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Joel Pobar, Ted Neward 

with David Stutz and Geoff Shilling 

Preface 
Version 1.0 of the Microsoft Shared Source CLI (still affectionately referred to by many as ―Rotor,‖ its 

code name) was released to the programming community at large in November of 2002. It is a portable 

implementation of the programming tools and libraries that make up the ECMA-335 CLI standard, 

distributed as source code. 

Version 2.0 of Rotor was released to the programming community at large simultaneously with the Visual 

Studio 2005 product (code-named ―Whidbey‖), as an implementation of version 2.0 of the CLI standard, 

again distributed as source code, and containing a number of enhancements commensurate with the new 

specification. 

The fascination that source code holds for programmers has long been known at Microsoft, yet it remains 

an unusual way for Redmond to distribute its software. In the case of Rotor, however, the choice was 

obvious: for experimentation, learning, and as a teaching vehicle, source code has no peer. There is no finer 

way to learn about any computer standard than to browse and tinker with an implementation directly. 

This book is a companion to Rotor‘s code. It illustrates the design principles used in the CLI standard, 

using Rotor‘s own implementation of that standard. More broadly, this book is about virtual machines, and 

the illusions, trapdoors, invisible linkages, and hidden levers from which they are built. Complex software 

systems, and the ways in which they bridge the abstract world of the programmer with the physical world 

of a computational model frozen in silicon, are invariably a fascinating topic. 

The Rotor Distribution (from the 2
nd

 Edition) 

Five years ago, the first edition of this book released in dead-trees form to the .NET development 

community, to outstanding acclaim amongst a small group of .NET developers. SSCLI Essentials v1 was a 

breakout endeavor, both for me and the community at large, as well as for Microsoft as a company.  

For me, the book not only taught me a great deal from David and Geoff about the CLI (and Rotor‘s 

commercial cousin, the CLR) during its authoring, which brought me to conferences, but also it opened 
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doors to company meetings, where introductions would often elicit the response, ―Oh, you‘re the guy who 

did the Rotor book, how cool!‖ For that, I will always have a fondness in my heart for the SSCLI code 

base. 

And certainly I was not the lone beneficiary of Rotor‘s release—several others within the wider CLI 

community have seen their understanding of how a CLI implementation (and, by extension, the CLR itself) 

works by poring through the source code, and at times stepping through it in a debugger. Rotor has served 

as the underpinning for several conference talks, numerous mailing list discussions, and hallway 

conversations. In fact, alongside Lutz Roeder‘s wonderful Reflector utility, Rotor was, for many years, the 

only way a .NET developer could peer inside the machine—be that machine the actual execution engine 

itself or the collection of libraries that shipped with it—to discover if the behavior exhibited by the runtime 

was deliberate, misunderstood, or a bug. 

But Rotor also opened some doors at Microsoft as well, in this case, the doors to the wider open-source 

community. Prior to Rotor‘s release, Microsoft‘s record with respect to open source was not just spotty, it 

was nonexistent, to the point where Microsoft was not only routinely held up as the classic model of a 

―closed-source‖ company, but portrayed (accurately, at times) as an aggressive foe of the practice. 

With Rotor‘s release, Microsoft took a tentative step in the open source direction, and the success there 

(where success, in this case, was defined as, ―Hey, we can do this and not go bankrupt! Cool!‖) led to ever-

increasingly more bold steps of similar nature, such as the release of WiX on SourceForge, the creation of 

CodePlex, the release of IronPython‘s source from the very earliest stages, and now the IronRuby project, 

which not only makes the source available for others to build but also accepts source from external parties. 

With the most recent release of Visual Studio (2008, the .NET 3.5 release), Microsoft has gone the extra 

step of making the Framework Class Library source available for developers to step through during 

debugging, yet another indication of the success developers have found in having the source available to 

them during their own endeavors. It may not seem like much to those who grew up in the open source 

mindset, but for a Fortune 50 company that makes its money from products and not services, it‘s huge. 

With this release of SSCLI Essentials, I was fortunate to team up with yet another wickedly smart co-author 

(a trend I hope never abates) in Joel, and again the process repeats itself: I learned a lot, a book was 

produced, and the small but intense community interested in how an execution engine operates will now get 

to peer under the hood at the most significant change to the CLI, generics, and get a better feel for the costs 

and benefits associated with its implementation. 

But the book also marks a turning point, as well: with the release of the FCL source to the wider world of 

the development community and the lack of significant changes to the execution engine since v2, the Rotor 

distribution has effectively been ―cut loose‖ by its original creators, to stand on its own within the 

community, as every open source project must do at some point. This is not a cause for alarm or concern—

the Mono project continues full force, and Microsoft‘s growing comfort with the open-source community 

leads to the distinct possibility that the commercial CLR source will, one day, stand where Rotor once 

stood. 

Until that time, however, Joel and I fervently hope that those brave, hardy, curious and adventurous souls 

who continue to plumb the depths of execution engines and virtual machines will find this book a useful 

map. The CLI continues to grow in adoption, the community surrounding .NET continues to contribute 

new and useful ideas, including new languages to the mix (check out Boo, Nemerle, or F# if you‘ve never 

looked beyond C# or Visual Basic), and all signs point to that trend continuing unabated. 

In the meantime, pull up a comfy chair, fire up the laptop, open a command shell with the Rotor bits 

installed, turn to Chapter 1, and enjoy. And, if you happen to be at a conference where Joel and/or I are 

attending or speaking, and if you find the journey fulfilling and the book useful, come on over, and let‘s 

raise a pint to David‘s original memo back in 1996 that led to this thing called Rotor. 

Ted Neward 

Redmond, Washington 

July 11, 2008 
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The Rotor Distribution (from the 1
st
 Edition) 

Over five years ago, I wrote a memo outlining how and why Microsoft should invest in building a 

companion runtime to its then current Component Object Model (COM). This idea was not new, either 

inside or outside of Microsoft; products were already shipping for this purpose in the form of C++ 

frameworks and integrated development tools, such as Delphi and Visual Basic. The popularity of these 

language-specific approaches made it clear that the technical community was ready to accept features in 

their everyday tools and APIs that had once served to distinguish programming languages from one 

another, such as direct support for thread-based concurrency, structured exception handling, garbage 

collection, and the runtime enforcement of typesafety. 

The technologies that made up the list of features in the original proposal had been waiting in the wings 

(for decades, in some cases), and some were already available to programmers as Windows APIs. 

Augmenting these APIs with a library implementation that could be shared in place of a growing number of 

subtly incompatible and overlapping component runtimes made obvious sense. A small team was 

empaneled by David Vaskevitch to flesh out the details and to make an initial technical proposal, which 

was run through Microsoft‘s somewhat harrowing consensus-building process. Having been deemed a 

Good Idea, the proposal became the initial strawman for the product now called the Microsoft .NET 

Framework. 

Very early in the development of the .NET Framework, there was discussion of creating a source-code 

distribution of the technology for researchers, academics, and experimenters. This discussion was spurred 

by Microsoft‘s desire to attract a critical mass of developers, toolmakers, and innovative software products 

to the new platform. Realizing that having a portable implementation of the CLI was important for both 

standardization purposes and for the research community, Paul Maritz sponsored the formation of a small 

team under Geoff Shilling to explore the idea and begin implementation plans. With help from many 

individuals, both inside Microsoft and out, Geoff‘s small team developed and built the Shared Source CLI. 

In the interim between memo and product, a wonderful thing happened. While the original goal had been to 

provide a core set of modern services for COM programmers, what emerged five years later was far more 

useful. The original runtime library, in the hands of Brian Harry, Mike Toutonghi, and a talented cast of 

thousands, had become a complete, general-purpose virtual execution model. Even better, this model had 

been carefully refined as it was shepherded through the ECMA specification and standardization process by 

Jim Miller. The CLI standard had been born. 

The CLI, at its heart, is an approach to building software that enables code from many independent sources 

to coexist and interoperate safely. The intent of its design is not simply to sweep gnarly hardware and 

device-driver details under the rug in the form of a ―universal virtual machine,‖ but rather to build a virtual 

computational model that can be brought up safely within existing host environments and can expose the 

native capabilities of these environments directly. The design implications that come along for the ride are 

profound, and they are explored at length within this book. 

To use any or all of Rotor‘s rich codebase for your own noncommercial purposes, read and abide by the 

simple, one page shared license that accompanies the code. The code can be found on the CD that 

accompanies this book, along with additional documentation and related materials. As with any 

collaborative effort, this CD is only a snapshot in time; go to Rotor‘s homepage on MSDN 

(http://msdn.microsoft.com/net/sscli) or to http://www.sscli.net for details about current versions or other 

late-breaking information. 

Rotor is now in your hands. It is no longer a Microsoft-only endeavor, but rather an ongoing collaboration 

with all of you who wish to enhance and extend the CLI standard. Because Rotor takes the form of source 

code, it is easy for interested individuals to offer suggestions, upgrade or patch the implementation, and 

offer support. This book will help you participate by furnishing context; I hope that you enjoy discovering 

the fine points of the CLI as much as we have enjoyed writing about them! 

David Stutz 

Redmond, Washington 

November 24, 2002 
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Who Should Read This Book 

This book is not about the C# language, the Visual Basic .NET language, the Base Class Libraries (BCLs), 

or any other part of the .NET Framework that has received marketing attention and lots of press coverage. 

This book is about the one piece of the .NET Framework that makes all of the above possible: the CLI 

standard. As standardized runtime plumbing, it plays a critical role in Microsoft‘s .NET strategy. Its 

technical depth makes it an excellent subject for discourse. 

To illustrate the finer points of the CLI standard, this book uses the Shared Source CLI as demonstration 

material. The book, however, is by no means a complete overview of Rotor. The compiler discussions, the 

detailed descriptions of its test harnesses, the coverage of BCL implementation details, and countless other 

subjects are missing. As a complex industrial codebase, Rotor deserves this kind of detailed attention; alas, 

this book isn‘t where you‘ll find it! 

The target audience for this book falls mainly into four categories: 

The research community 

There has long been tremendous interest in virtual machines, and Rotor‘s implementation of the CLI 

should provide many traditional research opportunities in areas, such as security, memory 

management, and code generation, as well as less traditional opportunities centered on the industrial, 

―real world‖ character of the heavily instrumented code. 

The teaching community 

Many curricula already include managed execution and its capabilities among their subjects, and Rotor 

should provide a bountiful experimental testbed within which to explore this topic. Compiler, systems, 

and architectural courses should all find teaching material in Rotor‘s codebase. 

The professional community 

Hordes of programmers, familiar with COM and C++, are moving to the .NET Framework with little 

or no familiarity with managed environments. Architects and team leaders will be asked hard 

questions, and Rotor‘s behind-the-scenes look at the .NET execution engine should provide them with 

excellent resources from which they can extract answers. 

The community of CLI implementers 

Rotor is intended to serve as a useful baseline when bringing the CLI to other platforms. While this 

group will undoubtedly be smaller than the other three, it will be this community that provides the 

most leveraged contribution, whether porting it to new platforms or using it as learning material for its 

own new implementations. 

More informally, if you live and breathe for virtual machine specifications, such as the Java Virtual 

Machine specification or the Smalltalk ―blue book,‖ this book is definitely for you. If you have 

implemented a Scheme or a Forth compiler just for the heck of it, this book is for you. If you find yourself 

defending a favorite ―misunderstood‖ programming language from Philistines who don‘t properly 

understand its boutique feature set or the intrinsic value of its totally hackable runtime and compiler, then 

this book is for you. In short, if you care about the internals of programming languages, developer tools, or 

runtime systems, this book should provide you with enjoyable reading. 

How This Book Is Structured 

The CLI provides a number of services to programming languages and tools that wish to produce managed 

code, and the runtime mechanisms needed to create and run managed components are the focus of this 

book. After introducing the CLI, its core concepts, and the Rotor implementation, the following topics are 

covered: 
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The CLI type system 

Unlike some virtual execution environments, the type system is the heart of the CLI. Chapter 3 

examines what constitutes a type, how types map into internal data structures and processor-specific 

values, and how Rotor implements the features found in the ECMA CLI specification. 

Component packaging 

Assemblies are the construct that the CLI uses to package executable code safely. Chapter 4 covers 

what assemblies are, how they are built and loaded, and what design goals they were intended to meet. 

Type loading and JIT compilation 

The ECMA CLI specification specifically states that CIL was designed to be transformed into native 

CPU instructions before being directly executed. Chapter 5 focuses on the details of how Rotor 

converts types, expressed as CIL and metadata, into native code, and what triggers this process. 

Managed code 

Running native code safely under the control of a virtual execution environment is not simple. Chapter 

6 details the execution engine and how it uses mechanisms such as threads and exceptions to maintain 

control while also allowing extensive access to the underlying platform. 

Garbage collection 

The CLI provides a memory management model that frees programmers from the details and concerns 

of manually allocating and freeing memory. Chapter 7 explains how Rotor tracks the liveness of object 

references, how memory is allocated and released, and how finalization is implemented. 

The Platform Adaptation Layer (PAL) 

The PAL is what makes the Shared Source CLI easy to port, as demonstrated by running Win32, Mac 

OS X, and FreeBSD implementations. Chapter 9, which discusses the implementation of the PAL, will 

be especially interesting to anyone interested in porting Rotor to other platforms. It is also of general 

interest, however, since the PAL enumerates the systems constructs that are assumed to exist within 

the CLI specification. 

In addition, this book contains two appendices that discuss: 

 How to add a custom IL instruction to the Rotor execution engine 

 The Rotor Platform Adaption Layer (PAL), and a brief bit about how to port Rotor to other platforms 

Assumptions This Book Makes 

Because this book uses industrial source code as its demonstration material, there are some fairly 

heavyweight assumptions made about our readers‘ familiarity with programming languages and systems. 

We assume that you have some familiarity with C# or Java, as well as a good understanding of C++, which 

is what comprises most of the sample code in this book. The C++ used in the Rotor source is very 

straightforward and does not exercise the ―dangerous‖ features of the language. A few examples use CIL or 

snippets of assembler. To understand these, a cursory knowledge of any assembly language should help. 

Because so many of the operating system interactions in Rotor are made via its Win32-based abstraction 

layer, you should have a basic familiarity with the Win32 API; although, again, this can be quite cursory. 

References will be made to particular sections of the Rotor code without reproducing that code directly in 

the book‘s text. It is expected that readers will have downloaded the Rotor code, and will have walked 

through the code from the friendly confines of their favorite text editor, debugger, or development 

environment. 

Rotor‘s code was originally drawn from the same codebase that is used to build the commercial .NET 

Framework. Several of its major subsystems were swapped out, and extensive changes were made to make 

the code approachable and more portable. In addition, numerous parts of the commercial product were 
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removed because their presence would be irrelevant and confusing. Despite these significant changes, the 

code retains the complexity of a cutdown and transformed version of a larger work. Not all of its sections 

are pretty or easy to browse. For some, these imperfections will make the code appealing, since large, real-

world codebases rarely see the light of day. If you are not one of these masochists, you may be occasionally 

frustrated as you follow our guided trip through the code. We apologize in advance, but exhort you to make 

the journey with us despite these minor inconveniences! 

Online CLI Resources 

Rotor‘s homepage can be found at http://research.microsoft.com/sscli. , and the official web home of 

ECMA and its standards specifications is http://www.ecma.ch, although the specifications for ECMA-334 

and ECMA-335 are also widely mirrored.DevelopMentor hosts several CLI-related mailing lists, including 

the DOTNET-ROTOR list, all of which are archived at http://discuss.develop.com. 

There are two significant open source projects built around the CLI specification: the Mono project 

(http://www.go-mono.org) and the DotGNU Portable .NET project (http://www.southern-

storm.com.au/portable_net.html). Look to these sites for yet more interesting source code. 

Conventions Used in This Book 

The following font conventions appear in this book: 

Italic is used for: 

 New terms where they are defined 

 Pathnames, filenames, URLs, and program names 

Constant Width Bold is used for: 

 Typed user input 

 Emphasis within code samples and tables 

Constant Width is used for: 

 C++, CIL, and C# source code 

 Assembler and CIL code 

 Symbol and macro names 

This icon designates a note, which is an important aside to the nearby text. 

This icon designates a warning relating to the nearby text. 
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1. Introducing the CLI Component 

Model 

 

The programmer of the 21
st
 century has a lot to worry about. 

For one thing, useful software is far more complex than ever before. No longer is it acceptable to simply, 

present a simple terminal-based command prompt or a character-based user interface; users now demand 

rich, graphical user interfaces with all sorts of visual goodies. Data can seldom be structured to fit in flat 

files in a local filesystem; instead, the use of a relational database is often required to support the query and 

reporting requirements that computer users have come to depend on, as well as the ongoing transformations 

that shape and reshape long-lived data. A single computer once sufficed for application deployment, on 

which data sharing was accomplished using files or the clipboard; now most computers on the planet are 

wired for networking, and the software deployed on them must not only be network-aware, but must also 

be ready to adapt to changing network conditions. In short, building software has moved beyond being a 

craft that can be practiced by skilled individuals in isolation; it has become a group activity, based on ever 

more sophisticated underlying infrastructure. 

Programmers no longer have the luxury of being able to complete an entire project from scratch, using 

tools that are close to the processor, such as assemblers or C compilers. Few have the time or the patience 

to write intermediate infrastructure, even for things as simple as an HTTP implementation or an XML 

parser, much less the skills to tune this infrastructure to acceptable levels of performance and quality. As a 

result, great emphasis is now placed on reusable code and on reusable components. The operating system 

plus a few libraries no longer suffices as a toolkit. Today‘s programmer, like it or not, relies on code from 

many different sources that works together correctly and reliably, in support of his applications. 

Component software, a development methodology in which independent pieces of code are combined to 

create application programs, has arisen in response to this trend. By combining components from many 

sources, programs can be built more quickly and efficiently. However, this technique places new demands 

on programming tools and the software development process. Reliance on components that were created by 

untrusted or unknown developers, for example, makes it essential to have stringent control over the 

execution and verification of code at runtime. In our era of ubiquitous network connectivity, complex 

component-based software is often updated on-the-fly without local intervention and sometimes 

maliciously. Ask any virus victim about the necessity of preserving the sanctity of her computers and data, 

or talk to an unsophisticated computer user about the baffling loss of stability that comes from installing 

and uninstalling applications on his system, and you will discover that component-based software often 

contributes as much to the problem as to the solution. 

For many years, the business promises of component software and its expected efficiencies were offset by 

the complexity of combining components from many sources in a safe way. Within the last 15 years
1
, 

however, we have seen the successful commercialization of virtual execution environments that host 

managed components . Managed components are simply software parts that can be developed and deployed 

independently, yet safely coexist within applications. We call them ―managed‖ because they need a virtual 

execution environment to provide runtime and execution services. These environments, to match 

component requirements, focus on presenting an organizational model geared towards safe cooperation and 

                                                           

1 Some may argue that Smalltalk or Lisp vendors successfully commercialized before this, but it‘s fairly safe to point 

out that by just about any measure, they clearly failed to reach the same scale that Java and .NET have. 



Chapter 1: Introducing the CLI Component Model  | 10 

collaboration, rather than on exposing the physical resources of the processors and operating systems on 

which they are implemented. 

