in Multiple Processes

Unlike most flavors of Unix, Win32 supports region locking within opened files. Even so, implementing

this feature in the PAL would be straightforward, were it not for the locked regions of opened files that

must be accessible to all PAL processes. Because the feature is exposed by the Lock and Unlock

methods of System.IO.FileStream in the base class library, locking must be valid across process

group boundaries, and the data used to represent opened files must be stored in shared memory. As

discussed in the previous section ―Sharing Memory Between Unix Processes,‖ shared memory is a

potential bottleneck to system throughput due to its region locking. Because of this, the data needed to

implement file I/O, like all of the other handle-based implementations in the PAL, is divided between local-

and shared-memory structures.

The file structure, with its now-familiar initial HOBJSTRUCT, holds file data local to a process, while

the SHMFILELOCKS and SHMFILELOCKRGNS structures combine to represent region-locking data that

must be available in shared memory. All of these structures are defined in pal/unix/include/pal/file.h, and

all are shown in Example 9-21.

Example Error! No text of specified style in document.-21. The structures used to represent region

locking in files (defined in pal/unix//include/pal/file.h)

typedef struct _file

{

 HOBJSTRUCT handle_data;

 struct _file *self_addr;

 int unix_fd;

 // Windows can open a file for writing only, so this must exist here

 DWORD dwDesiredAccess;

 int open_flags;

 BOOL open_flags_deviceaccessonly;

 char *unix_filename;

 SHMPTR shmFileLocks;

 BOOL inheritable;

} file;

typedef struct

{

 SHMPTR unix_filename;

 SHMPTR fileLockedRgns;

 UINT refCount;

 SHMPTR next;

 SHMPTR prev;

 DWORD share_mode;

 int nbReadAccess;

 int nbWriteAccess;

} SHMFILELOCKS;

typedef struct

Appendix A: The Platform Adaptation Layer | 301

{

 DWORD processId;

 file *fileStructPtr;

 UINT64 lockRgnStart;

 UINT64 nbBytesLocked;

 int lockType;

 SHMPTR next;

} SHMFILELOCKRGNS;

The self_addr field in file is set to point to the head of the _file structure and is used strictly for

PAL debugging. Unsurprisingly, unix_fd contains the handle of the underlying Unix file descriptor,

valid only while the underlying file is open (and otherwise set to -1). The dwDesiredAccess field

contains a copy of the parameter value of the same name passed to the CreateFile functions, while

open_flags are the flags that were actually used to open the Unix file. The value of the open_flags

field is ultimately a combination of the dwDesiredAccess and dwCreationDisposition

arguments to CreateFile, and since it is used for a number of file code operations, it makes sense to

calculate it and then cache the resulting value, which is exactly what is done. The

open_flags_deviceaccessonly field is used when a file is opened with dwDesiredAccess

equal to 0, which indicates that the call is intended to allow queries about file or device attributes, and not

to access the file or device. The inheritable field is used to indicate whether the file can be inherited

by spawned processes, and finally, shmFileLocks contains a pointer to the shared memory information

that details the lock structures associated with a file.

The two data structures used to implement file locking for PAL processes within a process group are

SHMFILELOCKS and SHMFILELOCKRGNS. In SHMFILELOCKS, the unix_filename field is a

pointer to shared memory that is used to uniquely identify the file with which a locked region is associated.

(To see this field in action, examine the function FILEGetSHMFileLocks in pal/unix/file/file.c.)

The fileLockedRgns field contains a pointer to a linked list of SHMFILELOCKRGNS that define

individual locked regions of a file. Like other shared memory structures, SHMFILELOCKS structures are

placed in a doubly linked list; hence the next and prev pointers. Each region stores the dwShareMode

argument from calls to CreateFile into its share_mode field the first time that a file is opened.

Subsequent opens, whether within a process or from another process in the PAL process group, will consult

this field to check for sharing flags.

Both nbReadAccess and nbWriteAccess are used as reference counts to track the count of open file

handles with, respectively, GENERIC_READ and GENERIC_WRITE access. When CreateFile is

called to open a file, the file‘s nbReadAccess and nbWriteAccess counts will be consulted if the file

is open within the process group. For each reference count that is nonzero, dwShareMode must have the

appropriate bit set (FILE_SHARE_READ and/or FILE_SHARE_WRITE) to open the file. The value of the

lockType field may contain one of two values: either USER_LOCK_RGN for normal locks that come

from a call to LockFile, or RDWR_LOCK_RGN for locks that are used internally by the PAL to

implement ReadFile and WriteFile.

Finally, the linked list of SHMFILELOCKRGNS is sorted by the value of the lockRgnStart field, which

represents the start of the locking region. Both lockRgnStart and nbBytesLocked (which holds the

number of bytes to lock in the region) are UINT64 values so that they can be used with very large files.

As you can see, by requiring that region locking be visible across process boundaries, a simple task was

made much more complex!

Asynchronous Socket Operations

The PAL supports both the Winsock 1 and Winsock 2 APIs. Most of Winsock 1 is provided by a very light

layer over the BSD socket API, since the functionality is nearly identical. Winsock 2, however, is more

difficult to map, since its model for asynchronous I/O is different.

Appendix A: The Platform Adaptation Layer | 302

The basic approach used by the PAL to implement asynchronous sockets is to employ a worker thread for

handling socket operations in the background. Commands to this thread are one-way, and are sent using a

pipe. The thread is created, along with its pipe, the first time WSAStartup is called. It is destroyed in

WSACleanup when the SOCK_startup_count goes to 0. (See pal/unix/socket/socket2.c for details.)

There is never more than one worker thread at a time in a given process.