Virtual execution environments and managed components, such as the ones abstractly portrayed in Figure 

1-1, provide advantages to three different software communities: application developers (who build the 

applications utilized by either internal or external users), infrastructure developers (who build programming 

tools and libraries for use by application developers), and system administrators (who administer the 

software built). Application developers using managed components to build complex applications discover 

that the presence of infrastructure tools and libraries translates to less time spent on integration and 

communications tasks and more productivity. To the infrastructure developers, such as compiler writers, 

the presence of supporting infrastructure and a high-definition, carefully specified virtual machine 

translates to more time available for building tools and less time worrying about infrastructure and 

interoperability. Finally, administrators and computer users reap the benefits and control that come from 

using a single runtime infrastructure and packaging model, both of which are independent of processor and 

operating system specifics. 

 
 

Figure Error! No text of specified style in document.-1. When hosted within a virtual 

execution environment, components can collaborate safely 

The CLI Virtual Execution Environment 

The ECMA Common Language Infrastructure (CLI) is a standardized specification for a virtual execution 

environment. It describes a data-driven architecture , in which language-agnostic blobs of data are brought 

to life as self-assembling, typesafe software systems. The data that drives this process, called metadata , is 

used by developer tools to describe both the behavior of the software as well as its in-memory 

characteristics. The CLI execution engine uses this metadata to enable managed components from many 

sources to be loaded together safely. CLI components coexist under strict control and surveillance, yet they 

can interact and have direct access to resources that need sharing. It is a model that balances control and 

flexibility. 

ECMA, the European Computer Manufacturers Association, is a standards body that has 

existed for many years. Besides issuing standards on its own, ECMA also has a strong 

relationship with ISO, the International Standards Organization, and based on this 

relationship, the CLI specification has been approved as ISO/IEC 23271:2003, with an 

accompanying technical report designated as ISO:IEC 23272:2006. The C# standard has 

also been approved, and has become ISO/IEC 23270:2006. 

The CLI specification is available on the web sites mentioned in the Preface. It consists of five large 

―partitions‖ plus documentation for its programming libraries. At the time that the CLI was standardized, a 

programming language named C# was also standardized as a companion effort. These standards are 
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consistently updated to include new CLI and C# language features; one such revision has already taken 

place since the first edition of this book, again ratified by the ECMA and ISO committees. C# exploits most 

of the features of the CLI, and it is the easy-to-learn, object-oriented language in which we have chosen to 

implement most of the small examples in this book. Formally, the C# and CLI specifications are 

independent (although the C# specification does refer to the CLI specification), but practically, both are 

intertwined. 

Some have suggested that C# is the ―natural‖ language of the CLI, and as such enjoys a 

closer relationship to the underlying runtime; this is a fallacious belief, and one that is 

frequently challenged by Visual Basic and C++/CLI developers with a certain degree of 

vehemence. In truth, each of these languages (as well as the hundreds of others that map 

to the CLI) maps differently to the underlying CLI, but no one language, except perhaps 

―ILASM‖, the assembler of the CLI, can claim predominance in language features or 

expressiveness of CLI functionality. 

Virtual execution in the CLI occurs under the control of its execution engine, which hosts components (as 

well as code that is not component-based) by interpreting the metadata that describes them at runtime. Code 

that runs in this way is often referred to as managed code, and it is built using tools and programming 

languages that produce CLI-compatible executables. There is a carefully-specified chain of events that is 

used to load metadata from packaging units called assemblies and convert this metadata into executable 

code that is appropriate for a machine‘s processor and operating system. A simplified version of this chain 

of events is shown schematically in Figure 1-2 and will form the basis of the rest of this book. It is also 

described in Partition I of the CLI specification in great detail. (Section 8, describing the Common Type 

System, and section 12, describing the Virtual Execution System, both provide particularly good 

background information.) 

 
 

Figure Error! No text of specified style in document.-2. Each step in the CLI-loading 

sequence is driven by metadata annotations computed during the previous step 

In some ways, the CLI execution engine is similar to an operating system, since it is a privileged piece of 

code that provides services (such as loading, isolation, and scheduling) as well as managed resources (such 

as memory and I/O) to code executing under its control. Furthermore, in both the CLI and in operating 

systems, services can either be explicitly requested by programs or else made available as an ambient part 

of the execution model. (Ambient services are services that are always running within an execution 

environment. They are important because they define a large part of the runtime computational model for a 

system.) 

In other ways, the CLI resembles the traditional toolchain of compiler, linker, and loader, as it performs in-

memory layout, compilation, and symbol resolution. The CLI specification takes pains to describe in detail 

not only how managed software should work, but also how unmanaged software (that is, software that 



Chapter 1: Introducing the CLI Component Model  | 12 

executes conceptually ―outside‖ of the virtual execution engine) coexists safely with managed software, 

enabling seamless sharing of computing resources and responsibilities. Its combination of system and tool 

infrastructure is what makes it a unique and powerful new technology for building component-based 

software. 

Fundamental Concepts in the CLI Specification 

Behind the CLI specification and execution model are a core set of concepts. These key ideas were folded 

into the design of the CLI both as abstractions and as concrete techniques that enable developers to 

organize and partition their code. One way to think of them is as a set of design rules : 

 Expose all programmatic entities using a unified type system. 

 Package types into completely self-describing, portable units. 

 Load types in a way that they can be isolated from each other at runtime, yet share resources. 

 Resolve intertype dependencies at runtime using a flexible binding mechanism that can take version, 

culture-specific differences (such as calendars or character encodings), and administrative policy into 

account. 

 Represent type behavior in a way that can be verified as typesafe, but do not require all programs to be 

typesafe. 

 Perform processor-specific tasks, such as layout and compilation, in a way that can be deferred until 

the last moment, but do not penalize tools that do these tasks earlier. 

 Execute code under the control of a privileged execution engine that can provide accountability and 

enforcement of runtime policy. 

 Design runtime services to be driven by extensible metadata formats so that they will gracefully 

accommodate new inventions and future changes. 

We‘ll touch on a few of the most important ideas here, and revisit them in detail as we progress through the 

book. 

Types 

The CLI categorizes the world into types, which programmers use to organize the structure and behavior of 

the code that they write. The component model used to describe types is powerfully simple: a type 

describes fields and properties that hold data, as well as methods and events that describe its behavior (all 

of which will be discussed in detail in Chapter 3). State and behavior can exist at either the instance level, 

in which components share structure but not identity, or at the type level, in which all instances (within an 

isolation boundary) share a single copy of the data or method dispatch information. Finally, the component 

model supports standard object-oriented constructs, such as inheritance, interface-based polymorphism, and 

constructors. 

The structure of a type is captured as metadata that is always available to the execution engine, to 

programmers, and to other types. Metadata is very important because it enables types from many people, 

places, and platforms to coexist peacefully, while remaining independent. By default, the CLI loads types 

only as they are needed; linkages are evaluated, resolved, and compiled on demand. All references within a 

type to other types are symbolic, which means that they take the form of names that can be resolved at 

runtime, rather than being precomputed addresses or offsets, such as what we see in ―native‖ languages like 

C++. By relying on symbolic references, sophisticated versioning mechanisms can be constructed, and 

independent forward-versioning of types can be achieved within the binding logic of the execution engine. 

A type can inherit structure and behavior from another type, using classic object-oriented, single-

inheritance semantics. All methods and fields of the base type are included in the derived type‘s definition, 

and instances of the derived type can stand in for instances of the base type. Although types may have only 

one base type, they may additionally implement any number of interfaces. All types extend the base type, 

System.Object, either directly or through their parents‘ lineage. 
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The CLI component model augments the concepts of field and method by exposing two higher-level 

constructs for programmers: properties and events. Properties allow types to expose data whose value can 

be retrieved and set via arbitrary code rather than via direct memory access. From a plumbing perspective, 

properties are strictly syntactic sugar, since they are represented as methods internally, but from a 

semantics perspective, properties are a first-class element of a type‘s metadata, which translates to more 

consistent APIs and to better development tools. 

Events are used by types to notify external observers of interesting occurrences within their 

implementations (for example, notification of data becoming available or of internal state changes). To 

enable external observers to register interest in an event, CLI delegates encapsulate the information 

necessary to perform a callback. When registering an event callback, a programmer creates one of two 

kinds of delegate: either a static delegate that encapsulates a pointer to a static method of a type, or an 

instance delegate that associates an object reference with a method on which that object will be called 

back. Delegates are typically passed as arguments to event registration methods; when the type wants to 

raise an event, it simply performs a callback on its registered delegates. 

COM and the CLI 
Standardized component packaging and runtime interoperability have long been essential to 

software designers looking for reuse, as demonstrated by the early use of punch-card decks as 

reusable libraries of computing routines. The twin goals of unified packaging and fine-grained 

interoperability were the reason that the Component Object Model (COM) was developed at 

Microsoft. 

The resulting ―interface-based‖ approach to binary component packaging has been used 

successfully by countless software producers to deploy their APIs and modular pieces of code. 

Unlike the CLI, COM is a component model that is almost completely based on shared 

conventions and reliance on programmers‘ discipline and cooperation, rather than on a shared 

execution engine. COM components share the barest runtime infrastructure and cooperate on a 

per-component basis. This approach can be very useful, and it is particularly well-suited to 

environments in which the programmer must squeeze every last bit of performance out of very 

limited computing resources or in which large existing code bases wish to expose a component 

façade. 

Using nothing more than COM‘s shared conventions, fine-grained binary interoperability between 

components has become commonplace in software running on the Windows operating system. It 

is used widely and successfully as a way for applications to expose their internals for the purpose 

of programmability and also as a standard way to publish APIs. Some of the systems facilities of 

Windows are also exposed via COM interfaces, and many third-party ―controls‖ exist that are sold 

as reusable parts. 

There is a definite downside to the COM approach, however. In its model, the implementer is 

responsible for every last detail of runtime operation, and must very carefully conform to complex 

cooperative protocols to operate correctly. This code is both redundant and prone to bugs, since 

the protocols are difficult to implement correctly. 

Much of the complexity associated with COM can be eliminated by providing shared underlying 

services for use by component builders, just as operating systems provide shared underlying 

services for the benefit of all programs using machine resources. (Garbage-collected memory, for 

example, is the kind of service that can radically reduce the amount of cooperation required 

between components.). In 1997, a companion runtime for COM was proposed that would provide 

a class model along with common runtime services for COM programmers, both to increase 

productivity (no longer would programmers have to write the same support mechanisms over and 

over again) and to enable greater safety, efficiency, and stability. The original name for this 

runtime was Component Object Runtime (COR), which can still be found embedded in a few 

function names in the Shared Source CLI. 

Microsoft took COR further than the original, limited proposal for a companion runtime to COM 

and decided to pursue a general-purpose virtual execution environment. This process culminated 

in the standardization of the CLI. 
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Types, from a minimalist perspective, are a hierarchal way to organize programming modules using fields 

to hold data and methods to express behavior. Above this simple-yet-complete model, constructs such as 

properties and events provide additional structure with which to build the shared programming libraries and 

runtime services that distinguish the CLI. 

A shared type system and intermediate language 

Types in the CLI are built from fields and methods at the lowest level, but this then raises the question of 

how fields and methods are themselves defined? The CLI specification defines a processor-agnostic 

intermediate language for describing programs, as well as a common type system that provides the basic 

datatypes for this intermediate language. Together, these two entities form an abstract computing model. 

The specification embellishes this abstract model with rules that describe how it can be transformed into 

native instruction streams and memory references; these transformations are designed to be efficient and to 

capture and accurately represent the semantics of many different programming languages. The intermediate 

language, its types, and the rules for transformation form a broad, language-independent way to represent 

programs. 

The intermediate language defined in the CLI specification is called the Common Intermediate Language 

(CIL). It has a rich set of opcodes, not tied to any existing hardware architecture, which drive a simple-to-

understand abstract stack machine. Likewise, the Common Type System (CTS), defines the base set of 

types that embody standardized cross-language interoperability. To fully realize the benefits of this 

language-agnostic world, high-level compilers need to agree on both the CIL instruction set and its 

matching set of datatypes. Without this agreement, different languages might choose different mappings; 

for example, how big is a C# int, and how does it relate to a Visual Basic Integer? Is that the same as a 

C++ long? By matching the instruction set to the types, these choices are made considerably simpler; 

choices about exactly which instructions and types to use are, of course, in the hands of compiler 

implementers, but the presence of a well-thought-out specification means that making these choices is 

considerably more straightforward. Using this approach means the resulting code interoperates easily with 

code and frameworks written in other languages, which facilitates more effective reuse. Chapter 3 discusses 

the CLI type system in great detail, while Chapter 5 covers CIL and how it is converted into native 

instructions. 

Portable packaging for types: assemblies 

With its type system and its abstract computational model, the CLI enables the idea that software 

components, written at different times by different parties, can be verified, loaded, and used together to 

build applications. Within the CLI, individual components are packaged into units called assemblies , 

which can be dynamically loaded into the execution engine on demand either from local disk, across a 

network, or even created on-the-fly under program control. 

Assemblies define the component model semantics for the CLI. Types cannot exist outside of assemblies; 

conversely, the assembly is the only mechanism through which types can be loaded into the CLI. 

Assemblies are in turn made up of one or more modules— a packaging subunit in which information 

resides—plus a chunk of metadata describing the assembly called the assembly manifest . While assemblies 

can be made up of multiple modules, most often an assembly will consist of one module. 

To ensure that assemblies aren‘t tampered with between the time they were compiled and the time they are 

loaded, each assembly can be signed using a cryptographic key pair and a hash of the entire assembly, and 

this signature can be placed into the manifest. The signature is respected by the execution engine, to such a 

degree that the execution engine will refuse to load an assembly that fails this signature-check; this ensures 

that damaged assemblies won‘t be loaded, preventing a certain class of malicious attack against the system. 

Thus, if a hash generated at runtime from the assembly doesn‘t match the hash contained in the assembly‘s 

manifest, the runtime will refuse to load the assembly and raise an exception before the potentially bad 

code has a chance to do anything. 

In many ways, assemblies are to the CLI what shared libraries or DLLs are to an operating system: a means 

of bounding and identifying code that belongs together. Thanks to the full-fidelity metadata and symbolic 

binding approach found in the CLI, each component can be loaded, versioned, and executed independently 

of its neighbors, even if they depend on each other. This is crucial, since platforms, applications, libraries, 
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and hardware change over time. Solutions built from components should continue to work as these 

components change. Assemblies are discussed in Chapter 3 and Chapter 4. 

Component isolation: application domains and remoting 

As important as the ability to group code together into components is the ability to load these components 

in a way that they can work together and yet be protected from malicious or buggy code that might exist in 

other components. Operating systems often achieve isolation by erecting protected address spaces and 

providing communication mechanisms that can bridge them; the address spaces provide protected 

boundaries, while the communications mechanisms provide channels for cooperation. The CLI has similar 

constructs for isolating executing code, which consist of application domains and support for remoting. 

Assemblies are always loaded within the context of an application domain, and the types that result are 

scoped by their application domain. For example, static variables defined in an assembly are allocated and 

stored within the application domain. If the same assembly is loaded into three different domains, three 

different copies of the type‘s data for that assembly are allocated. In essence, application domains are 

―lightweight address spaces,‖ and the CLI enforces similar restrictions on passing data between domains as 

operating systems do between address spaces. Types that wish to communicate across domain boundaries 

must use special communications channels and behave according to specific rules. 

This technique, referred to as remoting, can be used to communicate between application domains running 

on different physical computers (and running different operating systems on different processors). Just as 

often, the remoting mechanisms are used to isolate components within domains that exist in a single 

process on a single machine. Components that wish to participate in remoting can be Serializable, in 

which case they are copied and passed from domain to domain, or alternatively can extend the 

System.MarshalByRefObject type, in which case they can communicate using proxy objects that 

act as relays. Application domains, remoting, and the details of loading will be covered in Chapter 4. 

Naming conventions for version-flexible loading 

Because all types and their code live within assemblies, there needs to be a well-defined set of rules 

describing how the execution engine will discover and use assemblies when their types are needed. 

Assembly names are formed from a standard set of elements, which consist of an assembly base name, a 

version number, a culture (for internationalization), and a hash of the public key that represents the 

distributor of the assembly. Compound names ensure that software built from assemblies will 

accommodate version changes gracefully. When compiled, each assembly also carries references to the 

compound names of other assemblies that it was compiled against and remembers the versioning 

information for each of those assemblies. As a result, when loaded, assemblies request very specific (or 

semantically-compatible) versions of the assemblies on which they depend. The binding policy used to 

satisfy these requests can be influenced by configuration settings but is never ignored. 

Assemblies are normally found in one of two places: in a machine-wide cache known as the Global 

Assembly Cache (GAC) or on a URL-based search path. The GAC is effectively a per-machine database of 

assemblies, each uniquely identified by its four-part name. The GAC can be, but doesn‘t have to be, a 

filesystem directory; a CLI implementation must be able to put multiple versions of the same assembly into 

the GAC and track them. The search path is essentially a collection of URLs (usually filesystem 

directories) that are searched when an assembly is requested for loading. The loading process and how it 

can be implemented is detailed in Chapter 4. 

One of the principal enhancements to the commercial CLR implementation of the CLI 

provides extensions to the CLR‘s assembly-location process, thus permitting extenders of 

the CLR to locate assemblies stored in some particular, unique place, such as a relational 

database table. This is not a formal part of the CLI specification, but demonstrates how 

the capabilities described in this book and the CLI Specification can be extended by a 

CLI implementation to provide additional enhancements. 
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JIT compilation and typesafety 

The execution model described by the CLI implies that the act of compiling high-level type descriptions 

should be separated from the act of turning these type descriptions into processor-specific code and 

memory structures. This separation introduces a number of important advantages to the computing model, 

such as the ability to easily adapt code to new operating systems and processors after the fact, as well as the 

ability to independently version components from many different sources. It also introduces new 

challenges. For example, because all types are represented using CIL and the CTS, all types must be 

transformed into native code and memory structures before they can be used; in essence, the entire 

application must always be recompiled before it can be run, which can be a very expensive proposition. 

To amortize the cost of transforming CIL into native code, both in terms of time taken to load and in terms 

of memory required, types in a CLI-based application are typically not loaded until they are needed, and 

once a type is loaded, its methods are not translated until they are needed for execution. This process of 

deferring layout and code generation is referred to as just-in-time (JIT) compilation. The CLI does not 

require last-minute JIT compilation to occur, but deferred loading and compilation are implied at some 

point in an application‘s lifecycle, to convert the CIL into native code. One can imagine an installation 

utility that might perform the necessary compilation into native code, for example, thus eliminating the 

necessary JIT conversion when the application is executed. (Such a utility, known colloquially as ―ngen‖, 

ships as part of the commercial CLR.) The way that JIT compilation can be implemented to conform to the 

CLI is discussed in Chapter 5. Extensions of the JIT compilation strategy to include parametric 

polymorphism (also known as generics) are discussed in Chapter 6. 