The heart of the worker is the function SOCKWorkerThreadMain, which can be found in

pal/unix/socket/async.c. It is a large while loop in which a list of sockets is repeatedly checked using

poll for:

 Pending data that is ready to be received

 Sockets that are ready to accept outgoing data

 Sockets that have completed connecting

 Pending connections that are ready to be accepted

 Sockets that have been closed remotely

 Errors

When the worker thread calls poll to wait for its next activity, it includes the descriptor for its

communication pipe in the list of file descriptors. Doing so allows the worker thread to wake up when

either an interesting event occurs on a socket being monitored, or when a new command has been issued by

another thread in the system via a call to WSARecv, WSASend, WSARecvFrom, WSASendTo, or

WSAEventSelect.

Commands are represented by the ws2_op structure, which is shown in Example 9-22.

Example Error! No text of specified style in document.-22. The ws2_op structure is used to control

asynchronous socket operations

typedef struct _ws2_op

{

 struct _ws2_op * self_addr;

 PAL_SOCKET s;

 enum ws2_opcode opcode;

 HANDLE event;

} ws2_op;

Commands, when they are sent, set the socket value s on which the operation will be performed. The field

opcode in sw2_op can take on any of the following values:

WS2_OP_SENDTO

Queues data to be sent on the socket

WS2_OP_RECVFROM

Queues a buffer into which data will be received from the socket

WS2_OP_EVENTSELECT

Informs the worker thread which network events to monitor

WS2_OP_CLOSESOCKET

Closes the socket, when overlapped operations have concluded

WS2_OP_STOP_THREAD

Terminates the worker thread

Wrapping up our discussion of the mechanism, the event in Example 9-22 named, somewhat ambiguously,

event, is used for close notifications, since the WS2_OP_CLOSESOCKET command cannot take place

immediately if overlapped operations are pending.

Appendix A: The Platform Adaptation Layer | 303

Once again, what could have been a very thin wrapper on preexisting Unix functionality became a more

heavyweight and more complicated solution, due to an impedance mismatch between the semantics of the

higher-level programming API and the systems-level service. The PAL may abstract platform differences

away for the purposes of Rotor‘s source code, but those differences are very real from the perspective of

resource consumption and processor cycles.

Joining Components to the OS

The PAL contains important lessons for students of high-level abstractions such as the CLI. Structure and

behavior represented as CLI types must eventually become code that runs within the boundaries imposed

by the APIs of some operating system. This code must accommodate the processor instruction set and

device drivers of the system unequivocally; there is no give-and-take. Because of this, the options presented

by an operating system API profoundly affect all abstractions built above them, including virtualized

execution.

One could imagine the opposite also being true: the CLI‘s integration model could be so valuable that it

could affect the capabilities and abstractions of underlying operating systems. Boundaries that enhance the

safety of collaboration, such as those that accompany the concepts of component, of application domain, of

typesafe code, of automatic memory management, and of generalized chained protection frames,

characterize the CLI integration model. One of the main purposes of operating systems is to enable the

integration of code from many sources with concepts such as device drivers, applications, and system

libraries—so the design of OS boundary abstractions is also very important.

There is currently overlap between the mechanisms invented to support CLI components and those that

support operating systems, such as the use of threads and structured exceptions, but this overlap is

surprisingly small. The successful joining of component-based software to operating systems and hardware

design seems to be a page yet to be written.

Appendix B: Add a new CIL opcode | 304

Appendix B: Add a new CIL opcode

As has already been noted, the SSCLI environment raison d’etre was to provide a platform and testbed for

experimentation, instrumentation, and research. While the first edition of this book was successful in its

goal of providing a base overview of the SSCLI source code, one thing it admittedly didn‘t do was to

answer the important question, ―What can I do with it? Why should I bother learning all this stuff if I‘m not

a researcher, experimenter, or CLI implementer?‖

Back in 2002, Peter Drayton sought to answer that question for himself. He did so by asking himself the

rather ambitious question, ―How hard would it be to take the SSCLI bits and extend them somehow?‖ In

his case, that question gave birth to a more concrete, related question: what would it take to add an

instruction to the instruction set and have it flow through the runtime and tools?

After a night of sleepless hacking, Peter answered the call, made a presentation out of it, and then, for the

second edition of this book, generously donated his work so that we could bring it to all of those who might

be similarly interested. It is a wonderful tour de force of some of the most interesting parts of Rotor,

offering a great path of study for those who prefer a threaded path through the source.

Adding Exponentiation to Rotor

The goal is explore the nuts and bolts of the SSCLI and experiment by extending the runtime instruction set

to include exponentiation. Exponentiation, for those whose mathematics background deserted them after

college or university, is a mathematical operation that corresponds to repeated multiplication (given the

exponential equation 10^3, 10 being the base, 3 being the exponent, the result is 10 x 10 x 10 = 1000).

The simplest approach, after a moment‘s thought, is to add a new method to the System namespace

somewhere, which could take a ―base‖ and an ―exponent‖ and return the appropriate result. This design

approach passes the ―simplest possible thing that could possibly work‖ criteria, but for a pedagogical

exercise, fails miserably: not only is it an ―API-centric‖ solution that requires more work of the user (and

less of the implementer) but it‘s also just too easy, and doesn‘t meet the goal of experimenting in the guts

of the runtime. Instead, let‘s be egregious. Let‘s add a new opcode to the instruction set.

Designing this new opcode is reasonably simple, given the existing arithmetic instructions already part of

the CIL Specification:

Push two operands (x, y) of type double on to the stack;

 ldc.r8 10

 ldc.r8 20

Call the new ―expon‖ IL instruction to pop off the doubles from the virtual stack, and push the result of the

exponentiation operation on to the stack:

 ldc.r8 10

 ldc.r8 20

 expon

(For this particular experiment, we will stick with this overly simple design; a more extensive

implementation might be extended to take integer, non-floating point values as input and output, for

example, or a mix of floating and integral values. Whether or not this is a good idea is left up to the readers

to experiment with and decide for themselves.)