The most important reason that JIT compilation is built into the CLI execution model is not obvious. The 

transformation from abstract component to running native code, under the control of the execution engine‘s 

own loader and compiler is what enables the execution engine to maintain control at runtime and run code 

efficiently, even when calling back and forth between code written in C++ and code written in a managed 

language. The traditional pipeline of compilation, linking and loading, continues to exist in the CLI, but as 

we have seen, each toolchain element must make heavy use of clever techniques (such as caching) because 

deferred use leads to higher runtime costs. These higher costs are well worth bearing because deferral also 

results in comprehensive control over the behavior of executing components. Some of this toolchain is 

discussed further in Chapter 8. 

Since execution in the CLI is based on the incremental loading of types, and since all types are defined 

using a platform-neutral intermediate language, the CLI execution engine is constantly compiling and 

adding new behavior as it runs. CIL is designed to be verifiably typesafe, and since compilation into native 

code is performed under the control of the privileged execution engine, typesafety can be verified before a 

new type is given a chance to run. Security policy can also be checked and applied at the time that CIL is 

transformed into native code, which means that security checks can be injected directly into the code, to be 

executed on behalf of the system while methods are executing. In short, by deferring the loading, 

verification, and compilation of components until runtime, the CLI can enforce true managed execution . 

Managed execution 

Type loading is the trigger that causes the CLI‘s toolchain to be engaged at runtime. As part of this loading 

process, the CLI compiles, assembles, links, and validates executable format and program metadata, 

verifies typesafety, and finally even manages runtime resources, such as memory and processor cycles, on 

behalf of the components running under its control. The tying together of all of these stages has led the CLI 

to include infrastructure for name binding, memory layout, compilation and patching, isolation, 

synchronization, and symbol resolution. Since the invocation of these elements is often deferred until the 

last possible moment, the execution engine enjoys high-fidelity control over loading and execution policies, 

the organization of memory, the code that is generated, and the way in which the code interacts with the 

underlying platform and operating system. 

Deferred compilation, linking, and loading facilitate better portability both across target platforms and 

across version changes. By deferring ordering and alignment decisions, address and offset computation, 

choice of processor instructions, calling conventions, and of course, linkage to the platform‘s own services, 

assemblies can be much more forward-compatible. A deferred process, driven by well-defined metadata 

and policy, is much more robust. 
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The execution engine that interprets this metadata is trusted system code, and because of this, security and 

stability are also enhanced by late loading. Every assembly can have a set of permissions associated with it 

that define what the assembly is permitted to do. When code in the assembly attempts to execute a sensitive 

operation (such as attempting to read from or write to a file, or attempting to use the network), the CLI can 

look at the call stack and walk it to determine if all of the code currently in scope has appropriate rights—if 

code on the stack doesn‘t have correct permissions, the operation can be rejected, and an exception can be 

thrown. (Exceptions are another mechanism that enables simpler interactions between components; the CLI 

was designed to not only support a wide range of exception semantics within the execution engine, but also 

to integrate tightly with exception signaling from the underlying platform.) Managed execution is discussed 

at length in Chapter 8 and Chapter 9. 

Enabling data-driven extensibility with metadata 

CLI components are self-descriptive. A CLI component contains definitions for every member contained 

within it, and the guaranteed runtime availability of this information is one factor that helps make 

virtualized execution highly adaptable. Every type, every method, every field, every generic type, every 

single parameter on every single method call must be fully described, and the description must be stored 

within the assembly. Since the CLI defers all sorts of linkages until the moment they are needed, tools and 

programs that wish to manipulate components or create new ones by working with metadata gain a 

tremendous amount of flexibility. The same kinds of tricks played by the CLI can be used by code built on 

top of the CLI, which is a windfall for tools and runtime services. 

To get information about types, programmers of the CLI can use the reflection services of the execution 

engine. Reflection provides the ability to examine compile-time information at runtime. For example, given 

a managed component, developers can discover the structure of the type, including its constructors, fields, 

methods, properties, events, interfaces, and inheritance relationships. Perhaps more importantly, developers 

can also add their own metadata to the description, using what are called custom attributes . 

Not only is compile-time information available, but it can be used to manipulate live instances. Developers 

can use reflection to reach into types, discover their structure, and manipulate the contents of the types 

based on that structural information. For methods, the same is true; developers can invoke methods 

dynamically at runtime. The capabilities of this metadata-driven style of programming, and how it can be 

implemented, are touched on in Chapter 3, and examined in more detail in Chapter 8. 

A CLI Implementation in Shared Source: Rotor 

In the summer of 2001, a small team of developers in Redmond announced plans for a (at the time) 

Microsoft rarity: a freely-available software distribution containing modifiable, redistributable, source 

code. This distribution, named the Shared Source CLI (SSCLI, also known affectionately by its code name, 

―Rotor‖), was to contain a fully-functional CLI execution engine, a C# compiler, essential programming 

libraries, and a number of relevant developer tools. It had been quietly under development alongside the 

commercial .NET framework and represented an important facet of Microsoft‘s developer tool strategy. In 

particular, the SSCLI had three goals to meet: to validate the portability of the CLI standard, to help people 

learn about and understand Microsoft‘s commercial CLR offering, and to stimulate long-term academic 

interest in the CLI. Above all else, the SSCLI was to match the ECMA standard so that anyone who wished 

to understand or implement this standard would have a guide. 

Months after the release of the .NET framework version 2.0 (not to mention numerous other ―source-

available‖ tools and frameworks, such as Enterprise Library, IronPython and IronRuby), Microsoft released 

version 2.0 of the Shared Source CLI, following the same pattern of development as its predecessor. 

Affectionately known as Rotor v2, or Rotor Whidbey, it contains all the new and exciting features of its 

commercial framework cousin, including Generics, Lightweight Code Generation, Stub-based dispatch 

support (an interface dispatch mechanism), as well as Reflection and Reflection.Emit enhancements. 

Naturally, the Rotor team didn‘t stop there: the new C# 2.0 language features like Anonymous Methods, 

Anonymous Delegates and C# Generics support were also included. 
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Although the name changed, throughout this book we will continue to refer to the Shared 

Source CLI v2.0 release as ―Rotor‖, except in those few cases where we need to draw a 

distinction between the v1.0 and v2.0 versions. In those cases, the first version will be 

called ―Rotor v1‖ and its successor we will call either ―Rotor v2.0‖, ―SSCLI 2.0‖, ―Rotor 

2‖, or ―Rotor Whidbey‖, depending on which sounds better at the time. Most of the time, 

the distinction between v1 and v2 will either be irrelevant, or entirely self-evident, so it 

shouldn‘t present much of a problem to the reader. 

Although the SSCLI is nominally the subject of this book, the CLI standard is its heart. The SSCLI helps us 

illustrate how and why the CLI is such an interesting piece of work. The distribution itself is a large body 

of code, and as such, it can provide a significant leg up for researchers and experimenters working in the 

area of developer tools or systems design, as well as to those teaching computer science. This book 

attempts to act as a top-level guide to the code for such people, giving information beyond the theory of the 

CLI to facilitate hacking and to explain the conventions of the code base. The CLI standard will be 

important for years to come, and there is no better way for you to understand it fully than by browsing, 

building, observing, and tweaking a running implementation. 

While Rotor demonstrates one way to build a portable, programming language-independent version of the 

CLI standard, it is certainly not the only way. Alternate implementations exist at the time of writing, 

including three from Microsoft (the commercial .NET Framework, a version designed to run inside the 

Web browser to support Silverlight applications called the ―CoreCLR‖, and a version for the small device 

market that is called the ―Compact Framework ―), and two third-party, open source implementations, one 

from Novell (called Mono: http://www.go-mono.com/) and one from the DotGNU project (called 

Portable.NET: http://www.gnu.org/software/dotgnu/). Rotor itself, to provide additional developer tools 

and facilities, implements more than just the standard. To clarify what is contained in the distribution, 

Figure 1-3 contains a pictorial representation of the differences between Microsoft‘s commercial offering 

(.NET CLR), the CLI and C# specifications, and Rotor. 

The SSCLI, as shown in Figure 1-3, is a superset of the CLI standard, and the Microsoft commercial 

offering is, in turn, a superset of the SSCLI. 

Rotor is a large collection of code built by many people over a number of years, and because of this, it is 

complex and stylistically variable. In terms of scale, it is comparable to the largest familiar source code 

distributions such as XFree86, Mozilla, and OpenOffice. As with these distributions, getting started in the 

code can be an intimidating prospect. This book will help make this task easier, beginning with this brief 

tour of the distribution itself. 

http://www.go-mono.com/
http://www.gnu.org/software/dotgnu/
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Figure Error! No text of specified style in document.-3. Components of the Shared 

Source CLI distribution 

The SSCLI is built using a combination of C++ and C#, with a smattering of assembler for processor-

specific details. The distribution is built as a three step process. First, a platform-specific C++ compiler is 

used to build a Platform Adaptation Layer (PAL), which is a library that hides the differences between 

operating system APIs behind a single set of programming abstractions. After this, a set of build tools 

(including the C# compiler) that are needed to build the SSCLI are built and linked against the PAL library. 

Finally, the rest of the distribution is built using these tools and the PAL. 

Table 1-1 lists some of the interesting subdirectories to visit in the SSCLI source code, which differs 

somewhat from the directory structure of Rotor v1. (As a reminder, the SSCLI v2 source code can be 

downloaded from http://research.microsoft.com/sscli, and readers are encouraged to take a moment to 

download and extract the code before continuing.) 

Table Error! No text of specified style in document.-1. Important subdirectories of the 

distribution and their contents 

Subdirectory Contents 

/binaries.xxxxx.rotor Contains built executables and libraries 

/clr/src Home to many core subdirectories 

/clr/clr/bcl The base class libraries, written in C# 

/csharp A C# compiler, written in C++ 

/clr/src/classlibnative Programming libraries implemented in C++ 

http://research.microsoft.com/sscli
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/clr/src/debug Support for managed debugging 

/clr/src/fjit The SSCLI JIT compiler 

/clr/src/fusion Code for locating versioned files 

/clr/src/ilasm A CIL assembler 

/clr/src/ildasm A CIL disassembler 

/clr/src/inc Shared include files 

/clr/src/md Metadata facilities 

/clr/src/toolbox/caspol Source to the caspol security utility 

/clr/src/tools Home to many-utility programs 

/clr/src/tools/clix The SSCLI managed executable launcher 

/clr/src/tools/gac Source to the gacutil cache utility 

/clr/src/tools/peverify The peverify CIL verification utility 

/clr/src/tools/strongname The sn code-signing utility 

/clr/src/toolbox/sos The SOS debugging extension library 

/clr/src/vm The CLI execution engine 

/docs Documentation 

/fx/src Home to additional managed libraries 

/fx/src/net/system/net The networking library 

/fx/src/regex/system/text The regular expressions library 

/jscript A complete JScript compiler that compiles to CIL 

code, written in C# (a managed managed code 

compiler!) 

/clr/src/managedlibraries/remoting Additional remoting support to what is found in the 

bcl directory 

/pal Multiple operating system-specific implementations 

of the PAL 

/palrt Low-level APIs that support the SSCLI 

implementation but are not operating system-

specific 

/samples Sample programs that use the CLI 

/tests Extensive tests and test infrastructure 

/tools Tools used to build the SSCLI distribution 

The subdirectories can be divided into four distinct conceptual areas, as follows: 

 The CLI execution engine 

 Component frameworks that both wrap and extend the execution engine 

 A portability layer (the PAL) used to move from one operating system to another 

 Tools, tests, compilers, documentation, and utilities for working with managed code 

Let‘s examine each of these areas in turn, focusing on where to find their implementation. 

The CLI execution engine 

The execution engine is the heart of the CLI, and quite possibly the most interesting part of the whole set. 

(At the very least, this is where we will spend the majority of our time.) It contains the component model, 

as well as runtime services, such as exception handling, and automatic heap and stack management. In 

many respects, this is the big kahuna; it is the code that we refer to when we speak of ―the runtime‖ or ―the 
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virtual execution environment.‖ JIT compilation, memory management, assembly and class loading, type 

resolution, metadata parsing, stack walking, and other fundamental mechanisms are implemented here. 

This code can be found in sscli20/clr/src and in the four directories vm, fjit, md, and fusion, in which the 

bulk of the execution engine resides. 

 

 
 

Figure Error! No text of specified style in document.-4. Many libraries typically 

combine to run managed code 

The execution engine, as shown in Figure 1-4, is built as a set of dynamically loadable libraries rather than 

as a standalone executable. The clix program launcher (or any program that wishes to use the services of 

the execution engine) loads the main shared library, sscoree, to create an instance of the CLI in process and 

then feeds this instance a start-up assembly to be executed.  

The same is true of the commercial CLR; when an assembly is compiled under the CLR, 

it gets a native entrypoint that does this same boostrap sequence to bring the CLR into the 

application‘s program space, just as the SSCLI does. 

As a result, there is no main in the execution engine; it is packaged to be hosted by other programs. The 

execution engine depends on a number of other shared libraries, which include libraries that are broken 

because they are replaceable, such as the crypto code necessary to load and build signed assemblies that is 

located in sn, as well as libraries that are potentially useful in many different places, such as the PAL, 

which can be found in rotor_pal and rotor_palrt. Finally, code that may not always be needed is also 

packaged into separately loaded libraries, such as mscordbc, which implements debugger support. 

Programming libraries in the CLI 

The shared infrastructure of the CLI includes not only standardized, low-level capabilities such as 

metadata, the common intermediate language, and the common type system, but also high-level, 

productivity-oriented class libraries . The contents of these libraries are briefly summarized by functional 

area in Table 1-2. 

Table Error! No text of specified style in document.-2. High-level elements included in 

CLI standard libraries 

Category Facilities 

Productivity libraries Text formatting, regular expressions, collections, 

time, dates, file and network IO, configuration, 

diagnostics, globalization, isolated storage, XML 

Execution engine libraries Isolation domains, asynchronous callbacks, 

stackwalks, stack traces, garbage collector, handles, 
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environment, threads, exceptions, monitor-based 

synchronization, security, verification, reflection, 

serialization, code generation, native code 

interoperability 

Type-related libraries Primitive types, value types, delegates, strings, 

arrays, generics 

Extended numerics library Decimal numbers, double and single precision 

floating point numbers, math 

Programming language support Compiler services, custom metadata attributes, 

resource reclamation 

These libraries provide an interface to the facilities of the underlying operating system but in a way that has 

been tailored to exploit the services and conventions of the CLI, increasing programmer productivity 

through their consistency and quality. 

These APIs also serve another, less obvious role: they facilitate component integration by exposing 

programming services and conventions that will promote good component hygiene through their use. 

Services that minimize the amount of bookkeeping necessary for component builders to implement, or that 

minimize the need for complex intercomponent management protocols, make for smoother and safer 

integration (and less code to write). The less a component needs to rely on other components and the fewer 

things that a component must do on behalf of other components, the more likely an application will be bug-

free, simple to read, and robust. To realize the true promise of component-based software, components 

need to be built to rely on managed execution within an environment designed with these principles in 

mind. 

One might think of the CLI libraries as a modern equivalent to the C runtime library. They do not attempt 

to provide all things to all programmers; instead, they are a core set of components for which nearly every 

programmer will find a use. Since the base libraries, found in sscli20/clr/src/bcl, are specified to be part of 

any CLI implementation, they form a basis for portable application implementations. Additional libraries, 

found in the sscli20/fx, sscli20/clr/src/classlibnative, and sscli20/clr/src/managedlibraries directories, are 

either optional standard libraries or specific to the SSCLI. At this point in time, all of the libraries in the 

SSCLI are also found in the commercial Microsoft .NET Framework 2.0. 

Explorers of the programming libraries will find that, besides the documentation found in 

sscli20/docs that is specific to the Rotor distribution and to its utilities, there is website 

containing all class library documentation. This can be found at 

http://msdn2.microsoft.com/library/default.aspx. 

The Platform Adaptation Layer 

The PAL is an interesting piece of software with more uses than might meet the eye at first glance. Of 

course, as is typical of any adaptation or driver layer in a large piece of code that is meant to run on many 

operating system platforms, the first goal of the PAL was to isolate implementers from the details of 

various operating systems. The choice in the case of the SSCLI was obvious: since it had started as Win32-

specific code, the PAL was designed to present a subset of the Win32 API (which can be seen in 

sscli/pal/rotor_pal.h). This implementation is by no means complete, as it needs to provide only the calls 

that are actually made by the CLI. Do not attempt to use the PAL as a general Win32 emulation layer, 

because it is incomplete! 

The PAL is, of course, the place where the work to bring Rotor to new platforms would begin, since the 

tools that are used to build Rotor depend on the PAL for their operating systems‘ resources. To see what is 

involved, examine the sscli20/pal/unix directory. There is a significant amount of work having to do with 

providing a common exception-handling mechanism, common threading, a shared handle manager, IO, 

synchronization, debugging, and more. Specialized host processes, such as web servers or databases, might 

very well have their own similar runtime needs, which might need to take the semantics of the PAL into 

http://msdn2.microsoft.com/library/default.aspx
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consideration. Because of this and because the PAL defines how operating system resources are used, 

understanding the various PAL implementations will be important for many people. 

The Rotor team wanted to get Rotor v2 out to the door as quickly as possible and 

therefore decided to focus only on the x86 Windows platform, which has the widest 

SSCLI developer base. As a result, the Rotor v2 PAL does not include updates to support 

the FreeBSD and MacOS platforms. Having said that, however, the PAL source code has 

been updated to support the latest version of XP and Windows Vista. For those that are 

interested, the previous release of Rotor can be run on older versions of FreeBSD and 

MacOS, or you can update the PAL source code yourself to work with other architectures 

and operating systems. 

In addition to the PAL, there is a directory named sscli20/palrt/src, which contains a library 

implementation of Win32 APIs that are needed by the SSCLI but are not dependent on the operating 

system for implementation. This library also includes a small number of PAL-specific APIs. It is a true 

hodgepodge of facilities, but to give it flavor, it contains decimal arithmetic, a stub implementation of some 

of the Microsoft COM component model, array-handling, memory management, and numerous other utility 

functions. 

The most interesting aspect of the PAL has to do with execution engine control. The SSCLI is designed to 

run cooperatively with native code within native processes, which means that many operating system calls 

need to be caught to give the execution engine a chance to maintain bookkeeping information for the use of 

runtime systems, such as the garbage collector or the security system. This is a critical use of the PAL 

layer; the SSCLI implementation is built in terms of the abstractions that are presented by the PAL and 

without them, it could not maintain isolation, security, and control. For example, both threading and 

exception handling are implemented in the PAL and both of these are critical to the execution engine at 

runtime, since it uses exception frames to track managed code and the stacks associated with threads to 

store diffuse structures that hold the state of many of its services. Details of this aspect of the PAL will be 

covered at length in Chapter 6, while the PAL‘s design itself is the topic of Appendix A. 

Tools, compilers, tests, documentation, and utilities 

A significant percentage of the code in Rotor consists of support infrastructure that is used to build, test, 

and use its CLI implementation. The PAL, which we have just discussed, is such code. There are numerous 

additional developer tools, utilities, and test programs that can be found in various spots within the 

distribution. These fall into the broad categories of utilities for managed development and utilities for 

building the distribution. 