Appendix B: Add a new CIL opcode | 305

Of course, the new IL opcode should follow the rules of its cousins: it should be verifiable and thus

provably safe in the runtime; it should be read and understood by various CLI tools; and it should be

emittable by the Reflection.Emit namespace.

What’s needed?

In order to support a new IL opcode, we need to make modifications to a various runtime subsystems.

Firstly, the JIT compiler must recognize and generate the necessary code to perform the calculation.

Secondly, the JIT verifier must verify that the IL stack is safe before executing the instruction (meaning if

there are typed requirements for the opcode, that those types are placed safely on the stack at the time of the

operation).

Thirdly, we need the assembler and disassembler to recognize the instruction.

And, last, we need the CLI runtime libraries to support emitting the instruction at runtime.

Of course, there are various other places we can add support for the instruction in the SSCLI distribution,

such as extending the programming languages to recognize situations where the expon opcode would be

useful to emit, right through to fully utilizing the hardware platform we‘re running on, such as the floating-

point numeric processor present in most modern Intel x86 CPUs. In this example, we‘ll limit the scope a

little, just to reduce the experiment workload, and leave it to the above four steps.

For those developers more interested in language hacking, adding support for an

exponentiation operator to C# or JScript that emits this newly-minted ―expon‖ opcode

makes for a wonderful weekend project.

One last thing, before we get started: this is going to be a fairly intensive walkthrough of the SSCLI source

base, so before getting too deeply wrapped into the discussion, grab a large mug of your favorite

caffeinated beverage, pull up the chair to the desk, fire up a Rotor command-line window, and settle in for

the long haul.

Approach and Research

If you‘ve read Chapter 5 in detail, a lot of what we‘re about to review in this section will

be familiar already. This section explains an approach to debugging and understanding

the unmanaged runtime by breaking in to the JIT compilation process. Feel free to skip

the Approach section if Chapter 5 is already fresh in your mind.

The simplest approach to adding a new opcode is to find an existing opcode that is functionally similar. In

our case, the ―mul‖ opcode is very close: it pops two objects of the same type from the IL stack, multiplies

them, and pushes the result. And with that, we fire up our favorite IDE to explore the source code, and our

favorite debugger.

Rotor Spelunking

When spelunking or tinkering with any large source base, particularly a native code source base

such as the SSCLI, two things will make the difference between an enjoyable experience and one

that isn‘t: the IDE/editor/workspace tool, and the debugger.

Appendix B: Add a new CIL opcode | 306

The IDE should support symbol parsing for C++ and even C# if possible. Source Insight

(http://www.sourceinsight.com) supports parsing symbols for both languages (and other languages

as well), and seems to do a fantastic job at searching for, and drilling in to code symbols. When

looking for a particular class/method pair, instead of opening files at random or ―grep‖ing through

the source files for a recognizable name, just hit F7, start typing the class name and method name,

and it‘ll take you right there. When looking at some source and the question of ―What does this

method call do?‖, just hit Ctrl-Plus on the method call site and it‘ll resolve the symbol and drop

you in to its source definition. It makes navigating the SSCLI source code easy.

The debugger choice is usually a personal preference. If you have a copy of Visual Studio 2005, it

supports the full set of unmanaged runtime debugging scenarios, even to the point where you can

disassemble the JIT machine code output – a nice bonus. If you prefer something ―meatier‖ and

more deeply integrated with the operating system as well as the SSCLI/CLR, the ―WinDbg‖

debugger is available from Microsoft and is described in some detail in other parts of this book.

The SSCLI distribution has debugging documentation in sscli20/docs/debugging to help you make

your decision and start your journey spelunking the runtime.

While the SSCLI supports many different types of instrumentation and logging options to make

understanding runtime execution easier, that exercise was covered elsewhere in this text and won‘t

necessarily serve our purposes here. Instead, we‘re just going to jump right in to the guts of the source

we‘re executing, see what happens and, more importantly, where it happens, as a crib to understanding

what we need to do to bring ―expon‖ to life. For that, we need a debugging breakpoint and an example

program that uses the ―mul‖ opcode. Let‘s start with the example:

 Example B-1 C# source that generates a “mul” opcode

 using System;

 public class MulExample

 {

 public static void Main()

 {

 double a = 10;

 double b = 2;

 double result = a * b;

 }

 }

After compiling Example B-1‘s source, we end up with a classic CLI assembly, which we can next

disassemble into its constituent IL by running it through the ILDASM tool:

 Example B-2 ILDasm output for “mul” C# example

 .method public hidebysig static void Main() cil managed

 {

 .entrypoint

 // Code size 26 (0x1a)

 .maxstack 2

 .locals init (float64 V_0,

 float64 V_1,

 float64 V_2)

 IL_0000: nop

 IL_0001: ldc.r8 10.

 IL_000a: stloc.0

 IL_000b: ldc.r8 2.

 IL_0014: stloc.1

 IL_0015: ldloc.0

 IL_0016: ldloc.1

 IL_0017: mul

 IL_0018: stloc.2

http://www.sourceinsight.com/

Appendix B: Add a new CIL opcode | 307

 IL_0019: ret

 } // end of method MulExample::Main

This looks remarkably similar to what we would have expected it to look like: load the constant 8-byte real

value 10, store it to a local variable, load the constant 8-byte real value, store it to another local variable,

push the first local variable onto the execution stack, push the second local variable onto the execution

stack, invoke ―mul‖ to pop the top two execution stack values off and push the result onto the execution

stack, store the result to a local variable, and return. As exercises in IL go, this was not difficult.

The next step, however, is a tad more difficult. In order to see the Rotor treatment of the ―mul‖ opcode, the

debugger either has to start executing from the very beginning in clix.exe and single-step execution all the

way through to the treatment of the ―mul‖ opcode—a tedious process in the extreme—or the debugger

needs a breakpoint set someplace just before the ―interesting stuff‖ happens. Clearly the second approach is

vastly superior, but where this breakpoint should be set is not necessarily obvious.

Thinking about the architecture of the Rotor implementation for a while leads to a possible solution. From

Chapter 3 and 4, we know that the CLI stores IL in metadata, which means that each IL instruction has its

own ―byte‖ value telling the metadata reader/writer what the opcode is. We also know that the CLI needs to

verify the IL stream before execution, and that the CLI needs to transform the IL stream into a native code

stream, which takes place in the JIT compiler.

Thus, several potential solutions present themselves. One would be to set breakpoints in the entrypoints for

the metadata reader/writer, find where the stream for main is stored, and set a data-access breakpoint on

that IL and see who comes calling for it later. Another would be to set a breakpoint at the IL verifier during

the assembly-load process, and follow the verifier process (which, as we have already seen, is shared with

the JIT compiler anyway). Either of these approaches would be fine, but for the purpose of this exercise,

the easiest choice is to set a breakpoint on the JIT compiler itself or some subsystem within it, in order to

watch the translation of ―mul‖ to x86.

Having said that, however, nowhere in this book did we explicitly state where in the SSCLI source base

does that translation take place (and, even if we had, this hardly scales to every instruction in the IL

instruction set.) Thus, a bit of research is necessary: doing a symbol search for the symbols relating to

―compile mul‖ is sufficient enough to find an interesting entrypoint in to the JIT compiler:

Example B-3 Source Insight ―symbol browsing‖ search window

Appendix B: Add a new CIL opcode | 308

The symbol browser found a method called FJit.compileCEE_MUL that lives in sscli20/clr/src/fjit

which looks like it may do the fun part of compiling the ―mul‖ multiplication opcode. Let‘s set a breakpoint

on that method and run:

(This example uses cdb.exe, a command-line cousin to WinDbg, both of which are found in the Debugging

Tools for Windows package freely available from Microsoft at

http://www.microsoft.com/whdc/DevTools/Debugging/default.mspx. Fortunately, the commands shown

here extend to windbg.exe and ntsd.exe as well)

0:000> bp mscorejt!FJit::compileCEE_MUL

Bp expression 'mscorejt!FJit::compileCEE_MUL' could not be resolved, adding deferred

bp

0:000> g

...

mscorejt!FJit::compileCEE_MUL:

79a1cebc 55 push ebp

The ―bp‖ command, of course, sets the breakpoint on said method, but since that DLL hasn‘t been loaded at

the time the breakpoint was set, the debugger responds by saying it will set it as soon as this symbol is

somewhere inside the process. In the case of the SSCLI, this will happen when clix.exe fires up and, as part

of the CLI bootstrap process, loads the JIT compiler DLL (mscorejt.DLL); see Chapter 5 for more details.

The ―g‖ command turns the process loose to run, and before long, the breakpoint is hit and control returns

to the developer.

Using the ―k‖ command shows what‘s on the unmanaged call stack:

0:000> k

ChildEBP RetAddr

001ada14 79a436ad mscorejt!FJit::compileCEE_MUL

001ada68 79a4682c mscorejt!FJit::jitCompile+0x1708

001adc4c 793c011d mscorejt!FJitCompiler::compileMethod+0x37d

001adc78 793c25c2 mscorwks!invokeCompileMethodHelper+0x22

001adcbc 793d98de mscorwks!invokeCompileMethod+0x31

001add88 793d9ced mscorwks!CallCompileMethodWithSEHWrapper+0xcc

001ae74c 7946a2e4 mscorwks!UnsafeJitFunction+0x30c

001ae908 7946aca1 mscorwks!MethodDesc::MakeJitWorker+0x2a0

001ae984 7946b0df mscorwks!MethodDesc::DoPrestub+0x618

001aea84 001db0ca mscorwks!PreStubWorker+0x235

Bingo. The FJitCompiler::compileMethod method found in sscli20/clr/src/fjit/Fjitcompiler.cpp

looks like out JIT entrypoint. However on examination, the code in that method isn‘t special cased, and

doesn‘t actually care about the IL instruction stream for a given method about to be JIT compiled – that

code actually lives in the FJit::jitCompile method.

Some readers may be actively wondering why we can determine this from a list of

methods that all seem similarly-named. In this case, this is where the ability to quickly

look at method implementations can be handy: glancing at the other method

implementations on the stack don‘t really reveal much by way of JIT goodness until the

FJitCompiler::compileMethod() call. Plus, the transition from ―mscorwks‖ to ―mscorejt‖

libraries is another, equally interesting, clue.

There‘s a lot of code in that method, so rather than simply set the breakpoint at the beginning and watch

each and every IL instruction come through here, instead, we want to find any place that‘s special cased to

the ―mul‖ opcode. This is most easily accomplished by either scanning the code visually, or by letting

―Find‖ in the editor do some of the work, but either way, a little further down, we see the following:

 while (!FinishedJitting)

 {

 // ...

http://www.microsoft.com/whdc/DevTools/Debugging/default.mspx

Appendix B: Add a new CIL opcode | 309

 switch (opcode)

 {

 // ...

 case CEE_MUL:

 JitResult = compileCEE_MUL();

 break;

 }

 }

This seems promising—a bit of background verification reveals that CEE_MUL is the symbolic

representation for the IL ―mul‖ instruction, so it seems like a winner. Drilling into the

FJit::compileCEE_MUL method reveals the following:

 FJitResult FJit::compileCEE_MUL()

 {

 OpType result_mul;

 BINARY_NUMERIC_RESULT(topOp(),topOp(1), CEE_MUL, result_mul);

 TYPE_SWITCH_ARITH(topOp(), emit_MUL, ());

 POP_STACK(2);

 pushOp(result_mul);

 return FJIT_OK;

 }

Success! This is pretty clearly the spot desired—even without knowing what the implementation is actually

doing, we can see that some kind of arithmetic operation is taking place, generating a result, and pushing it

back onto the stack, just from the names of the symbols in the method itself (result_mul being a dead

giveaway, for example).