As far as managed development goes, many of the tools in the Rotor distribution will be familiar to any 

programmer who has spent time with the SDK for the Microsoft .NET Framework because the two 

implementations share their basic set of utilities, such as linker, assembler, and disassembler. The 

sscli20/clr/src, sscli20/clr/src/tools, and sscli20/clr/src/toolbox directories contain directories for these 

utilities, as well as for utilities that are unique to developing and running managed code with the SSCLI, 

such as clix.exe. Programmers should consult the documentation in sscli20/docs to see whether features are 

shared between the Rotor version of a utility and its .NET Framework counterpart; not all features were 

ported. 

The build system used to bootstrap Rotor can be found in sscli20/tools. These tools are built against the 

PAL and are used to track dependencies, drive the build process, and assemble the libraries and 

executables, once built, into the sscli20/binaries.xxxx.rotor directory. Dependencies in Rotor are 

convoluted, as they are with most large projects, and so these tools are quite important. To understand how 

they are used and how developers should interact with them when modifying code, see 

sscli20/docs/buildtools directory. 

Once the SSCLI is built, it can be tested by using the tests in the sscli20/tests directory. Of particular note 

are the PAL tests, found in sscli20/tests/palsuite, which can be used to verify new PAL implementations or 

changes to an existing PAL, and the developer Build Verification Tests (BVT) found in sscli20/tests/bvt, 

which can be used to check work being done in the execution engine. There are also tests for other areas 
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such as the base class libraries; most of these, along with the BVTs, use the test harness found in 

sscli20/tests/harness and documented in sscli20/docs/testing_overview.html. 

Documentation and technical notes for Rotor can be found in sscli20/docs. This directory contains material 

that is useful for browsing the sources, for modifying code, and for understanding both the architecture of 

the CLI and the specific implementation choices that were made when building the SSCLI. There is also a 

detailed specification included for the PAL that would be very useful to anyone porting Rotor to new 

platforms. It is well worth taking some time to browse this directory. 

Scoping This Book 

The second edition of this book maintains the original focus of how the CLI component model and its 

underlying execution engine are implemented from the SSCLI 2.0 prospective, but takes special focus on 

the new features of version 2. The requirements that the resulting mechanisms place on the operating 

system, and general porting issues, are briefly discussed. Discussions of compilers, languages, and 

frameworks, however, are sometimes lacking, as well as non-component-oriented uses of the CLI, which 

fortunately can be found in the numerous other books on the .NET Framework and the CLI.  

A disclaimer is also called for: the numerous C++ samples in this book taken from the SSCLI source code 

have been considerably cleaned up, becoming pseudo-code in the process. This was done to remove ugly 

macros, error-handling, and asserts that pepper the Real Code, and to make the code more readable. If you 

are planning to add to or modify the SSCLI code, you should be aware of the invariants that must be 

maintained and adopt the same programming conventions and error handling methods used by the 

developers of the SSCLI. See Appendix D for a short description of these requirements. 

Summary 

The CLI is the first virtual execution environment designed from the ground up to be shared by many 

different programming languages. Platform providers, framework builders, and programmers are not forced 

into all-or-nothing language decisions just to take advantage of the facilities that make component-based 

computing work, such as exceptions, garbage collection, reflection, code access security, and data-driven 

extensibility. Using the CLI, it is easy to incorporate preexisting code into component-based programming 

efforts, which results in increased interoperability and shared infrastructure. 

The CLI‘s standardized format for packaging, describing, and deploying components is tied to neither 

operating system nor implementation language. This is important because this format forms the foundation 

for the CLI‘s data-driven architecture. Data-driven mechanisms increase programmer productivity because 

they enable diverse programs, libraries, and tools to interact seamlessly and to evolve over time. A data-

driven component model is as future-proof as today‘s technology allows. 

The abstract instruction set and the type system that outline the CLI‘s virtual execution model offer a 

tempting glimpse of the Holy Grail: software that runs everywhere. The designers of the CLI certainly 

anticipated a world in which multiple implementations and multiple versions of their standard would run 

both side-by-side and on many platforms. Yet in this world, each implementation is likely to expose unique 

frameworks, services, utilities, tools, or language features that augment the basic capabilities, using the 

CLI‘s excellent support for interoperability. What will result is akin to C language development, in which 

one rarely finds significant applications built on top of the standard runtime alone. Instead, applications 

judiciously combine standard facilities with either platform-specific libraries or libraries designed 

specifically for cross-platform use. Most significant CLI programs will combine standard components with 

either platform-specific components or third-party components designed specifically for cross-platform use. 

The CLI‘s language-agnostic approach, its data-driven architecture, and its virtual execution model were 

developed to create an arena in which components could cooperate effectively without sacrificing their 

security and autonomy. Its unfolding chain of metadata creates an environment in which it is possible to 

reason about the behavior of components and inject safeguards into their code before running them. Each 

stage in the CLI‘s execution model involves receiving data from the prior stage and transforming or 

augmenting it before passing it on to another stage. This book describes this entire chain of stages and the 
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execution engine in which they are implemented, from its initial bootstrap sequence to the death of its last 

managed resource.
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2. Getting Started with Rotor 

The expertise needed to build a virtual machine spans disciplines as diverse as systems design, compiler 

theory, and hardware architecture. Understanding how and why this is true is important, both for those 

using virtual machines to solve day-to-day problems and for those extending or implementing them. The 

purpose of this book is to explain the CLI specification in these terms, drawing on Rotor‘s source code for 

examples and clarification. 

Before getting to these details, we‘ll take a detailed look at building, running, debugging, and modifying 

managed code with Rotor. A simple example will demonstrate these concepts: a managed component that 

echoes its input back to the console. This example will form a recurring basis for continuing discussions of 

Rotor‘s implementation in the chapters that follow. 

A Simple Component Assembly 

Consider the simple CLI component in Example 2-1, which consists of a single type named Echo. The 

Echo type has a single property named EchoString, and a single method, DoEcho. 

Example Error! No text of specified style in document.-1. A simple CLI component expressed in C# code 

using System; 

 

public class Echo 

{ 

  private string toEcho = null; 

 

  public string EchoString { 

    get { return toEcho; } 

    set { toEcho = value; } 

  } 

 

  public string DoEcho() 

  { 

    if (toEcho == null) 

      throw new Exception("Alas, there is nothing to echo!"); 

    return toEcho; 

  } 

} 

This component is written using the C# programming language and can be compiled into a CLI component 

using any C# compiler. C# was chosen for examples in this book, because it was developed as a companion 

language for the CLI standard and has direct syntax for many of the features found in the CLI. 

The SSCLI source code distribution includes several compilers in addition to the C# 

compiler that will be used in this book. Most notably, there is a full JScript compiler that 

is itself written in C#. Although there are no JScript samples in this book, the source code 

for this compiler (found in the jscript directory) is worth browsing, since the typeless 

dynamic semantics of the language differ greatly than from those of C#. The 

implementation techniques used to support features such as runtime expression 

evaluation demonstrate alternative design approaches. 
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Given the renewed interest in recent years in ―dynamic languages‖ (such as Ruby, 

ECMAScript, Python, or Lisp), curious programmers will find it a useful exercise to 

write a simple ―Hello, script!‖ program in ECMAScript, compile it using jsc, then look at 

the generated code using ildasm. 

If you are unfamiliar with C#, don‘t worry. Readers familiar with any high-level, component oriented 

programming languages such as Java should have no problem reading and understanding these very simple 

examples. Many good online tutorials and books are available for those who would like to learn C#; the 

MSDN Visual C# developer center web site http://msdn2.microsoft.com/en-us/vcsharp/default.aspx is one 

good place to start. 

Although we make no specific reference to C# 2.0 features in this chapter, those 

programmers unfamiliar with the C# 2.0 enhancements (most notably generics, since that 

will be a major topic in this edition of the books) should brush up on their C# 2.0 before 

proceeding too deeply into the subsequent chapters. Again, while such knowledge is not 

required to understand the material, having a context in which to frame the discussion is 

most helpful, and close to crucial in later chapters (such as Chapter 6). 

Before we can compile and run the code for the Echo component, we need to prepare Rotor for first use. 

Configuring the Environment 

Rotor is packaged as a compressed file archive, which can be expanded using your archiving utility of 

choice. WinRAR (http://www.rarlab.com) and WinZip (http://www.winzip.com) are two popular software 

packages that will uncompress the Rotor tarball.  

After profuse disk activity, unarchiving will leave a directory named sscli20 in its wake, containing more 

than 13,000 files and directories, containing collectively over 3.5 million lines of code.  

For most developers, this will be their first experience with a source base containing 7 digits‘ worth of 

code, so a quick reassurance here is necessary: you do not have to read through all of it to understand Rotor 

or the CLI. In fact, when viewed logically, it‘s ludicrous to expect that any one person, even those working 

on the CLI at Microsoft, has such knowledge. We will spend most of our time on the execution engine 

itself; other readers may find it useful and instructive to spend some time in the directories containing the 

Framework Class Library source code in order to understand the underlying libraries, such as System.Xml 

or System.Net, better. 

To tame this huge volume of code, the first thing that you will need to do after expanding the archive is to 

set up a working environment within a command-line shell. Rotor is designed for tinkering: it is assumed 

that you will be working with multiple versions of the CLI on a single machine as you experiment, make 

modifications, and use instrumented versions of the runtime for debugging, profiling, or tracing. To make 

side-by-side operation easy, configuration is done using environment variables that are easy to set and to 

change. 

Within the root of the sscli20 directory, a batch file stands ready to configure the runtime environment: 

env.bat.  Running the batch file is as simple as firing up cmd.exe and typing: 

 

    C:\sscli20> env 

One of three different build variants can be established using command-line arguments to the script. In the 

checked build, symbols are generated for debugging and no compiler optimizations are used when building 

code. Some extra instrumentation is also built into the CLI execution engine. This mode is slow but very 

useful when debugging. Free mode, in contrast, is built without debugging instrumentation. It is also built 

using compiler optimizations so that it can be as fast as possible and will have the best performance of the 

three variants. Fastchecked is a compromise between the free and checked: it preserves debug symbols and 

instrumentation but also uses some compiler optimizations. 

http://msdn2.microsoft.com/en-us/vcsharp/default.aspx
http://www.rarlab.com/
http://www.winzip.com/
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Whenever you run code using the SSCLI or use tools from within the distribution, you‘ll 

need to set up your environment first. There are several runtime configuration parameters 

that depend on values found in environment variables or are directory-specific. This bit of 

legerdemain may seem a bit awkward and unnecessary at first, but it is done to support 

side-by-side execution. Using Rotor, it is possible to run assemblies built from differing 

versions of the CLI (including your own custom versions!) without issues. By using 

version-specific command shells that have had their environments tailored to specific 

instances of the Rotor build, you can easily switch between versions by switching 

between command windows. 

Passing the mode as a parameter to one of the env scripts will set up corresponding environment values. If 

no mode is specified, fastchecked is the default. Since most users of Rotor will want debug symbols, 

fastchecked is a good option for most purposes, as it was designed as a compromise between execution 

speed and source-level debugging. Users who are primarily debugging and spelunking through the Rotor 

code, however, may prefer the debug checked build, since the optimizations of fastchecked may cause 

some source lines to appear out of sync with compiled code. 

You will see the mode printed in response to your command.  

 

    C:\sscli20> env free 

    Setting environment for using Microsoft Visual Studio 2005 x86 tools. 

    32-bit build 

    Free Environment 

    Building for Operating System - NT32 

                 Processor Family - x86 

                        Processor - i386 

                       Build Type - fre 

With your environment in place, you‘ll want to build the distribution. Rotor is distributed without any 

binaries, and so you must build it to do anything more than browse through source code. Fortunately, this is 

straightforward, and there are only a few prerequisites: you‘ll need quite a bit of free disk space (over a 

gigabyte is best), and you‘ll need to have suitable development tools (including perl) in your execution 

path. Appendix A describes these prerequisites in detail. 

Of course, if you‘d like to skip the Appendix, the simplest option is to do a complete build. There is a batch 

file script for this purpose in the sscli20 directory named buildall.cmd. Using the command window in 

which you‘ve prepared the environment, from the sscli20 directory, type: 

 

    C:\sscli20> buildall -c 

Feel free to take a break at this point, because the build process is lengthy! After lots of stimulating disk 

exercise, during which well over half a gigabyte of disk space is consumed, you‘ll have a ready-to-execute 

Shared Source CLI 2.0 installation, along with its rich set of accompanying tools and examples. To verify 

that the build was successful, try typing: 

 

    C:\sscli20> csc -? 

If all has gone well, you‘ll see the usage message for the C# compiler scroll by. (Pay attention to the banner 

message indicating the version of the compiler, just in case your environment accidentally has the Visual 

Studio tools in the PATH. Although compiling with Visual Studio and executing with Rotor is supported, 

it‘s confusing and distracting.  

At this point, you‘re ready to compile the Echo component. 

Creating an Echo Component 

To compile the C# Echo component into an executable on-disk library, use the following invocation of the 

C# compiler (assuming that you‘ve saved it into a file named echo.cs): 
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    C:\sscli20> csc /target:library /debug echo.cs 

This command will produce a file named echo.dll that serves as a container for a CLI assembly that 

contains the Echo type. The /debug switch causes a second file to be created, echo.ildb, which contains 

line number and symbol information for the cordbg debugger. 

If you try to compile echo.cs without command-line switches, compilation will fail, 

because Echo doesn‘t define a method named Main, which is needed by convention to 

create standalone executables in C#. 

Using the ildasm disassembler that comes with the SSCLI, you can verify that echo.dll contains both 

metadata tables and CIL code for the Echo type: 

 

    C:\sscli20> ildasm -all echo.dll 

 

    //  Microsoft (R) Shared Source CLI IL Disassembler.  Version 2.0.50826.0 

 //  Copyright (c) Microsoft Corporation.  All rights reserved. 

 

 

 // ----- DOS Header: 

 // Magic:                      0x5a4d 

 // Bytes on last page:         0x0090 

 // Pages in file:              0x0003 

 // Relocations:                0x0000 

 // Size of header (paragraphs):0x0004 

 // Min extra paragraphs:       0x0000 

 // Max extra paragraphs:       0xffff 

 // Initial (relative) SS:      0x0000 

 // Initial SP:                 0x00b8 

 // Checksum:                   0x0000 

    (MUCH more follows, spewing across pages of output) 

Note that echo.dll is a well-formed PE/COFF executable. Many only slightly interesting details that relate 

to the file‘s structure scroll by, until you reach output about the Echo type itself. Stripped to its essence 

(and liberally edited for readability), it looks like this: 

 

 .class public auto ansi beforefieldinit Echo 

        extends System.Object 

 { 

    .field private string toEcho 

    .method public hidebysig specialname instance string  

           get_EchoString() cil managed 

    { 

      // CIL stripped for clarity 

    }  

 

    .method public hidebysig specialname instance void  

           set_EchoString(string 'value') cil managed 

    { 

      // CIL stripped for clarity 

    }  

 

    .method public hidebysig instance string  

           DoEcho() cil managed 

    { 

      // CIL stripped for clarity 

    }  

 

    .method public hidebysig specialname rtspecialname  
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           instance void  .ctor() cil managed 

    { 

      // CIL stripped for clarity 

    }  

 

    .property instance string EchoString() 

    { 

      // CIL stripped for clarity 

    }  

     } // end of class Echo 

The Echo type has a single field, a string named toEcho, a property named EchoString, and a method 

named DoEcho. It also has a constructor, which was automatically produced by the C# compiler. 

Everything that a compiler would need to do type checking and other compile-time validation is part of the 

definition. No external resources are needed, such as header files or linker maps. Types in the CLI are self-

contained and self-describing. Unlike traditional compilation toolsets, in which names, structural 

information, source code, and object code often reside in separate places, CLI executables contain all of 

their information in a single file. 

If you expand the DoEcho implementation, you can see that the simple, three- line C# method has been 

converted into 12 CIL opcodes by the C# compiler (the comments have been removed for clarity): 

 

    .method public hidebysig instance string  

          DoEcho() cil managed 

  { 

    // Code size       39 (0x27) 

    .maxstack  2 

    .locals init ([0] string CS$1$0000, 

             [1] bool CS$4$0001) 

    IL_0000:  nop 

    IL_0001:  ldarg.0 

    IL_0002:  ldfld      string Echo::toEcho 

    IL_0007:  ldnull 

    IL_0008:  ceq 

    IL_000a:  ldc.i4.0 

    IL_000b:  ceq 

    IL_000d:  stloc.1 

    IL_000e:  ldloc.1 

    IL_000f:  brtrue.s   IL_001c 

 

    IL_0011:  ldstr      "Alas, there is nothing to echo!" 

    IL_0016:  newobj     instance void [mscorlib]System.Exception::.ctor(string) 

    IL_001b:  throw 

 

    IL_001c:  ldarg.0 

    IL_001d:  ldfld      string Echo::toEcho 

    IL_0022:  stloc.0 

    IL_0023:  br.s       IL_0025 

 

    IL_0025:  ldloc.0 

    IL_0026:  ret 

  } // end of method Echo::DoEcho   

CIL is an intermediate representation of the behavior originally expressed in the C# program, and is the 

target representation for compilers and other utilities that wish to express behavior natively in terms of the 

CLI runtime‘s services. CIL itself is a simple language to read and understand, particularly for those with 

some experience working with assembly language. It is fully described in the third partition of the ECMA 

specification, for those who would like to dig deeper. (There are also a number of books that cover the 

subject, including .NET IL Assembler 2.0 by Serge Lidin, published by APress.) 

One key to understanding CIL is to realize that the instruction set is stack-based. So, for example, when the 

first instruction ldarg.0 (load argument zero) executes, it pulls the first argument passed to the method 
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(which in this case is a this pointer to the Echo instance being called) and pushes it onto the execution 

stack. This value is then used by the next instruction ldfld (load instance field contents), which takes a 

single operand, the name of the field to load, dereferences it, and stores the result on the stack. In the 

example, ldfld takes the this pointer from the top of the stack and uses it to dereference the named 

field: Echo::toEcho. 

Those familiar with assembly language might start to grow a bit skeptical: just how wide is this stack? Is it 

32-bit? 64-bit? The beauty of the CLI execution model and the CIL instruction set is that implementation 

details, such as the stack‘s size, are irrelevant. CIL was not designed for direct execution, but rather for 

compilation into code native to whatever processor is at hand. Alignment issues are also something that the 

CLI programmer can rely on the JIT compiler to take care of automatically. 

 

Other CIL Tools 
CIL is a lingua franca for CLI structure and behavior, and every CLI component can be shown as 

CIL. In fact, files containing CIL component descriptions can be built by hand and assembled 

directly into an executable by using the ilasm utility, without using any higher-level compiler. The 

ilasm assembler is a counterpart to ildasm, and its file format is often used as a target by compilers 

that wish to target the CLI. In fact, the output from ildasm can be recompiled by ilasm, a 

capability called ―round-tripping .‖ It is easy to capture the dump to a file and ―round-trip‖ the 

Echo component from its compiled form to CIL and back again: 

    C:\sscli20> ildasm -out=roundtrip.il echo.dll 

    C:\sscli20> ilasm -dll roundtrip.il 

CIL is also easy to manipulate and examine statically. As an example of this, you might examine 

the peverify tool that comes with the Rotor distribution. This utility verifies that the combination 

of metadata and CIL within an executable‘s assemblies is typesafe. Its code can be found in 

sscli20/clr/src/tools/peverify. 

 

The rest of the method is fairly easy to understand. The brtrue.s (branch short if true) instruction is 

used to test the results of the ldfld to see whether the topmost element on the execution stack is non-null. 

If it is, there is a jump to the label IL_001c, which can be found in the column of labels on the lefthand 

side of the CIL instructions. Otherwise, the ldstr (load string) instruction loads a reference to the 

constant string Alas, ... onto the execution stack, where it is used as the sole parameter to the 

constructor for a System.Exception, created by the newobj instruction that follows it. With an 

Exception object on the stack, the throw instruction terminates execution of this method and unwinds 

the stack, looking for exception handlers. The instruction sequence for the nonexception path results in a 

reference to the string value from the Echo::toEcho field being pushed onto the stack with ldloc.0. 

It is returned to the original caller of the method with ret. 

The ECMA specification for the CLI contains an excellent summary of the complete set 

of CIL opcodes. See Partition III for details. 

Exercising the Echo Component 

Given the lengthy disassembled output, echo.dll appears to contain a valid CLI component. Without a 

program that takes advantage of its capabilities, however, this component and the assembly in which it is 

contained are of little use. Here is code that will put Echo through its paces: 

using System; 

 

public class MainApp  

{ 
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  public static void Main() 

  { 

    Echo e = new Echo(); 

    e.EchoString = "Echo THIS!"; 

    System.Console.WriteLine("First echo is: {0}", e.DoEcho()); 

    e.EchoString = null; 

    System.Console.WriteLine("Second echo is: {0}", e.DoEcho()); 

  } 

} 

This simple program instantiates an Echo component, sets its EchoString property, and calls DoEcho, 

printing the results to stdout. It then sets EchoString to null, and calls DoEcho again. 

To find out more about any of the tools or utility programs being discussed in this 

chapter, browse the documentation that comes as part of the SSCLI. The file 

sscli20/docs/index.html has links to individual web pages for every program in the 

distribution. These pages document syntax and command-line arguments, as well as 

general usage. 

To compile and run the code, save it into a file named main.cs and feed it to the compiler, passing echo.dll 

on the command line as a referenced component. The resulting main.exe program can be executed by using 

the managed code launch utility, clix: 

 

    C:\sscli20> csc /target:exe /reference:echo.dll /debug main.cs 

    Microsoft (R) Shared Source CLI C# Compiler version 2.0.0001 

 for Microsoft (R) Shared Source CLI version 2.0.0 

 Copyright (C) Microsoft Corporation. All rights reserved. 

 

    C:\sscli20> clix main.exe 

 First echo is: Echo THIS! 

 

 Unhandled Exception: System.Exception: Alas, there is nothing to echo! 

       at Echo.DoEcho() in C:\sscli20\echo.cs:line 15 

       at MainApp.Main() in C:\sscli20\main.cs:line 97 

As you can see, the program does precisely what it should, echoing the first string and then blowing up 

with an unhandled exception! Because you compiled both files using the /debug switch, the resulting 

stack trace contains line number information about the problem, but to find out more about the exception 

and what is causing it, you can drop into the managed code debugger, cordbg: 

 

    C:\sscli20> cordbg main.exe 

 Microsoft (R) Common Language Runtime Test Debugger Shell Version 2.0.50826.0 

 Copyright (c) Microsoft Corporation.  All rights reserved. 

 

 (cordbg) run main.exe 

 Process 440/0x1b8 created. 

 [thread 0xce0] Thread created. 

 

 004:       public static void Main() {     

 (cordbg) 

The debugger loaded main.exe and automatically ran until the first line of code in Main. Note that to get to 

this point, the CLI has fired up three managed threads (of which much more will be said in later chapters). 

The debugger prints out the current line, and then waits patiently for instructions. To see command options, 

you can type: 

 

    (cordbg) ? 
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This will give you a list of all possible debugger commands. Typing show (sh) will display the source code 

for the current method: 

 

    (cordbg) sh 

 001: using System; 

 002: 

 003:     public class MainApp { 

 004:*      public static void Main() { 

 005:         Echo e = new Echo(); 

 006:         e.EchoString = "Echo THIS!"; 

 007:         System.Console.WriteLine("First echo is: {0}", e.DoEcho()); 

 008:         e.EchoString = null; 

 009:         System.Console.WriteLine("Second echo is: {0}", e.DoEcho()); 

The asterisk indicates current position. By typing continue (cont), you can watch the exception happen: 

 

    (cordbg) cont 

    001: using System; 

 002: 

 003:     public class MainApp { 

 004:*      public static void Main() { 

 005:         Echo e = new Echo(); 

 006:         e.EchoString = "Echo THIS!"; 

 007:         System.Console.WriteLine("First echo is: {0}", e.DoEcho()); 

 008:         e.EchoString = null; 

 009:         System.Console.WriteLine("Second echo is: {0}", e.DoEcho()); 

 (cordbg) cont 

 First echo is: Echo THIS! 

 First chance exception generated: (0x00cd6688) <System.Exception> 

 Unhandled exception generated: (0x00cd6688) <System.Exception> 

   _className=<null> 

   _exceptionMethod=<null> 

   _exceptionMethodString=<null> 

   _message=(0x00cd2110) "Alas, there is nothing to echo!" 

   _data=<null> 

   _innerException=<null> 

   _helpURL=<null> 

   _stackTrace=(0x00cd66f4) array with dims=[48] 

   _stackTraceString=<null> 

   _remoteStackTraceString=<null> 

   _remoteStackIndex=0x00000000 

   _dynamicMethods=<null> 

   _HResult=0x80131500 

   _source=<null> 

   _xptrs=0x00000000 

   _xcode=0xe0524f54 

  

 017:   } 

Using where (wh) to view a trace of the execution stack and print (p) to examine the state of the instance of 

Echo, you can see that the null string field is causing the problem: 

 

    (cordbg) wh 

 Thread 0xce0 Current State:GCUnsafe spot 

 0)* echo!Echo::DoEcho +00c2 in C:\sscli20\echo.cs:17 

 1)  main!MainApp::Main +00ba in C:\sscli20\main.cs:9 

 --- Managed transition --- 

Although the commands might be foreign, this debugger interaction should be familiar to any programmer. 

Based on the information discovered, you could correct Main by adding a try block around calls to the 

Echo component, which would give the program a chance to recover from runtime exceptions. 
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Bootstrapping the Loading Process 

To bootstrap the loading process, the clix application launcher receives the name of a managed executable 

and runs that executable by loading the CLI execution engine, loading the executable file, and putting them 

to work. We will take clix apart in much more detail in Chapter 4, but the executive summary goes 

something like this: 

1. clix loads the execution engine into its process space by dynamically loading the sscoree.dll module.  

2. clix then finds the file named in its command-line argument and loads it into memory. 

3. Finally, clix feeds the loaded file to a function exposed by the sscoree module named 

_CorExeMain2. When the function returns, the managed executable has exited, and it’s time to shut 

off the lights and go home. 

Once the file is passed to the execution engine, the CLI begins the business of loading and JIT-compiling 

assemblies as they are needed. 

Debugging the Rotor Execution Engine 

If you run clix itself under a debugger, rather than running the managed executable under a managed 

debugger, you can see the workings of the execution engine in great detail. The cdb.exe Windows debugger 

from the Debugging Tools for Windows package 

(http://www.microsoft.com/whdc/devtools/debugging/default.mspx) allows you to poke around the 

execution engine: 

 

    C:\sscli20> cdb –lines clix main.exe 

    

 Microsoft (R) Windows Debugger  Version 6.7.0005.0 

 Copyright (c) Microsoft Corporation. All rights reserved. 

  

 CommandLine: clix 

 Symbol search path is: C:\sscli20\binaries.x86chk.rotor\Symbols;C:\sscli20\binar 

 ies.x86chk.rotor 

 Executable search path is: 

 ModLoad: 00400000 00405000   clix.exe 

 ModLoad: 7c900000 7c9b0000   ntdll.dll 

 ModLoad: 7c800000 7c8f5000   C:\WINDOWS\system32\kernel32.dll 

 ModLoad: 79e80000 79e9b000   C:\sscli20\binaries.x86chk.rotor\rotor_pal.dll 

 ModLoad: 10200000 10321000   C:\WINDOWS\WinSxS\x86_Microsoft.VC80.DebugCRT_1fc8b 

 3b9a1e18e3b_8.0.50727.762_x-ww_5490cd9f\MSVCR80D.dll 

 ModLoad: 77c10000 77c68000   C:\WINDOWS\system32\msvcrt.dll 

 ModLoad: 71ab0000 71ac7000   C:\WINDOWS\system32\WS2_32.dll 

 ModLoad: 71aa0000 71aa8000   C:\WINDOWS\system32\WS2HELP.dll 

 ModLoad: 77dd0000 77e6b000   C:\WINDOWS\system32\ADVAPI32.dll 

 ModLoad: 77e70000 77f01000   C:\WINDOWS\system32\RPCRT4.dll 

 ModLoad: 7e410000 7e4a0000   C:\WINDOWS\system32\USER32.dll 

 ModLoad: 77f10000 77f57000   C:\WINDOWS\system32\GDI32.dll 

 ModLoad: 79ec0000 79edf000   C:\sscli20\binaries.x86chk.rotor\rotor_palrt.dll 

 ModLoad: 79e00000 79e08000   C:\sscli20\binaries.x86chk.rotor\sscoree.dll 

 (11c8.1404): Break instruction exception - code 80000003 (first chance) 

 eax=002d1eb4 ebx=7ffdf000 ecx=00000006 edx=00000040 esi=002d1f48 edi=002d1eb4 

 eip=7c901230 esp=001afb20 ebp=001afc94 iopl=0         nv up ei pl nz na po nc 

 cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000202 

 *** ERROR: Symbol file could not be found.  Defaulted to export symbols for ntdl 

 l.dll - 

 ntdll!DbgBreakPoint: 

 7c901230 cc              int     3 

 0:000> bp main 

 0:000> l+t 

 Source options are 1: 

http://www.microsoft.com/whdc/devtools/debugging/default.mspx
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      1/t - Step/trace by source line 

 0:000> l+s 

 0:000> lsp 2 8 

 At the prompt, display 2 source lines before and 8 after  

 0:000> g  

 Breakpoint 0 hit 

 eax=003d3bd0 ebx=7ffde000 ecx=003d6fc8 edx=00000002 esi=7c9118f1 edi=00011970 

 eip=004018b3 esp=001aff6c ebp=001affb8 iopl=0         nv up ei pl nz na po nc 

 cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000202 

     47: extern "C" 

     48: #endif 

 >   49: int __cdecl main(int argc, char **argv) { 

     50:     struct _mainargs mainargs; 

     51: 

     52: #ifdef _MSC_VER 

     53:     if (PAL_Initialize(0, NULL)) { 

     54:         return 1; 

     55:     } 

     56: #else 

 clix!main: 

 004018b3 55              push    ebp  

This looks promising. Rather than C# code, we have now paused execution in the obviously C-language 

main() method. This code, of course, is the Rotor implementation for clix, which will launch and run 

main.exe. Using cdb‘s go command, you can cause this to happen: 

 

    0:000> g  

 First echo is: Echo THIS! 

 (11e4.1730): Unknown exception - code e0524f54 (first chance) 

  

 Loading C:\sscli20\binaries.x86chk.rotor\mscorrc.satellite to load strings. 

 Unhandled Exception: ModLoad: 51800000 5182a000   C:\sscli20\binaries.x86chk.rot 

 or\ildbsymbols.dll 

 System.Exception: Alas, there is nothing to echo! 

    at Echo.DoEcho() in C:\sscli20\echo.cs:line 15 

    at MainApp.Main() in C:\sscli20\main.cs:line 9 

 eax=77c3f88a ebx=00000000 ecx=77c3e9f9 edx=77c61a70 esi=7c90e88e edi=e0524f54 

 eip=7c90eb94 esp=001ae0ec ebp=001ae1e8 iopl=0         nv up ei pl zr na pe nc 

 cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000246 

 ntdll!KiFastSystemCallRet: 

 7c90eb94 c3              ret 

 0:000>     

Hmm, the debugger didn‘t catch the exception in this case but just bailed out. Why? 

The unfortunate truth is that managed code and unmanaged code cannot easily be debugged from within 

the same debugger. (We will see ways to examine JIT-compiled code and execution engine structures in 

Chapter 5, but using these facilities with native debugging facilities is not easy.) Of course, this lack of 

symbolic information for managed code doesn‘t stop us from listing and running the unmanaged code for 

the execution engine under the debugger! 

 

    0:000> lsa Launch 

     93:     } 

     94: } 

     95: 

     96: DWORD Launch(WCHAR* pFileName, WCHAR* pCmdLine) 

 >   97: { 

     98:     WCHAR exeFileName[MAX_PATH + 1]; 

     99:     DWORD dwAttrs; 

    100:     DWORD dwError; 

    101:     DWORD nExitCode; 

    102:  
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The clix application contains a function named Launch, from which the CLI execution engine is 

dynamically loaded and called. To run the C# code for Main, clix maps the main.exe into memory and then 

hands the image to a function named _CorExeMain2, which will load and run the code. By placing a 

breakpoint at this point, you can actually trace through this transition into managed code, but from the 

perspective of the CLI implementer rather than the perspective of the C# programmer: 

 

    0:000> ls 147  

    147:     nExitCode = _CorExeMain2(NULL, 0, pFileName, NULL, pCmdLine); 

    148: 

    149:     // _CorExeMain2 never returns with success 

    150:     _ASSERTE(nExitCode != 0); 

    151: 

    152:     DisplayMessageFromSystem(::GetLastError()); 

    153: 

    154:     return nExitCode; 

    155: } 

    156:     

 

 0:000> bp `clix.cpp:147` 

    0:000> g  

At this point, put a breakpoint in RaiseException, which you know will be called when the Echo 

component uses the throw statement from within DoEcho. Continuing, hit this breakpoint: 

 

    0:000> bp kernel32!RaiseException 

 0:000> g 

  

    First echo is: Echo THIS! 

 Breakpoint 2 hit 

 eax=00000000 ebx=003de5c8 ecx=003de450 edx=00000007 esi=00000000 edi=003de450 

 eip=7c812a09 esp=001ae668 ebp=001ae67c iopl=0         nv up ei pl nz na po nc 

 cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000202 

 kernel32!RaiseException: 

 7c812a09 8bff            mov     edi,edi  

The first "Echo THIS!" output is among cdb‘s output; now you know that you are at the same exact 

spot that you were in cordbg: the Echo component is raising an exception, because its field has a null 

value. Examining a slightly cleaned up version of the stack trace, let‘s look for the nested calls to Main and 

DoEcho: 

 

     0:000> k 

 ChildEBP RetAddr 

 WARNING: Stack unwind information not available. Following frames may be wrong. 

 001ae664 79e8ec82 kernel32!RaiseException 

 001ae67c 7934dae9 rotor_pal!PAL_RaiseException+0x2e 

[c:\sscli20\pal\win32\win32pal.c @ 5614] 

 001ae764 793abc99 mscorwks!RaiseTheExceptionInternalOnly+0x27d 

[c:\sscli20\clr\src\vm\excep.cpp @ 2648] 

 001ae8ac 0375c54a mscorwks!JIT_Throw+0x1a8 [c:\sscli20\clr\src\vm\jithelpers.cpp 

@ 4670] 

 001ae8f4 792e3ec5 0x375c54a 

 001ae8f8 793a0914 mscorwks!CallDescrWorkerInternal+0x33 

 001ae904 7932d3f6 mscorwks!GCSafeMemCpy+0xa4 [c:\sscli20\clr\src\vm\object.cpp @ 

1848] 

 792e3ec5 7404f983 mscorwks!CallDescrWorker+0xa0 [c:\sscli20\clr\src\vm\class.cpp 

@ 11285] 

 792e3ec5 00000000 0x7404f983 

 0:000>  
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Looking at this stack trace in some detail, notice that at the point that the exception is being raised, you are  

deep in the CLI execution engine. Not all frames are available for cdb to display, but the initial frames not 

shown are actually the calls to the JIT compiled versions of DoEcho and Main. (In Chapter 5, we will 

examine debugging techniques that can be used to verify this). The JIT-compiled code for DoEcho calls 

the JIT_Throw helper function to actually raise its managed exception.  

Don‘t worry if this doesn‘t make a lot of sense yet. It will, shortly. The Rotor implementation of the CLI 

runtime is composed of large quantities of C, C#, and C++ code, mixed together in complex ways. 

Wringing order from this apparently chaotic mass of code is the mission that this book sets out to complete. 

Observing Managed Execution 

Because so much of what‘s happening in the execution engine is low-level, self-modifying code, trying to 

keep track of what‘s going on can be awkward. Rather than constantly walk through code in a debugger, 

readers can take advantage of a number of tracing and diagnostic facilities that exist in Rotor. 

To demonstrate the use of tracing, we will use it to observe the JIT compiler in action. First, modify 

main.exe to contain a try block, as follows: 

 

 using System;     

 public class MainApp { 

      public static void Main() { 

        try { 

          Echo e = new Echo(); 

          e.EchoString = "Echo THIS!"; 

          System.Console.WriteLine("First echo is: {0}", e.DoEcho()); 

          e.EchoString = null; 

          System.Console.WriteLine("Second echo is: {0}", e.DoEcho()); 

        } catch { 

          System.Console.WriteLine("Caught and recovered from bad Echo."); 

        } 

      } 

    } 

When you run this program, you will see: 

 

    C:\sscli20> csc /target:exe /reference:echo.dll /debug main2.cs 

 Microsoft (R) Shared Source CLI C# Compiler version 2.0.0001 

 for Microsoft (R) Shared Source CLI version 2.0.0 

 Copyright (C) Microsoft Corporation. All rights reserved. 

 

    C:\sscli20> clix main2.exe 

    First echo is: Echo THIS! 

    Caught and recovered from bad Echo. 