Take a brief moment to refresh the mug of caffeinated beverage.

As has already been noted elsewhere, most of the SSCLI JIT engine is handled through some complex

macrology. The BINARY_NUMERIC_RESULT macro in sscli20/clr/src/fjit/Fjitverifier.h takes two items

from the IL stack and checks that they are type equivalent. The TYPE_SWITCH_ARITH macro takes a

type, a macro name, and any specified arguments, and calls the relevant ―emit‖ macro for the specified

type: emit_MUL_XX. In a general case for multiplying two integers, the emit_MUL_I4 macro will be

called.

 #ifndef emit_MUL_I4

 #define emit_MUL_I4() \

 { \

 callInfo.reset(); \

 emit_tos_arg(1, INTERNAL_CALL); \

 emit_tos_arg(2, INTERNAL_CALL); \

 emit_callhelper_I4I4_I4(MUL_I4_helper); \

 emit_pushresult_I4(); \

 }

 #ifdef DECLARE_HELPERS

 int HELPER_CALL MUL_I4_helper(int i, int j) {

 return j * i;

 }

 #endif

This code emits the processor specific instructions in to an instruction buffer to execute a multiplication

operation. The emit_tos_arg macro emits code to move the argument on the top of the IL stack in to a

processor register if the call site allows it or on to the processors physical stack if it doesn‘t. This is

required to set up the call site to the MUL_I4_helper method, which in turn, contains C++ code that

multiplies the two integers and returns the result. A little further down, lies the equivalent compile methods

for double and float types, as well as methods that handle overflow scenarios. All simply call a helper

method that performs the operation in unmanaged C++ with the unmanaged type equivalent – in other

words, it‘s simply relying on the C++ compiler to provide an efficient implementation of the operation.

Appendix B: Add a new CIL opcode | 310

Of course, this isn‘t the whole story. Asking the IDE for the symbols matching emit_MUL_I4 shows a

redefine of the same macro in sscli20/clr/src/fjit/i386/x86fjit.h.

 #undef emit_MUL_I4

 #define emit_MUL_I4()

 enregisterTOS;

 x86_pop(X86_ECX);

 x86_uarith(x86OpIMul, x86Big, X86_ECX);

 inRegTOS = true

This macro calls out to quite a few x86 processor specific macros whose job it is to manipulate the true

processor stack: place arguments in x86 registers, and emit processor specific instructions to perform the

operation. The result is likely very similar to the code that would be emitted by the C++ compiler by

compiling the MUL_I4_helper macro, but here we‘re given a chance to be extra efficient if the

implementation requires it. For the case of our ―expon‖ example, this extra efficiency isn‘t really necessary:

the C++ compilers emitted code for an exponent helper function should be sufficient.

Walking through the ―mul‖ code has shown that more setup will be required before the ―expon‖ opcode can

be brought to life, but the basic approach outlined above has been shown to at least gets us bootstrapped.

We can let the compiler, runtime errors, and other problems reveal what we‘ve not thought about as we

experiment.

With that, let‘s get going.

Step 0: Preparation

Before we get going too far with this, it should be ridiculously obvious that some kind of testbed case is

necessary, and since the C# compiler hasn‘t a clue about this new opcode, the testbed is going to have to

come from someplace else. The easiest way to do this is to take the above C# code that produced ―mul‖,

change the instruction to read ―expon‖, and save it. Naturally, the IL assembler (ilasm) has no idea about

this instruction, either, but this will be corrected soon.

 Example B-4 Exponentiation operation on two floats 7.0^2.0 (expon_r8.il)

 .assembly extern mscorlib {}

 .assembly expdemo {}

 .method static void main() {

 .entrypoint

 ldc.r8 2.0

 ldc.r8 7.0

 expon

 call void [mscorlib]System.Console::WriteLine(float64)

 ret

 }

We push the exponent (2.0) on the stack first, and the base (7.0) second before calling the ―expon‖ IL

opcode.

Since we‘d like the example to be a bit more rounded and useful, we may as well add another test case

while we‘re at it, this time using i4 (int) values instead of r8 (double) values:

 Example B-5 Exponentiation operation on two integers 3^3 (expon_i4.il)

 .assembly extern mscorlib {}

 .assembly expi4demo {}

 .method static void main() {

 .entrypoint

 ldc.i4 3

 ldc.i4 3

 expon

Appendix B: Add a new CIL opcode | 311

 call void [mscorlib]System.Console::WriteLine(int32)

 ret

 }

This pair of programs will form the test cases: once these two assemble and run without error, we will have

been successful.

Step 1: Adding the opcode

 To make the test cases work successfully, the metadata reader/writer needs to know about the ―expon‖

opcode, so that when the runtime slurps up the IL, it won‘t burp and error out when it sees the ―expon‖ IL

instruction.

Opcodes are structurally defined in opcode_t, found in sscli20/clr/src/inc/OpEnum.h, after which a

master table file called opcode.def is slurped in to bring definition to all the opcodes in the runtime. Thus,

clearly the first step is to add the new ―expon‖ definition to this master table file:

OPDEF(CEE_EXPON, "expon", PopR8+PopR8, PushR8, InlineNone, IPrimitive, 1, 0xFF,

0xA6, NEXT)

This defines both the C++ macro used to identify the instruction, the human readable form ―expon‖, along

with the stack behavior for the instruction. We also define the metadata bits for the opcode: FF A6, which

must be unique. The contents of the definition line are relatively intuitive, but readers are encouraged to

rummage around in the opcode table for a while to see how other opcodes are defined, nonetheless.