Scattered throughout the code that implements the CLI execution engine are thousands of calls to chunks of 

code such as the following that are conditionally compiled for logging and debugging: 

 

    #if defined(_DEBUG) || defined(LOGGING) 

      const char *szDebugMethodName = NULL; 

      const char *szDebugClassName =  NULL; 

      szDebugMethodName = compHnd->getMethodName(info->ftn, &szDebugClassName ); 

    #endif 

    #ifdef _DEBUG 

     static ConfigMethodSet fJitBreak; 

     fJitBreak.ensureInit(L"JitBreak"); 

     if (fJitBreak.contains(szDebugMethodName, szDebugClassName, 

                         PCCOR_SIGNATURE(info->args.sig))) 

        _ASSERTE(!"JITBreak"); 
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     // Check if need to print the trace 

     static ConfigDWORD fJitTrace; 

     if ( fJitTrace.val(L"JitTrace") ) 

       printf( "Method %s Class %s \n",szDebugMethodName, szDebugClassName ); 

    #endif 

In fact, this code snippet was taken directly from sscli20/clr/src/fjit/fjitcompiler.cpp, which is where the 

implementation of Rotor‘s JIT compiler can be found. Whenever a new method is compiled in a build in 

which _DEBUG and LOGGING are defined (such as checked and fastchecked), the JIT compiler executes 

this #ifdef code. To see it in action, create an environment variable named COMPlus_JitTrace, and 

set its value to 1. You should then see the following when you run main2.exe: 

 

    C:\sscli20> set COMPlus_JitTrace=1 

    C:\sscli20> clix main2.exe 

    Method SetupDomain Class AppDomain 

 Method .cctor Class PermissionSet 

 Method .ctor Class PermissionSet 

 Method .ctor Class PermissionSet 

 Method .ctor Class Object 

 Method Reset Class PermissionSet 

 Method SetUnrestricted Class PermissionSet 

 Method .ctor Class AppDomainSetup 

 Method set_DisallowBindingRedirects Class AppDomainSetup 

 Method get_Value Class AppDomainSetup 

 Method SetupFusionStore Class AppDomain 

 Method SetupDefaultApplicationBase Class AppDomainSetup 

 Method .cctor Class String 

 

   (Many more messages follow) 

 

    Method Main Class MainApp 

    Method .ctor Class Echo      

 Method set_EchoString Class Echo      

 Method DoEcho Class Echo 

    Method WriteLine Class Console 

 

    (Many more messages follow) 

 

    Method .ctor Class SyncTextWriter  

 Method get_FormatProvider Class TextWriter  

 Method WriteLine Class SyncTextWriter    

 First echo is: Echo THIS!      

 Caught and recovered from dysfunctional Echo. 

 

    (Many more messages follow) 

 

 Method op_Explicit Class IntPtr 

 Method WriteLine Class Console 

 Method WriteLine Class SyncTextWriter 

The very first method to be JIT-compiled when main2.exe is run is AppDomain::SetupDomain. Is this 

surprising? Not really. Remember that much of the Rotor CLI implementation is written in C#. To run any 

program, some of this C# code will be loaded and executed. As part of that execution sequence, it will be 

JIT-compiled from the CIL in its assembly, just like any other managed code. This is what happens in this 

trace. 

The entire trace is actually quite enlightening, but we won‘t print all 1300-plus lines here. Instead, we 

included only a few of the important parts in the previous listing, including the lines in which the 

MainApp and Echo types are compiled, as well as the point at which their output is emitted to the 
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console. Note how many methods are compiled between the time that DoEcho is run and the time the 

characters emerge on the console! 

There is actually a vast diagnostic logging subsystem in Rotor with a number of different facilities defined, 

each of which can be enabled for logging. The diagnostic variable named LogFacility is a bitmasked 

field mapping to 32 different logging categories, defined in sscli20/clr/src/inc/loglf.h. These flags can be 

combined to trace very specific parts of the execution engine. The LogLevel diagnostic variable is used 

in conjunction with LogFacility to indicate the level of detail which the execution engine should 

provide. Both LogLevel and LogFacility have default behavior that results in maximum logging. 

One approach to setting these variables is to use environment variables, as you did with the JIT trace. First, 

turn off the JIT trace: 

 

    C:\sscli20> set COMPlus_JitTrace=0 

Then, to turn on allocation tracing in the garbage collector, which by looking at the header file you know 

has a flag value of 0x100, type the following: 

 

    C:\sscli20> set COMPlus_LogEnable=1 

    C:\sscli20> set COMPlus_LogToConsole=1 

    C:\sscli20> set COMPlus_LogFacility=0x100 

    C:\sscli20> clix main2.exe 

 TID 12a4: Executing program with command line 'main2.exe ' 

 TID 12a4: Allocated  4096 bytes for REF_TYPE 01c00018 System.Object[] 

 TID 12a4: Allocated    72 bytes for REF_TYPE 00ccf8a4 

System.OutOfMemoryException[C:\sscli20\binaries.x86chk.rotor\mscorlib.dll] 

 TID 12a4: Allocated    72 bytes for REF_TYPE 00ccf8ec 

System.StackOverflowException[C:\sscli20\binaries.x86chk.rotor\mscorlib.dll] 

 TID 12a4: Allocated    72 bytes for REF_TYPE 00ccf934 

System.ExecutionEngineException[C:\sscli20\binaries.x86chk.rotor\mscorlib.dll] 

 TID 12a4: Allocated    72 bytes for REF_TYPE 00ccf97c 

System.Threading.ThreadAbortException[C:\sscli20\binaries.x86chk.rotor\mscorlib.dll] 

 TID 12a4: Allocated    72 bytes for REF_TYPE 00ccf9c4 

System.Threading.ThreadAbortException[C:\sscli20\binaries.x86chk.rotor\mscorlib.dll] 

 TID 12a4: Allocated    12 bytes for REF_TYPE 00ccfa0c 

System.Object[C:\sscli20\binaries.x86chk.rotor\mscorlib.dll] 

    (and on and on...) 

An interesting thing to notice in this example is that allocation order is quite different from JIT compilation 

order. In fact, the first thing to be allocated is the Exception object for out-of-memory errors! Many 

delightful factoids can be gleaned by examining execution traces. 

 Log settings can also be made by using a configuration file that is tied to the build of the CLI being used, 

such as sscli20/binaries.<arch><buildmode>.rotor/rotor/rotor.ini. For example, to watch every log 

message available, with output going to both the console and a file named my.log, the rotor.ini file in the 

rotor subdirectory of the appropriate binaries directory (binaries.x86chk.rotor for the fastchecked build on 

x86) would look like this: 

 

    [Rotor] 

    LogEnable=1 

    LogLevel=10 

 

    LogToConsole=1 

    LogToFile=1 

    LogFile=C:\sscli20\rotor.log 

Be warned that running with extremely high log levels generates copious amounts of output during 

execution. Running at LogLevel=10, main2.exe generates many megabytes of text. As a result, not only 

will a log file fill extremely quickly (or scroll by in the console window far too quickly to read), but 

execution will slow down due to the amount of console I/O taking place. There are more instructions and a 
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number of logging examples in the file docs/techinfo/logging.html that will help you navigate and use this 

facility efficiently. 

Looking Ahead 

Within the rest of the book, we will focus in detail on each of the elements we have already touched on: 

types, assemblies and metadata, JIT compilation, managed execution, automatic memory management, and 

the platform adaptation layer. In the next chapter, we begin by examining the notion of type within the CLI 

and the execution engine, and how the CLI guarantees typesafety within the managed environment.
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3. Using Types to Describe 

Components 

Types are the universal abstraction that enables CLI-based programs to interact with the operating system, 

with foreign code, and with the world of the microprocessor. Below the CLI lurks a world of address 

spaces, threads, instructions, interrupts, and registers, defined by the operating system and microprocessor 

being used. Above the CLI, high-level programming languages project component-based abstractions that 

help to ease programmer interactions with those painfully concrete low-level constructs. Types are the 

organizational principle that bridges these two worlds safely, efficiently, and consistently. To understand 

how the CLI creates native code and maintains control over its execution, it is first important to understand 

its type system. 

Types and Type Systems 

The notion of a type system can be difficult to define. For most programmers, the old adage, ―I can‘t tell 

you what it is, but I know it when I see it‖ describes their definition of a type system. Intuitively, we know 

that primitive types, classes, structs, and such are part of a type system, and that languages will enforce 

certain rules regarding the use of these types. But to actually say, in formal terms, what a type system is and 

entails is difficult. Nonetheless, most programmers, regardless of their background, will be able to infer 

some interesting details about the CLI type system from Example 3-1, even if they‘re not familiar or 

comfortable with C#. 

Example Error! No text of specified style in document.-1. The Echo component revisited 

 

using System; 

namespace SampleEcho  

{ 

  public enum EchoVariation { Louder, Softer, Indistinct } 

  public struct EchoValue  

  { 

    public string theEcho; 

    public EchoVariation itsFlavor; 

  } 

  public interface IEchoer  

  { 

    void DoEcho(out EchoValue[] resultingEcho); 

  } 

 

  public class Echo : IEchoer  

  { 

    private string toEcho = null; 

    private static int echoCount = 0; 

    private const System.Int16 echoRepetitions = 3; 

 

    public delegate void EchoEventHandler(string echoInfo); 

    public event EchoEventHandler OnEcho; 

 

    public Echo(string initialEcho)  



Chapter 3: Using Types to Describe Components  | 42 

    { 

      toEcho = initialEcho; 

    } 

    public string EchoString  

    { 

      get { return toEcho; } 

      set { toEcho = value; } 

    } 

    public void DoEcho(out EchoValue[] resultingEcho)  

    { 

      if (toEcho == null)  

      { 

        throw(new Exception("Alas, there is nothing to echo!")); 

      } 

      resultingEcho = new EchoValue[echoRepetitions]; 

      for (sbyte i = 0; i < echoRepetitions; i++)  

      { 

        resultingEcho[i].theEcho = toEcho; 

        switch (i)  

        { 

          case 0: 

            resultingEcho[i].itsFlavor = EchoVariation.Louder; 

            break; 

          case 1: 

            resultingEcho[i].itsFlavor = EchoVariation.Softer; 

            break; 

          default: 

            resultingEcho[i].itsFlavor = EchoVariation.Indistinct; 

            break; 

        } 

      } 

      if (OnEcho != null)  

      { 

        OnEcho(System.String.Format("Echo number {0}", echoCount)); 

      } 

      echoCount++; 

      return; 

    } 

  } 

} 

Casual users of C, C++, or Java will find much here that feels familiar and intuitive. For example, the 

Echo component contains a number of type definitions: the enumerated type EchoVariation, the struct 

EchoValue, the interface IEchoer, and the class Echo. We can see some fields, some methods, some 

code, and so forth—much of this is intuitive and familiar, even if we‘ve never put formal definitions to it. 

Type, Object, and Component 

We need to draw a distinction between the terms type, object, and component. These terms are frequently 

used throughout the industry, often with vague or differing meanings. They are also used in very specific 

ways in the ECMA CLI specification. Taking the time up front for definitions will help ensure a common 

understanding of what is meant by these terms in this book. 

Type 

A type is a specification that describes how a piece of unadorned data will be interpreted within the CLI 

execution engine. Types provide a way to classify both the shape of data and the ways that operations on 

that data should be expected to behave. The use of types has proven to be indispensable for the construction 

of reliable software on a large scale; their use results in a classification system that can be used to automate 

and enrich most aspects of the programming process, from compilation and linking to ensuring correct 

runtime behavior. 
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In the CLI, types are always used to access and manipulate data, which results in a typesafe environment. 

Typesafety is achieved jointly by cooperation between compilers and the execution environment. Within 

the CLI, every object, every variable, and every piece of data used as part of the frameworks has a type 

associated with it from the time that it is allocated by the execution engine to the time that it is no longer 

used. A typesafe compiler for the CLI, such as the Rotor JIT compiler, will restrict the kind of code that it 

emits to code that always obeys the rules of the typesystem and execution environment. From a practical 

perspective, this gives the CLI a way to maintain control over managed code. 

To put it simply, the CLI seeks to ensure through analysis that a program will behave ―according to the 

rules.‖ If there are no semantic violations of the set of verification rules defined in the ECMA specification, 

then that program is defined to be typesafe. For example, if a variable is declared to be an unsigned 32-bit 

integer, then in a typesafe program, there will be no code that attempts to assign a string to it: 

int x; 

x = "12"; // this would not be typesafe 

In addition to things like simple assignment compatibility checks, a strongly-typed environment ensures 

that methods called on a type are actually declared as part of that type. For example, while 

System.String has a method called IndexOf on it, an integer (an instance of System.Int32) does 

not: 

int x = 12; 

x.IndexOf("1"); // also illegal 

The C# compiler will reject both of these code fragments, and even if the programmer somehow fools the 

compiler or build illegal CIL manually without a compiler, the execution engine will still recognize that 

System.Int32 doesn‘t have this method and reject the compiled code. (The verification step that 

performs this check is something we will cover later.) Both the compiler and the execution engine enforce 

typesafety. The C# compiler does checking to provide the programmer with warnings and error messages at 

compile time. The execution engine does checking so that it can protect the system against buggy 

compilers, poor component design, and malicious code. By this careful attention to the rules, a level 

playing field for components is maintained. 

Object 

A very careful discussion of the terms ―type‖ and ―object‖ can be found in Section 8 of the first partition of 

the ECMA specification: 

Types describe values and specify a contract that all values of that type shall support. Because the CTS 

supports Object-Oriented Programming (OOP) as well as functional and procedural programming languages, 

it deals with two kinds of entities: objects and values. Values are simple bit patterns for things like integers 

and floats; each value has a type that describes both the storage that it occupies and the meanings of the bits 

in its representation, and also the operations that may be performed on that representation. Values are 

intended for representing the corresponding simple types in programming languages like C and also for 

representing non-objects in languages like C++ and Java. 

Objects have more to them than values. By this definition, each object is self-describing, which is to say 

that a reference to its type is explicitly available from its in-memory representation. It has an identity that 

distinguishes it from all other objects, and it has memory associated with it that can store other entities 

(which may be either object references or values). While the contents of this memory may be changed, the 

identity of an object never changes. 

This book will continue to use the word ―object‖ in a very specific way rather than the general sense that 

object-oriented programming languages and programmers often do. For the purposes of this book, objects 

are values that match the criteria in the previous paragraph, which are classified as type System.Object 

in the CLI typesystem, and are used according to this type‘s specification within the CLI execution engine. 

Many Objects Make an Object 
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As you browse the source code, you will discover three files that each seem to implement object 

base classes: clr/src/bcl/system/object.cs, clr/src/vm/comobject.cpp, and clr/src/vm/object.cpp. The 

first of these, object.cs, fits together with the code in comobject.cpp to form a hybrid 

implementation of the CLI type System.Object, in which the methods marked with an 

InternalCall attribute are implemented in C++. The file named object.cpp contains the 

execution engine‘s private view of objects in a C++ class named Object. When a CLI object of 

type System.Object is created using the CIL instruction newobj, the code emitted by the JIT 

compiler causes a C++ Object to be created. Confusing, but true. 

To make things even clearer, a fourth class, CObjectHeader, can be found in 

clr/src/vm/gcsmp.cpp. This class represents the way that objects appear when they are laid out in 

the garbage collector‘s heap. 

There are many different ways to look at an ―object‖ in Rotor! 

 

Not surprisingly, the CLI component model is about objects. Objects in the Shared Source CLI 

implementation are represented at runtime by the C++ class Object, found in the filename object.h in the 

clr/src/vm directory. A quick examination of this header file reveals that Object is closely tied to the 

CLI‘s implementation details—think of objects as ―the thing represented by the System.Object class in 

the CLI‖ and you‘ll never be confused. Within the CLI environment, all object types descend from this 

special base type, whose type definition is shown here in C#: 

 

public class System.Object 

{ 

  // Constructors 

  public Object(); 

 

  // Methods 

  public virtual bool Equals(object obj); 

  public static bool Equals(object objA, object objB); 

  public virtual int GetHashCode(); 

  public Type GetType(); 

  public static bool ReferenceEquals(object objA, object objB); 

  public virtual string ToString(); 

} 

When using the CLI component model, all object types (and value types!) are descendants of 

System.Object, which means that a reference to any value can be placed into an Object reference: 

int x = 12; 

string s = "Hello"; 

Object o = x; 

System.Console.WriteLine(o.ToString()); // prints "12" 

o = s; 

System.Console.WriteLine(o.ToString()); // prints "Hello" 

Note that, as the preceding code fragments imply, each and every type within the CLI has the methods 

Equals, GetHashCode, ToString, and others defined for it—how this is possible for ―primitive 

types‖ like int is discussed later, when we talk about value types. Also note that the assignment of x to o 

causes a copy of the value 12 to be placed into o; changing the value of o doesn‘t change the original value 

of x. 

Component 

Components are the abstract units of interoperability and reuse for programmers working with languages 

that target the CLI. They are defined using types and manipulated using high-level computer languages or 

CIL. The most important aspects of components, as discussed in Chapter 1, are their packaging as 

autonomous independent units and their capability of adapting over time while maintaining type-correct 

behavior. Because of these characteristics, components are replaceable; they can be modified and 
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redeployed without requiring changes to other components with which they collaborate or to the execution 

engine. 

Since we‘ve tied up the word ―object‖ for a restricted concept (an instance of the CLI System.Object 

type), the word ―component‖ will need to serve in a more general conceptual role. To make up for the very 

specific definition of ―object‖ in the previous section, we use the word ―component‖ where other people 

might frequently say ―object.‖ We‘ll try to be as clear and consistent as possible. 

To programmers, components can be intuitively understood as ―separable units.‖ Take, for example, the 

Echo example earlier in this chapter. The component revolves around four types: an enumerated type, a 

value type, an interface, and an implementation class. Example 3-2 shows how these types can be used in 

code. 

Example Error! No text of specified style in document.-2. Using the Echo component 

 

using System; 

using SampleEcho; 

 

namespace MainSampleProgram 

{ 

  class EchoProgram 

  { 

    static void Main(string[] args) 

    { 

      Echo myEcho; 

      EchoValue[] result; 

 

      if (args.Length > 0)  

      { 

        myEcho = new Echo(args[0].ToString()); 

      }  

      else 

      { 

        throw new Exception("Hi mom!"); 

      } 

 

      // Set up an event handler and hook to component 

      Echo.EchoEventHandler handler = 

        new Echo.EchoEventHandler(CallMe); 

      myEcho.OnEcho += handler; 

 

      try 

      { 

        System.Console.WriteLine(); 

        myEcho.DoEcho(out result); 

        System.Console.WriteLine("Main program received echo!"); 

        for (int i = 0; i < result.Length; i++)  

        { 

          Console.WriteLine("{0}: {1}, {2}", i, 

            result[i].theEcho, result[i].itsFlavor); 

        } 

      } 

      catch (System.Exception e)  

      { 

        System.Console.WriteLine("Caught exception: {0}", e.Message); 

      } 

    } 

 

    static void CallMe(string msg)  

    { 

      System.Console.WriteLine(msg); 

    } 
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  } 

} 

In this example, the program creates instances of the types defined in the Echo component and works with 

them. The four types defined as part of the Echo component—IEchoer, Echo, EchoValue, and 

EchoVariation—are each declared as part of the SampleEcho namespace. The program also uses the 

Echo component as a source of notifications. The program registers the static CallMe method as the 

recipient of notifications from the Echo component, and when those notifications are received, prints the 

string that is passed as a parameter to System.Console.WriteLine, another component. 

If some of the surrounding terminology or code (events, delegates, namespaces, and so on) are unfamiliar, 

fear not—all of these terms and code will be discussed in greater detail throughout the remainder of this 

and other chapters. The key here is the difference between the overall component (Echo), and the many 

types that are used, including, but not limited to, object types. 

Note that in version 2.0 of the CLI, a new dimension was added to the type system—that of parameterized 

types or parametric polymorphism, also known colloquially as ―generics‖. While generics are certainly a 

key part of the CLI 2.0 type system, for simplicity‘s sake we defer most of the discussion of parameterized 

types and the effects it has on the type system to Chapter 6. 

Type Systems, More Formally Defined 

The role of the type system in the CLI is twofold: it provides a logically consistent and unchanging 

conceptual foundation for programmers, and it ensures that programs can be checked for correctness at 

runtime. This latter role, enforcer of typesafety, helps to prevent tampering, and is an effective way to help 

ensure a robust, stable, and secure runtime environment. It is absolutely required when building services 

and applications that combine components from many sources. 

In general, modern software engineering aims to ensure that a system behaves correctly as specified—that 

is, as its creator intended. We accomplish this through a variety of means, some formal, some less so. At 

the far end of the spectrum are powerful tools and/or methodologies, such as algebraic specification 

languages and denotational semantics. These techniques use mathematics to prove that a given program 

will behave precisely as specified. While powerful, these approaches tend to be cumbersome and awkward 

to work with and frequently require a tremendous degree of skill on the programmer‘s part. 

On the other end of the spectrum, we can put automatic checking into software tools that any programmer 

(or even nonprogrammer) can utilize—compilers, linkers, source-code analyzers, and so on. Some of these 

tools include model checkers, tools that scan finite-state systems (firmware, for example) for errors, and 

runtime monitoring, in which a system can dynamically detect when a component is misbehaving by 

comparing its behavior against the component‘s specification. By and large, however, the most popular 

mechanism is type verification. 

A system that checks (either statically or at runtime) to make sure that all types are being used correctly, as 

defined in their type descriptions, is said to be strongly typed. Strongly typed systems avoid erroneous or 

malicious computation by prohibiting operations that cannot be verified as typesafe; the ECMA 

specification contains a number of rules that define exactly what this means in the context of the CLI. 

When a component is JIT-compiled in the CLI‘s execution engine, the compiler not only produces 

executable code, but also performs verification of that code using the rules specified in the ECMA 

specification. By ensuring that all loaded components are typesafe, the execution engine provides an 

important guarantee of integrity to component programmers. 

There are many benefits to using type systems : 

Detecting errors 

This is the most obvious advantage, by which types are used to detect areas of code in which the 

programmer has inadvertently asked for incorrect behavior—making a method call on a type that 

doesn‘t exist, for example. It is better to detect this kind of error during development than at runtime, 

since you can rely on tools to do very complete checks.  



Chapter 3: Using Types to Describe Components  | 47 

Some might suggest that this compile-time perspective is outdated in the face of dynamic languages 

like Ruby or Python; in fact, these checks are not atypical of those environments as well, but occur at 

different times than in a statically-typed language. 

Maintenance 

This is an extension of error detection, in which programmers use typechecking as a powerful tool to 

support the refactoring of code. Instead of relying on programmer-centric disciplines when changing 

code to support new features or results, a programmer can simply change a type‘s definition and run 

the compiler. The compiler will find the places where the code is no longer consistent, giving the 

programmer a well-defined and precise list of what needs to be changed to support the modification. 

While this technique might arguably fall into the category of slothful engineering practice, it is 

nonetheless very common. 

Abstraction 

Strongly typed systems can enforce programmer discipline in ways that other tools simply cannot. This 

is particularly true within object-oriented systems that support inheritance (either interface-based or 

implementation-based)—when a method expects a parameter of type Person, for example, the 

typechecker enforces that only Persons, and derived types, will be accepted. This in turn gives the 

programmer a powerful means to differentiate between Persons and other types, such as Lists, 

Forms, and XmlReaders, making code clearer and more intentional. 

Again, as noted earlier, in the second version of the CLI, types were extended to support generics,  in 

which abstractions can extend to type information, allowing the compiler and tools to provide 

additional type safety and runtime optimizations. 

Documentation 

Types are also handy when reading programs, since the structure of type declarations helps offer hints 

regarding their usage and behavior. This sort of documentation is especially useful because, unlike 

comments, there is no way for it to become outdated or inaccurate. 

Efficiency 

If the type of an argument can be extracted at runtime, then optimizations can be made on that type to 

increase program speed, reduce memory footprints, or both. 

Security 

A typechecker can enforce a policy that says that types are not to be used in ways which would allow 

for malicious code to subvert the program or act in other undesirable ways. Some languages may 

choose to allow programmers to override a strict policy for the purposes of interfacing with code that is 

not typesafe; in this case, it is important to permit these programmers to make explicit assertions about 

their intentions, prove that they are authorized to make such assertions, and then include these 

assertions in the type-checking process. 

A strongly typed system can offer all of these benefits, without significant inconvenience.  

Consider again the Echo component listed in Example 3-1. Drilling in a bit, notice that the Echo object 

type contains several type members: the string field named toEcho, and the two number fields named 

echoCount and echoRepetitions. The echoCount type member is also static, which means that 

its value is shared across all instances of the component, rather than being stored on a per-instance basis. 

Of course, the Echo object type consists of type members besides its fields. There is a property named 

EchoString, a method named DoEcho, and an event named OnEcho. There is also a constructor for 

the class; constructors for both instances and classes are another important kind of type member. 

Method parameters and return values are also typed. The DoEcho method, for example, has a void return 

type and actually returns its computed results by passing them an out parameter that is an array of 

EchoValue structures. Under the covers, this out parameter is represented as a managed pointer, which 

is one of several ways that the CLI encapsulates pointers for safe use. 
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When the DoEcho method is called, the implementation raises an event after it has successfully 

manufactured the array to be passed back to its caller. Events are an interesting kind of type member that 

take advantage of another reference type called a delegate. Like managed pointers, a delegate encapsulates 

a pointer in a special-purpose way; it contains a function pointer that refers to a method for one or more 

specific component instances. When an event is raised, each instance contained in the delegate has its 

method invoked. Besides the delegate, there is another kind of reference type in this sample: the interface 

named IEchoer. Interfaces describe a set of operations that can be implemented by a component and are 

implemented by providing methods that define these operations. How reference types are used is what 

distinguishes them—delegates and interfaces, for example, can both refer to method signatures, but the 

purposes for which they were designed are very different, as we will see. 

Values, and references to them, can be woven together and accessed in many different ways. The managed 

pointer used in DoEcho, for example, encapsulates a pointer to an array, which is a reference type that 

contains values and is accessed by index rather than by name. The array itself is composed of structures, 

which are compound value types. So, in this example, the parameter is a reference type that refers to 

another reference type that contains compound value types that are themselves composed of simple values. 

This intermixing of diverse types is a powerful, yet easily understood, way for programmers to access the 

capabilities of the underlying operating system, of frameworks from many sources, and the services of the 

CLI itself. 

Types as Contracts 

Types act as contracts  between the programmer and the execution engine, through which the programmer 

can describe storage requirements, dependencies, and behaviors. Type contracts are far deeper than mere 

structure, since the CLI includes not only structural descriptions in component type information, but also 

the intermediate code needed to generate native method implementations. In addition, types specify details 

about how components will interact with the execution engine at runtime. The ECMA specification 

contains a detailed definition of the word ―contract‖ as it relates to types. The short gloss would be: 

contracts consist of concrete, well-described details of implementation that types assert they abide by. 

The execution engine can vouch for the integrity of components that it loads at runtime because of the 

presence of type contracts. Likewise, components that have no knowledge of other components‘ structure 

or behavior can depend on type contracts and related runtime mechanisms to guide their interactions. Tools, 

for example, can load and manipulate components by examining and annotating component type contracts; 

this style of programming is sometimes called meta-programming, and the actual type contracts themselves 

are represented by what is called component metadata. 

Metadata is, simply put, the data used to describe types at runtime, their behavior, and layout information 

that will be needed at runtime to load the component that they represent. Compilers and tools typically emit 

metadata by using a standard set of APIs to write to, and read from, in-memory data structures. When the 

tool wishes to save metadata, the in-memory structures are compressed and written out as binary data, 

although tools can also choose to follow the more tedious route of writing the ECMA executable file format 

directly to disk. 

Metadata is structured within the execution engine itself as named tables that are mapped either from 

secondary storage into memory or populated on the fly. These tables are fundamental to the execution 

engine, since without them, there would be no way to comprehend the type structures used in any given 

executable. The representation of metadata in the Shared Source CLI is optimized for read-only access 

because the component contract is usually used while running programs that utilize a given component 

rather than modify its structure. Load time is often the most critical optimization scenario. 

The code for the metadata system can be found in clr/src/md. There are a number of 

interesting tables, and their relationships are explained in the documentation for the 

unmanaged metadata APIs that can be found in the .NET Framework 2.0 SDK. 

Anyone who has used a relational database will feel at home while looking at the metadata implementation; 

the data itself takes the form of either heaps (for variable-length data such as strings) or tables (for fixed-
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length data such as field definitions). These heaps and tables are accessed by using persistable tokens, 

which contain a reference to a specific location within a specific table or heap. As you can see from 

Example 3-3, there are a number of different kinds of token—each has a specific role in describing the 

structure of types, and each has its own table or heap and a unique record format. 

Example Error! No text of specified style in document.-3. Types of metadata tokens (defined in 

clr/src/inc/corhdr.h) 

 

typedef enum CorTokenType 

{ 

    mdtModule               = 0x00000000,       // 

    mdtTypeRef              = 0x01000000,       // 

    mdtTypeDef              = 0x02000000,       // 

    mdtFieldDef             = 0x04000000,       // 

    mdtMethodDef            = 0x06000000,       // 

    mdtParamDef             = 0x08000000,       // 

    mdtInterfaceImpl        = 0x09000000,       // 

    mdtMemberRef            = 0x0a000000,       // 

    mdtCustomAttribute      = 0x0c000000,       // 

    mdtPermission           = 0x0e000000,       // 

    mdtSignature            = 0x11000000,       // 

    mdtEvent                = 0x14000000,       // 

    mdtProperty             = 0x17000000,       // 

    mdtModuleRef            = 0x1a000000,       // 

    mdtTypeSpec             = 0x1b000000,       // 

    mdtAssembly             = 0x20000000,       // 

    mdtAssemblyRef          = 0x23000000,       // 

    mdtFile                 = 0x26000000,       // 

    mdtExportedType         = 0x27000000,       // 

    mdtManifestResource     = 0x28000000,       // 

    mdtGenericParam         = 0x2a000000,       // 

    mdtMethodSpec           = 0x2b000000,       // 

    mdtGenericParamConstraint = 0x2c000000, 

 

    mdtString               = 0x70000000,       // 

    mdtName                 = 0x71000000,       // 

    mdtBaseType             = 0x72000000,       // 

} CorTokenType; 

When metadata is referred to within CIL or during runtime in the execution engine, it is done by using 32-

bit integers that combine a RID or a heap pointer with the CorTokenType that designates its type. 

Example 3-4 (which is defined in clr/src/inc/corhrd.h) contains the macro definitions used to access the 

two individual parts of a token, its RID, and its type. 

Example Error! No text of specified style in document.-4. The structure of a metadata token (defined in 

clr/src/inc/corhdr.h) 

 

typedef ULONG32 mdToken;           // Generic token 

 

// Build / decompose tokens. 

// 

#define RidToToken(rid,tktype) ((rid) |= (tktype)) 

#define TokenFromRid(rid,tktype) ((rid) | (tktype)) 

#define RidFromToken(tk) ((RID) ((tk) & 0x00ffffff)) 

#define TypeFromToken(tk) ((ULONG32)((tk) & 0xff000000)) 

#define IsNilToken(tk) ((RidFromToken(tk)) == 0) 

Metadata tokens are inserted directly into component CIL, and because of this, the metadata for a 

component must itself be verified as part of certifying the code as ―safe.‖ For example, method signatures 

are part of the metadata representation of a component, and these method signatures themselves are used to 

drive the code that passes parameters on the stack—if it were possible to modify the metadata, it would be 
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possible to circumvent the security mechanisms put in place by the execution engine, and the component 

model would not provide the guarantees needed for safe integration and interoperability. 

CLI metadata is also extensible. This is very important for developer tools, which need to annotate types, 

for a variety of purposes; for example, an implementation of a language that supports checked exceptions 

(as Java does) would want to annotate method metadata with the exception types thrown so that callers 

could be checked to ensure they handle those exception types. Also, tools or languages can add abstractions 

that are not natively supported by the CLI by adding custom metadata; again, a given language might 

support the concept of runtime-mutable types by marking compiled types with attributes indicating their 

mutability and providing necessary runtime constructs around those types to provide the façade of 

mutability. Custom attributes, as well as custom modifiers on signatures, are offered. 

Since type contracts are the primary way that independently developed assemblies probe and utilize each 

other‘s resources, it is desirable that the logical structure that they are capable of describing is rich enough 

to support interesting component-to-component interactions, such as event handling, inheritance, and data 

member access. 

Types and Their Behavior 

The CLI specifies a neutral instruction set, CIL, which describes component structure and behavior . CIL is 

never executed directly in the SSCLI—it must be translated into native microprocessor instructions before 

it can be used. (The instruction set was designed to be compiled before being executed, but it would be 

possible for a CLI implementation to interpret it, albeit slowly.) Example 3-5 contains a portion of the CIL 

for the DoEcho method of the Echo component. 

Example Error! No text of specified style in document.-5. Beginning of the Echo component’s DoEcho 

method in CIL 

 

.method /*06000007*/ public hidebysig newslot virtual final  

          instance void  DoEcho([out] valuetype SampleEcho.EchoValue/*02000003*/[]& 

resultingEcho) cil managed 

  { 

    // Code size       203 (0xcb) 

    .maxstack  3 

    .locals /*11000002*/ init (int8 V_0, 

             bool V_1, 

             int8 V_2) 

    IL_0000:  nop 

    IL_0001:  ldarg.0 

    IL_0002:  ldfld      string SampleEcho.Echo/*02000005*/::toEcho /* 04000008 */ 

    IL_0007:  ldnull 

    IL_0008:  ceq 

    IL_000a:  ldc.i4.0 

    IL_000b:  ceq 

    IL_000d:  stloc.1 

    IL_000e:  ldloc.1 

    IL_000f:  brtrue.s   IL_001d 

 

    IL_0011:  nop 

    IL_0012:  ldstr      "Alas, there is nothing to echo!" /* 70000001 */ 

    IL_0017:  newobj     instance void 

[mscorlib/*23000001*/]System.Exception/*0100000D*/::.ctor(string) /* 0A000008 */ 

    IL_001c:  throw 

 

    IL_001d:  ldarg.1 

    IL_001e:  ldc.i4.3 

    IL_001f:  newarr     SampleEcho.EchoValue/*02000003*/ 

    IL_0024:  stind.ref 

    IL_0025:  ldc.i4.0 

    // etc. 
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The CIL in Example 3-5 is printed using the assembler format introduced in the ECMA specification and 

generated using ildasm with the /tokens switch to display the value of metadata tokens. In this snippet, 

the tokens are printed as comments of the form /* 0n0000nn */ (in which the character n is meant to 

represent nonzero numeric digits). It shows just how many metadata tokens are typically embedded into 

CIL by language compilers. The loading of type-dependent information is completely data-driven, based on 

these tokens. 

Rather than compile nonportable constructs like offsets or addresses into the code, the metadata for the type 

is examined by the JIT compiler when it is needed by using the tokens to navigate the in-memory table 

structure. The JIT compiler decides how to map these neutral representations of the types into runtime data 

structures and compiled code when the types are needed. 

By deferring compilation decisions, types can safely be propagated from architecture to architecture in 

dormant form. The presence of complete descriptive metadata also means that the compiled code can take 

advantage of a great deal of structural information to avoid extra indirection, expense, and, most 

importantly, fragility. Cross-component binding, including such arcana as alignment and ordering, can be 

taken care of by the JIT compiler rather than being a packaging issue. Of course, the downside of this 

approach is that the code needs to be compiled every time dormant components are brought to life—this 

can be mitigated by caching, but the SSCLI does not implement such a cache. 

Type Evolution Through Versioning 

Type evolution is a key issue for all programmers. Although they might often want to deny it, at some point 

in its lifetime, a given software component invariably breaks or ceases to be useful in a changing 

environment. In time, all components must be supplemented, rewritten, or replaced. 

In the face of versioning, pre-CLI environments begin to break down. Because environments like C++ or 

Java have no explicit support for versioning in their formal model, developers are left to invent their own 

mechanism. It begins simply, usually some form of version number embedded as a string inside of the code 

in question or else as a ―version number‖ field inside of a common structure; when the class or library is 

loaded, it is the developer‘s responsibility to verify that the version that was loaded was an acceptable 

version. Unfortunately, no standardized behavior is specified, and developers are left to their own devices 

as to what should happen if the numbers don‘t match as expected. 

The story gets worse—the version number exists as part of the class, but this is static, opaque data to the 

loader. For most operating systems or execution environments, the first class or executable file to match the 

base criteria (the filename, usually) is what‘s loaded, even if multiple copies of the same file can be found 

along the loader‘s list of directories from which to load code. This leaves the developer in an even nastier 

quandary—the right file is there, but because an earlier (wrong) version is there earlier on the PATH, the 

correct version is never loaded. A developer might then diagnose the problem, put the right version into the 

right place, but then this breaks an older application that depends on the older version. 

This problem, colloquially and accurately referred to in the Windows world as ―DLL Hell,‖ essentially 

stems from a single problem: the criteria by which the operating system or execution environment loader 

selects the correct component to load are too narrow and underspecified. Only limited information is 

captured about one component‘s dependency on another, and because of this, when multiple 

implementations are present, loaders have no ability to differentiate correctly between alternative 

implementations. 

Within the CLI, this problem is addressed by taking the problem of versioning (and its associated partner, 

that of binding , or the process by which the criteria for loading a component is evaluated) to a more formal 

and complex definition. As opposed to C++, in which versioning is nonexistent and binding is left up to the 

C++ environment to handle in an ―implementation-dependent manner,‖ the CLI specifies the rules by 

which a component can declare an identifying four-part tuple: a version number, locale 

(internationalization) information, a ―strong name‖ that corresponds to a cryptographic public key, and the 

component‘s name. In addition, as we will see in Chapter 4, the CLI provides specific rules describing the 

process by which a component is evaluated as a possible candidate for loading and use by client code. 
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The issue of versioning is not one that the runtime alone can solve, however—developers must still make 

certain conscious decisions regarding type design and implementation. Programmer decisions are 

undoubtedly the largest factor in how well a type can survive versioning. 

Component Self-Description 

The fact that CLI defines components via the use of metadata, thereby making these components entirely 

self-describing, is the most important design point for the entire CLI. Much of the functionality and 

capability provided by the CLI keys off of this ability for components to stand alone, yet provide complete 

information about themselves. The ability to defer binding decisions, as discussed in the previous section, 

leads to better versioning behavior and smoother evolution. The ability to defer layout and compilation 

decisions is also important. 

Consider, if you will, two tiny programs that do the same thing, one written in C++ and one written in C#. 

Both define a Point component, presenting a traditional Cartesian (x/y) coordinate location. Code for 

both is in Example 3-6 and Example 3-7. 