We also need to make sure that Reflection.Emit and DynamicMethod are able to generate the new

IL opcode. Reflection.Emit uses a slightly different mechanism than the opcodes table, so in order to

make it support ―expon‖ it‘s necessary to crack open the C# OpCodes class in the Reflection.Emit

namespace and add it to sscli20/clr/src/bcl/system/reflection/emit/opcodes.cs:

 public static readonly OpCode Expon = new OpCode("expon",

StackBehaviour.Pop1_pop1, StackBehaviour.Push1, OperandType.InlineNone,

OpCodeType.Primitive, 1, (byte)0xff, (byte)0xa6, FlowControl.Next, false, -1);

Step 2: Verifying the “expon” opcode

The verifier ensures the structural integrity of loaded IL, to ensure that malicious, ill-formed or corrupt

streams of IL won‘t compromise the execution engine. As of this moment, any use of the ―expon‖ opcode

will result in a verification error, since the opcode ―FF A6‖ is not recognized by the verifier, so the next

step is to either convince the verifier to look the other way when it sees this opcode, or teach the verifier

how to verify ―expon‖ IL instructions. The latter is vastly preferred.

Interestingly and perhaps counterintuitively, there are two places we need to poke in order to enable

verification: the logic contained within the FJit::jitCompile method, and the metadata verifier that‘s

defined by the interface IMetaDataValidate and implemented by sscli20/clr/src/vm/Validator.cpp.

This is necessary because the SSCLI implementation sees verification and JIT compilation as highly related

activities: each is cracking the IL stream into constituent atoms, the one to ensure that everything is

―righteous‖, and the other to translate into x86.

To add the verification rules to the metadata verifier, we touch another lookup table defined in

sscli20/clr/src/vm/vertable.h, adding the following:

VEROPCODE(CEE_EXPON, "N=:-")

The string literal defines the semantics for the verification. The rules for these symbols and their semantics

can be found at the top of the vertable.h file, but all follow this basic schema:

Usage: <pop stack> : <operand checks> <push stack> <branches> <!>

For our example, we follow the same rules as the ―mul‖ opcode: ―N‖ defines that a number (any integer or

real number) must be on the stack, along with ―=‖, which means another element of the same type must be

on the stack as well. A moment‘s reflection suggests that ―NN:-‖ would also have worked, and perhaps

Appendix B: Add a new CIL opcode | 312

might make it more explicit, but consistency is a virtue, and since ―mul‖ uses this ―N=‖ approach, so will

―expon‖. The ―-― notation tells the verifier to rewind the stack to undo the last pop – this is essentially the

same as saying a ―N‖ element will be pushed back on to the stack after the operation.

Thus, the string literal above tells the verifier the rules for ―expon‖: ―pop two number elements, and push a

number element back on to the stack as the result‖. After modifying the metadata verifier, we should take a

quick peek at the JIT compiler‘s intertwined verification code found in FJit::jitCompile. The good

news is that verification is implicit in compilation: i.e. if the JIT compiler comes across the opcode, calls

the opcode code generation method, and that opcode doesn‘t receive what it wants from the stack, it returns

an error. No further modification is necessary to support verification.

Step 3: Generating code

As of right now, the IL stream will be loaded and verified, but nothing will happen: JIT compilation

doesn‘t know what to do with it. To get the JITter to ―do the right thing‖ with the ―expon‖ opcode, the

JIT‘s ‗uber‘ switch statement must be modified to recognize the new opcode and generate x86 for it, rather

than ignoring it. Jumping right in to FJit::jitCompile, it‘s fairly simple to add the following to

sscli20/clr/src/jit/Fjit.cpp:

 while (!FinishedJitting)

 {

 // ...

 switch (opcode)

 {

 // ...

 case CEE_EXPON:

 JitResult = compileCEE_EXPON();

 break;

… and then to add the actual workhorse method (compileCEE_EXPON) itself:

 FJitResult FJit::compileCEE_EXPON()

 {

 OpType result_exp;

 BINARY_NUMERIC_RESULT(topOp(),topOp(1), CEE_EXPON, result_exp);

 TYPE_SWITCH_ARITH(topOp(), emit_EXPON, ());

 POP_STACK(2);

 pushOp(result_exp);

 return FJIT_OK;

 }

… and of course, to modify the C++ header definition found in sscli20/clr/src/jit/Fjit.h

 FJitResult compileCEE_EXPON();

The compile code is very similar to the ―mul‖ opcode (which, after all, is why we chose ―mul‖ as our

research testbed back during the research phase): ―expon‖ pops two elements off the stack, then tells the

TYPE_SWITCH_ARITH macro to call the relevant emit_EXPON_XX macro that we‘re about to define in

sscli20/clr/src/jit/Fjitdef.h:

 Example B-6 JIT Helpers to emit code for “expon” instruction (FJitdef.h)

 #ifndef emit_EXPON_R8

 #define emit_EXPON_R8() \

 emit_callhelper_R8R8_R8(EXPON_R8_helper); \

 emit_pushresult_R8()

 #ifdef DECLARE_HELPERS

 double HELPER_CALL EXPON_R8_helper(double i, double j) {

 double result = pow(i, j);

 return result;

Appendix B: Add a new CIL opcode | 313

 }

 #endif

 #endif

 #ifndef emit_EXPON_I4

 #define emit_EXPON_I4() \

 emit_callhelper_I4I4_I4(EXPON_I4_helper); \

 emit_pushresult_I4()

 #ifdef DECLARE_HELPERS

 int HELPER_CALL EXPON_I4_helper(int i, int j) {

 int result = (int) pow(((double)i), ((double)j));

 return result;

 }

 #endif

 #endif

 #ifndef emit_EXPON_I8

 #define emit_EXPON_I8() \

 emit_callhelper_I8I8_I8(EXPON_I8_helper); \

 emit_pushresult_I8()

 #ifdef DECLARE_HELPERS

 __int64 HELPER_CALL EXPON_I8_helper(__int64 i, __int64 j) {

 __int64 result = (__int64) pow(((double)i), ((double)j));

 return result;

 }

 #endif

 #endif

We defined three macros, one for each type of ―number‖ (remember the changes we made to the metadata

verifier?) that we‘ve chosen to support: I4 (int32), I8 (double) and R8 (float). We could easily add more

(short, unsigned int, etc) if we wanted to (yet another good exercise for the curious and/or experimental

reader). Essentially, these ―emit‖ methods simply call their C++ helper method counterparts, which in turn

leverage the C++ method ―pow‖, which performs an exponentiation operation on two numbers. We

essentially let the C++ compiler do the native processor code emission for us, and leverage the result.

Step 4: Test

Let‘s see how our examples run:

 C:\sscli20\demos>ilasm expon_r8.il

 Microsoft (R) .NET Framework IL Assembler. Version 2.0.50826.0

 Copyright (c) Microsoft Corporation. All rights reserved.

 Assembling 'expon_r8.il' to EXE --> 'expon_r8.exe'

 Source file is ANSI

 Assembled global method main

 Creating PE file

 Emitting classes:

 Emitting fields and methods:

 Global Methods: 1;

 Emitting events and properties:

 Global

 Writing PE file

 Operation completed successfully

Appendix B: Add a new CIL opcode | 314

The result:

 C:\sscli20\demos>clix expon_r8.exe

 49

And our 3^3 example using 32 bit integers?

 C:\sscli20\demos>clix expon_i4.exe

 27

Okay great. What about a case that‘s invalid, like passing a float for the exponent, and an integer for the

base?

 Example B-7 IL code for an unverifiable case: i4^r8 (badcase.il)

 .entrypoint

 ldc.r8 3.2

 ldc.i4 3

 expon

 call void [mscorlib]System.Console::WriteLine(int32)

 ret

ilasm.exe has no problem constructing the program, as verification is not performed on assembly. However,

when we go to run the resulting executable under clix, we get an expected result:

C:\sscli20\demos>clix badcase.exe

VALIDATION FAILS: (topOp(1).enum_() == typeI4) || (topOp(1).enum_() == typeI)

|| (topOp(1).enum_() == typeByRef && (((int)CEE_EXPON == (int)CEE_ADD) || ((int

)CEE_EXPON == (int)CEE_SUB)))

At <Module>::main at e

Unhandled Exception: System.InvalidProgramException: Common Language Runtime det

ected an invalid program.

 at main() expon

Great! Verification failed during JIT compilation - exactly what we‘d expect.

Really? That’s it?

We‘ve touched only a few files: opcode.def, opcodes.cs, vertable.h, FJit.h, FJit.cpp, and FJitdef.h. As a

result, we‘re able to generate verifiable, safe code that performs an exponentiation operation and places the

result back on the stack.

Bear in mind, however, that the SSCLI‘s JIT implementation is a deliberately simplified engine, and that

the JIT compiler that ships with production-quality environments (like the CLR or the Sun Hotspot Java

Virtual Machine) is vastly more complicated, aggressively seeking out optimizations wherever and

however it can. But the process of adding the opcode has served its intended purpose, that of giving us the

chance to thread our way through one aspect of the SSCLI environment and see the various places that it

touches during execution.

Summary

We‘ve learned two things: one, how to use existing source in the source base in order to plan an approach

for an experiment, and two, that even something as perceptibly hard as adding a new opcode to the runtime,

can actually be pretty easy.

Sure, we left a bunch of stuff on the cutting room floor—as noted before, the C# and JScript.NET

compilers know nothing about the new opcode, nor do we support implicit type conversions, nor do we

support any form of optimized code emitted from the x86 JIT—but the original goal, that of learning more

about the CLI and introducing an arguably genuinely useful feature to the CLI, pretty clearly was met.

What‘s more, the missing pieces are excellent candidates for further experimentation.

Appendix B: Add a new CIL opcode | 315

Hopefully, Peter‘s wonderful example inspires you to actively plough in to the runtime‘s internals and add,

modify, tinker and/or explore – it‘s just too much fun not to.

Index | 316

Index

.

.NET Framework, 21

A

abandonment, 295

agile components, 95

application domains, 18, 94

Application domains, 94

assemblies, 13, 17, 77

binding, 83

characteristics, 77

configuration files, 91

consistency checks, 93

load by name, 81

load process, 96

names, 82

security, 101

sharing, 85

assembly manifest, 17

AssemblyKeyFileAttribute, 84

B

back-end, 104

background threads, 206

BINARY_OVERFLOW_RESULT, 133

binding, 56

binding policy, 18

boxed type, 60

breakpoints

setting, 118

buildall script, 31

C

C#, 13

and CLI, 13

Calling Conventions, 136

cdb tool, 37

example commands, 38

CIL

adding a new opcode example, 320

verification and compilation, 128

CIL (Common Intermediate Language)

opcodes, 33

CLI (ECMA Common Language Infrastructure)

component model, 271

versioning, 55

CLI components, 20

CLI execution engine, 14

CLI specification

design rules, 14

CLI standard

class libraries, 24

types, 14

clix application launcher

need for, 97

Code Access Security (CAS), 101

code heap, 246

COM and the CLI, 16

Common Object File Format (COFF), 80

Compact Framework, 21

compacting collection, 249

compiler frontend, 104

Component software, 11

components, 49

anatomy of, 105

CompressedStack, 215

comsynchronizable.cpp, 216

contracts, 52

CopyValueClassUnchecked, 62

cordbg debugging tool, 35

examples, 36

CorQueueUserWorkItem, 228

CreateProcess, 284

critsec, 290

custom attributes, 20

D

data-driven architecture, 12

David Stutz, 8

Index | 317

debugger frames, 210

debuggers, 115

SOS debugger extension, 116

DebugInfo, 291

delegates, 15, 67

deserialization, 273

DLL Hell, 91

DotGNU, 21

dynamic allocation, 247

E

Echo component

box instruction, 60

echo.dll, 32

versioning, 89

ECMA, 13

EEClass, 111

enumerated types, 59

env script, 31

events, 14

shared memory and, 294

exception handling

CLI model, 232

first pass, 305

second pass, 305

Exceptions

throwing, 235

execution engine, 271

execution engine frames, 206, 207

ExitProcess, 286

exports, 104

externalization, 273

F

FCall, 141

finalization queue, 248

finalization thread, 248

first pass, 305

fjit.h, 133

fjitcore.h, 133

frames, 206

categories, 209

transition frames, 210

G

GAC, 89

garbage collection, 209, 245

compacting collection, 249

copying collection, 250

finalization, 265

logging, 256

relocation, 257

scheduling, 264

GCFrame, 209

GCScanHandles, 257

generational collection, 250

pinned objects, 253

Generics, 146

constraints, 153

design approach, 147

implementation, 150

layout and compilation, 155

nullable types, 161

Geoff Shilling, 8

guarded blocks, 232

H

HandleThreadAbort, 222

heap segments, 251

heaps, 246

HELPER_METHOD_FRAME_BEGIN_NOPOLL, 221

HOBJSTRUCT, 282

I

ildasm, 32

IMAGE_COR20_HEADER, 81

imports, 104

instance delegate, 15

interfaces, 66

internal calls, 194

introspection, 72

IronPython, 2

IronRuby, 2

ISO, 13

J

JIT (just-in-time) compilation

definition, 18

JIT calling convention, 137

JIT (just-in-time) compilation (continued)

processor-specific helper functions, 134

tracing, 40

Joel Pobar, 7

just-in-time (JIT) compilation, 19

L

Lightweight Code Generation, 195

finalization, 200

implementation, 195

link time, 104

lock contention, 291

Index | 318

Logging facilities, 41

COMPlus_JitTrace, 41

Logging Facilities

COMPlus_LogEnable, 42

COMPlus_LogFacility, 42

COMPlus_LogToConsole, 42

low-frequency heap, 246

M

MacOS X

PAL implementation, 276

managed code, 13

managed components, 12

managed execution, 19

managed pointer, 67

managed thread constructor, 215

managed threads, 215

marshaling frames, 210

mcECall, 141

memory management, 245

cross-generational references, 254

finalization, 248

in Rotor, 246

metadata, 12, 52

data-driven extensibility, 20

MethodDesc, 128

MethodDescChunk, 112

MethodTable, 106, 246

builder, 123

description of data structure, 109

laying out, 119

Microsoft Portable Executable (PE), 80

modules, 17, 78

Mono, 21

mutexes

shared memory and, 294

N

Nullable<T>, 161

O

object handles, 257

object references, 257

objects, 47

P

PAL (Platform Adaptation Layer)

threads (continued), 296

TLS, 289

Win32 synchronization mechanisms, 289

PAL (Platform Adaptation Layer), xiii

APCs, 303

critical sections, 290

exception handling, 304

ExitProcess, 286

handle manager, 278

implementations, 277

initialization, 284

memory management, 311

PAL process groups, 278

SEH, 234

semaphores, 293

shared memory, 278

shared memory segment, 280

status codes, 239

TerminateProcess, 287

threads, 287

PAL threads, 203

parameter objects, 123

PEFile, 80

permission demands, 101

permission grants, 101

permission set requests, 101

pinned references, 257

PlaceMembers, 123, 125

Platform Adaptation Layer, 25

Platform Adaption Layer

PAL, 25

PROCESS, 284

structure, 285

process groups, 278

properties, 14

pthreads library, 287

Q

QueueUserWorkItem, 228, 229

R

Reflection, 167

code invocation, 183

loading code, 167

runtime identity, 174

type and member inspection, 175

reflection services, 20

Reflection.Emit, 192

registration frames, 307

remoting, 18

resources, 78

ResumeThread, 301

Rotor, ix-xi

build variants, 31

diagnostic logging, 42

Index | 319

memory management, 245

portability, 276

runtime environment configuration scripts, 31

round-tripping, 34

S

second pass, 305

SEH_TLS_INFO, 306

semaphores, 293

serialization, 272

Serializable, 18

SHM_POOL_INFO, 281

SHM_SEGMENT_HEADER, 280

SHMalloc, 281

SHMLock, 280

SHMPROCESS, 284

SOS debugger extension

commands, 116

SSCLI (Shared Source CLI)

stubs used in, 140

stack

permission grants, 214

unwinding, 242

Stack

walking, 211

stack-based allocation, 246

stackwalking, 207

static delegate, 15

strong references, 257

strongnames, 82

stubs, 140

SuspendThread, 301

sync block index, 106

syncblocks, 231

synchronization, 203, 231, 289

System.Reflection.Emit, 191

T

tailcall, 137

Ted Neward, 7

TerminateProcess, 287

THREADBASEREF, 220

ThreadNative

Abort, 220

Threadpool, 228

threads, 203

concurrency and, 215

managed threads, 203, 215

PAL threads, 203

ThreadStart, 216

THROWSCOMPLUSEXCEPTION, 220

thunk, 128

tokens, 53

tracing, 249

transition frames, 210

type systems, 51

TYPE_SWITCH_INT, 133

typed references, 247

Types, 14

identity, 69, 110

versioning, 55

types (CLI standard)

behavior, 54

contracts, 52

defined, 47

delegates, 67

interfaces, 66

interoperability, 70, 72

packaging, 77

reference types, 63

Thread, 215

U

Unix

PAL, 287

PAL implementation, 276

PAL process group, 278

V

value types, 58

coercion, 59

conversion, 59

enumerated, 59

identity, 69

verification types, 131

versioning, 55

Virtual execution environment, 12

Virtual Stub Dispatch, 124

design, 125

vtables, 114

W

WaitForMultipleObjectsEx, 296

Win32

PAL implementation, 276

Win32 Structured Exception Handling (SEH), 304

windbg debugger

using, 116

wrapper classes, 72