Example Error! No text of specified style in document.-6. A C++ Point component 

 

class Point 

{ 

public: 

  double x; 

  double y; 

 

  Point(); 

}; 

 

Point::Point() 

  : x(0), y(0) 

{ } 

 

int main(int argc, char* argv[]) 

{ 

  Point* p = new Point; 

  p->x = 12; 

  p->y = 24; 

  return 0; 

} 

Example Error! No text of specified style in document.-7. A C# Point component 

 

public class Point 

{ 

  public double x; 

  public double y; 

} 

 

class App 

{ 

  static void Main() 

  { 

    Point p = new Point(); 

    p.x = 12; 

    p.y = 24; 

  } 

} 

Despite their source-level similarities, the compiled formats between the two are strikingly different; a C++ 

compiler might emit the x86 assembly code found in Example 3-8. 

Example Error! No text of specified style in document.-8. Assembly code for C++ Point class 
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  // Point* p = new Point; 

  // allocate the memory from ::new() 

  // and call Point::Point() 

push        10h 

call        operator new 

add         esp,4 

mov         dword ptr [ebp-0ECh],eax 

mov         dword ptr [ebp-4],0 

cmp         dword ptr [ebp-0ECh],0 

je          main+66h 

mov         ecx,dword ptr [ebp-0ECh] 

call        Point::Point 

mov         dword ptr [ebp-0F4h],eax 

jmp         main+70h 

mov         dword ptr [ebp-0F4h],0 

mov         eax,dword ptr [ebp-0F4h] 

mov         dword ptr [ebp-0E0h],eax 

mov         dword ptr [ebp-4],0FFFFFFFFh 

mov         ecx,dword ptr [ebp-0E0h] 

mov         dword ptr [p],ecx 

  // p->x = 12; 

  // x is at offset 0 (8 bytes long) from the start of p 

mov         eax,dword ptr [p] 

mov         dword ptr [eax],0 

mov         dword ptr [eax+4],40280000h 

  // p->y = 24; 

  // y is at offset 8 (8 bytes long) from the start of p 

mov         eax,dword ptr [p] 

mov         dword ptr [eax+8],0 

mov         dword ptr [eax+0Ch],40380000h 

A C# compiler produces the CIL in Example 3-9, which looks very different. 

Example Error! No text of specified style in document.-9. Synopsized CIL for the C# component in 

Example 3-7 

 

.class public auto ansi beforefieldinit Point 

       extends [mscorlib]System.Object 

{ 

  .field public float64 x 

  .field public float64 y 

} // end of class Point 

 

.class private auto ansi beforefieldinit App 

       extends [mscorlib]System.Object 

{ 

  .method private hidebysig static void  Main() cil managed 

  { 

    // Code size       38 (0x26) 

    .maxstack  2 

    .locals init (class Point V_0) 

    IL_0000:  nop 

    IL_0001:  newobj     instance void Point::.ctor() 

    IL_0006:  stloc.0 

    IL_0007:  ldloc.0 

    IL_0008:  ldc.r8     12. 

    IL_0011:  stfld      float64 Point::x 

    IL_0016:  ldloc.0 

    IL_0017:  ldc.r8     24. 

    IL_0020:  stfld      float64 Point::y 

    IL_0025:  ret 

  } // end of method App::Main 
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} // end of class App 

In particular, note that the C++ version has layout information built into the code that it produces; it 

calculated the offset of x and y from the beginning of the Point object in memory, then looked up the 

contents of memory at [p] plus the offset. If a later revision of the Point class were to change its 

declaration so that another field were added to Point and that field happened to be placed at the top of the 

class declaration rather than at the bottom, all of the offsets would change—and the client code would 

suddenly break, either plugging in bad values or crashing entirely. Likewise, if this code were deployed on 

a different microprocessor, it would not work. Abstract information about the Point class is compiled 

away, leaving no metadata for other tools or a runtime to utilize later. 

The CIL version of this code, however, doesn‘t rely on layout information being compiled into the code. 

Rather than calculating the offset in memory for the stfld instruction, a metadata token is emitted 

instead, in this case the metadata token for Point::x and Point::y. At load time, when the type 

Point is loaded, these tokens will serve as the necessary lookup points to determine precisely where in the 

layout of a Point instance the values of x and y are located. Even if Point changes its definition so that 

x and y are completely reversed, because the CLI doesn‘t depend on physical offsets, but names from the 

metadata, the client code can continue to function as before. In short, the brittleness introduced by C++ due 

to its insistence on removing all unnecessary overhead falls away and leaves you with more robust code in 

the face of changes. Because the CLI uses metadata to describe its components, types, and type members, 

no hard data that could break in a subsequent revision or use needs to be introduced—the CLI represents a 

significant step forward in the area of component adaptability. 

More on Value Types 

As has been pointed out, not everything can be a reference. Within an individual component, for example, 

there must be real data—the numbers, strings, and so on that our programs manipulate to achieve some 

useful result. Value types are the abstraction that the CLI component model uses to represent the real data 

of a program to programmers and tools. Without value types, components would be nothing but empty 

shells—without values, not much can be done. All useful computational work eventually boils down to 

working with values. 

Bytes, characters, integers (of all sizes), floating-point numbers, decimal numbers, enumerated values, and 

booleans are all value types. A value type, by ECMA Specification definition (Partition I, 7.2.1), is 

―represented as a sequence of bits‖—in other words, values are actual data rather than an address to a 

location that contains data. 

An instance of a value type can be used as a field of a type, as a parameter, as a method return value, or as a 

variable. When allocated as part of an object or within an array, the value lives within the object on the 

heap. When declared as a variable or used as a parameter, value types live on the stack. When passed as a 

parameter to a method, by default, a copy, rather than the address, of the value type is created and sent to 

the recipient of the method; in short, value types are passed by value. Example 3-10 shows a C# declaration 

from the Echo component that uses both a reference type (string) and a value type (the 

EchoVariation enumeration). 

Example Error! No text of specified style in document.-10. A compound value type from the Echo 

component 

 

public struct EchoValue  

{ 

    public string theEcho; 

    public EchoVariation itsFlavor; 

} 

As this sample shows, value types can be grouped together into compound values—in C#, this is done 

using the struct keyword. Since we are dealing with ―real data,‖ value types have features that can be 

used for interop with data structures that already exist—it is possible to designate with great precision how 
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to lay out a value type in memory, both in terms of ordering and alignment. In general, developers will not 

want or need to do this—layout is something best left to the JIT compiler unless interop with unmanaged 

code is needed, but it is definitely possible to take fine-grained control over this. (To be complete, it should 

be mentioned that it is possible to do explicit layout for nonvalue types, but value types are by far and away 

the most common use for this feature.) 

You can define values to act as representatives from a bounded set of choices; in many programming 

languages, these are called enumerated types . In practical terms, enumerated types are used to offer a 

strongly typed set of values, possibly in the form of a bitmask; in the case of the Echo component in 

Example 3-1, the component wishes only to provide three levels of volume: Louder, Softer, and 

Indistinct (which we presume to be more quiet than Softer—we‘re assuming that it‘s not indistinct 

because we‘ve gone deaf listening). While it certainly would be possible to describe the volume of the echo 

using integer values (perhaps using decibels as the units of measurement?), this isn‘t always a practical or 

preferred design approach. Within the CLI, enumerations are always a value type, backed by a built-in 

integral (that is, non-floating point) value type for storage, which is included in an enum‘s metadata. 

Working with Values 

There are two principal issues with which developers working with the CLI must be acquainted: the 

concept of type coercion and conversion, and the process by which a value can be given reference 

semantics where necessary or desired, called boxing (and its reverse operation, unboxing). 

Coercion and conversion 

Frequently, when working with values, the need to ―convert‖ a value of one size or format into a value of a 

different size or format arises—for example, you may want to convert a character value into a 4-byte 

integer representing the Unicode character code for that character, or you may want to take a 4-byte integer 

value and store it in a floating-point value, most likely in preparation for performing floating-point 

arithmetic on that value. 

Therefore, it‘s both desirable and necessary to provide rules by which a value of one value type can be 

converted to another type: this is known as coercion. Formally, ―coercion takes a value of a particular type 

and a desired type and attempts to create a value of the desired type that has equivalent meaning to the 

original value.‖
2
 In more practical language, compilers insert coercion operations when a value of one type 

is assigned to a storage location that has a different type, as in Example 3-11. 

Example Error! No text of specified style in document.-11. Safe implicit type coercion 

 

int x = 24; 

long y; 

y = x; // coercing x from 32 bits to 64 bits 

In this example, the 32-bit value stored in the location named x is being extracted, a 64-bit value is created, 

assigned 24, and stored back into the location named y. The two values are of different types, even though 

they have equivalent meanings. (Also note that the two values are equivalent, even though they are not 

identical.) 

Within the CLI, two types of coercion are discussed. Widening coercion occurs when a value is assigned to 

a value type that is larger than the original type, such as storing a 32-bit signed integer into a 64-bit signed 

integer location. Narrowing coercion is when the reverse takes place: storing a 32-bit signed integer into a 

16-bit signed integer location. The former, as in Example 3-11, is usually a benign operation—no 

information is lost, since the value can be represented completely using the smaller of the two types. The 

latter, in Example 3-12, is dangerous, since it might result in loss of information. 

 

Example Error! No text of specified style in document.-12. Dangerous narrowing coercion 

                                                           
2 Partition I, 7.3.2. 
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System.Int32 x = 32000; 

System.Byte y; 

y = (System.Byte)x; // coercing x from 32 bits to 8 bits, with info loss 

 

int x2 = 32000; 

byte y2; 

y2 = (byte)x2;      // same dangerous conversion as above; synonymous with above 

Narrowing coercion will sometimes result in a loss of information—if the 32-bit integer stores a value that 

cannot be represented in 8 bits of information, for example, then the assignment will result in a different 

value than the original. For this reason, narrowing coercion operations are usually required to be explicitly 

coded by the programmer (usually through a cast or similar operation), whereas widening coercions can be 

implicitly (and safely) done by the language itself. The CLI provides the ability to check for narrowing 

coercions that lose information and throw a System.OverflowException at runtime when they 

occur. 

Boxing/Unboxing 

By default, when an instance of a value type is passed from one location to another as a method parameter, 

it is copied in its entirety. At times, however, developers will want or need to take the value type and use it 

in a manner consistent with reference types. In these situations, the value type can be boxed: a reference 

type instance will be created whose data is the value type, and a reference to that instance is passed instead. 

Naturally, the reverse is also possible: taking the boxed value type and dereferencing it back into a value 

type—this is called unboxing. 

CIL‘s box instruction is a typesafe operation that converts a value type instance to an instance of a 

reference type that inherits from System.Object. It does so by making a copy of the instance and 

embedding it in a newly allocated object. For every value type defined, the type system defines a 

corresponding reference type called the boxed type. The representation of a boxed value is a location where 

a value of the value type may be stored—in essence, a single-field reference type whose field is that of the 

value type. Note that this boxed type is never visible to anyone outside the CLI‘s implementation—the 

boxed type is silently generated by the CLI itself, and is not accessible for programmer use. (It is purely an 

implementation detail that would have no real utility were it exposed.) 

In the Echo example component, there is a single place where a box instruction is generated by the C# 

compiler, which is highlighted in the excerpt in Example 3-13. 

Example Error! No text of specified style in document.-13. An excerpt from the Echo component 

 

if (OnEcho != null) { 

  OnEcho(System.String.Format("Echo number {0}", echoCount)); 

} 

If you‘re hard-pressed to spot the boxing operation in this line of code, it‘s because it occurs implicitly in 

C#. In fact, the operation is implicit in most languages, much as widening coercions can be. This code 

snippet, deep in the DoEcho method, contains a call to String.Format, which is a method whose 

implementation takes a variable number of arguments, each of unknown type. To make this work, 

parameters are specified to be as generic as possible; they are typed as System.Object. When the 

method is called, the parameters take on more specific types, which results in them being cast (or boxed) to 

the ultimate base class, System.Object. Because echoCount is declared as an int, which is a value 

type, echoCount will be boxed before being passed to the Format method. The Format method 

invokes ToString on what appears to be an object, but the runtime looks up and invokes 

System.Int32‘s ToString virtual method dynamically. (If you want to see the box operation for 

yourself, run ildasm against the echo.dll executable and examine the CIL for this method.) 

With the release of the CLI 2.0 Specification, Nullable Types entered the CLI lexicon, and nullability (if 

such a word can be coined) creates some interesting changes for value types during JIT compilation. In 

particular, nullable types extends the value type system allowing value types to hold the value ―null‖, 

normally reserved only for reference values. Example 3-14 shows this in action: 
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Example Error! No text of specified style in document.-14. Implementation of the box instruction 

(simplified from clr/src/vm/jithelpers.cpp) 

 

public void NullableExample() 

{ 

  int exampleValue = 36; 

  object nullableRef = null; 

 

  // Do some nullable fun stuff 

} 

This presents some interesting complications for the type system and the JIT compiler—most notably, only 

certain types are allowed to ―go null‖, as it were, and the JIT compiler must determine if a given type is 

permitted to do this or not. 

Example 3-15 shows how boxing is performed within the execution engine. When the JIT compiler 

encounters the box instruction in the stream of opcodes currently being compiled, it first determines if the 

boxed type is nullable, and follows by a call to the JIT_Box function, shown below.  

Example Error! No text of specified style in document.-15. Implementation of the box instruction 

(simplified from clr/src/vm/jithelpers.cpp) 

 

Object* JIT_Box(CORINFO_CLASS_HANDLE type, void* unboxedData) 

{ 

    TypeHandle clsHnd(type); 

    MethodTable *pMT = clsHnd.AsMethodTable(); 

    pMT->CheckRestore(); 

 

    // You can only box things that inherit from valuetype or Enum. 

    if (!pMT->IsValueType() && !pMT->IsEnum()) 

        COMPlusThrow(kInvalidCastException, L"Arg_ObjObj"); 

 

    newobj = pMT->FastBox(&unboxedData); 

 

    return(OBJECTREFToObject(newobj)); 

} 

 

OBJECTREF MethodTable::FastBox(void** data) 

{ 

    if (Nullable::IsNullableType(TypeHandle(this))) 

        return Nullable::Box(*data, this); 

 

    OBJECTREF ref = Allocate(); 

    CopyValueClass(ref->UnBox(), *data, this, ref->GetAppDomain()); 

    return ref; 

} 

 

In this code, an object is allocated using FastBox, which checks to see if the value type is nullable or not. 

Assuming the value type is not nullable, FastBox calls CopyValueClass, which is a simple wrapper 

for CopyValueClassUnchecked, shown in Example 3-16. It is notable because it uses layout 

information to copy actual values into the object instance; this layout information was computed from the 

type‘s metadata when the type was loaded by the execution engine. 

Example Error! No text of specified style in document.-16. Implementation of 

CopyValueClassUnchecked (simplified from clr/src/vm/object.cpp) 

 

void CopyValueClassUnchecked(void* dest, void* src, MethodTable *pMT) 

{ 

    switch (pMT->GetNumInstanceFieldBytes()) 

    {         
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    case 1: 

        *(volatile UINT8*)dest = *(UINT8*)src; 

        break; 

    case 2: 

        *(volatile UINT16*)dest = *(UINT16*)src; 

        break; 

    case 4: 

        *(volatile UINT32*)dest = *(UINT32*)src; 

        break; 

    case 8: 

        *(volatile UINT64*)dest = *(UINT64*)src; 

        break; 

    default: 

        memcpyNoGCRefs(dest, src, pMT->GetNumInstanceFieldBytes()); 

        break; 

    } 

 

    // Tell the GC about any copies.   

    if (pMT->ContainsPointers()) 

    {    

        CGCDesc* map = CGCDesc::GetCGCDescFromMT(pMT); 

        CGCDescSeries* cur = map->GetHighestSeries(); 

        CGCDescSeries* last = map->GetLowestSeries(); 

        DWORD size = pMT->GetBaseSize(); 

        do                                                                   

        {    

            // offset to embedded references in this series must be 

            // adjusted by the VTable pointer, when in the unboxed state. 

            size_t offset = cur->GetSeriesOffset() - sizeof(void*); 

            OBJECTREF* srcPtr = (OBJECTREF*)(((BYTE*) src) + offset); 

            OBJECTREF* destPtr = (OBJECTREF*)(((BYTE*) dest) + offset); 

            OBJECTREF* srcPtrStop = (OBJECTREF*)((BYTE*) srcPtr + cur-

>GetSeriesSize() + size);          

            while (srcPtr < srcPtrStop)                                          

            {    

                SetObjectReferenceUnchecked(destPtr, 

ObjectToOBJECTREF(*(Object**)srcPtr)); 

                srcPtr++; 

                destPtr++; 

            }                                                                

            cur--;                                                               

        } while (cur >= last);                                               

    } 

} 

The code automating the copy is fairly straightforward, thanks to the presence of metadata. Contiguous 

instance data is copied from the value type into the object instance based on the number of ―instance field 

bytes.‖ Note that the grungy details of garbage collection must be dealt with; this will be discussed much 

more deeply in Chapter 9. 

unbox is a CIL instruction that corresponds to box. It converts an object whose runtime type has been 

boxed (which is possible only via the box instruction—again, it‘s impossible to directly create a boxed 

type) back to an instance of a value type. Example 3-17 shows the code for the JIT_Unbox function. 

Example Error! No text of specified style in document.-17. Implementation of the unbox instruction 

(Simplified fromclr/src/vm/jithelpers.cpp) 

 

LPVOID JIT_Unbox(CORINFO_CLASS_HANDLE type, Object* obj) 

{ 

    TypeHandle typeHnd(type); 

  

    RuntimeExceptionKind except; 

    if (obj != 0) { 
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        if (obj->GetMethodTable() == typeHnd.AsMethodTable()) 

            return(obj->GetData()); 

        else { 

              LPVOID ret = JIT_Unbox_Helper(type, obj); 

            if (ret != 0) 

                return(ret); 

        } 

        except = kInvalidCastException; 

    } 

    else 

        except = kNullReferenceException; 

 

    FCThrow(except); 

} 

When an unbox instruction is encountered, a call to the JIT_Unbox function is emitted by the JIT 

compiler. Not surprisingly, the JIT_Unbox function takes the object passed to it and unwraps the data 

contained in the instance using the GetData method. JIT_Unbox_Helper is a simple function that 

encapsulates conversion between primitive types and enums. 

More on Reference Types 

Reference types tie computational behavior directly to their heap-allocated state. There are three important 

classifications of reference types within the CLI: objects, interfaces, and encapsulated pointers, each of 

which can be found within the Echo component of Example 3-1. Enumerating these elements, the Echo 

class itself is an object type that implements an interface, contains a delegate, and uses a managed pointer 

to pass an out parameter. 

CLI 2.0 introduced parameterized types into the CLI type system, meaning that now the 

CLI recognizes a fourth type of reference type, the TypedReference, wherein the 

reference itself is type-constrained by a type established at instantiation (rather than in the 

type‘s definition). As noted above, we will have more to say on parameterized types and 

generics in Chapter 6, so for now we will focus on the non-generic parts of the SSCLI. 

General Principles 

Recall that the definition of a value type is tied to its data, which are types that are ―represented as a 

sequence of bits.‖ The location of the value‘s data is directly embedded into a value type instance. 

Conversely, a reference type ―describes values that are represented in the location of a sequence of bits,‖ 

according to the ECMA specification. A reference type‘s value data is never manipulated directly by clients 

but is always accessed indirectly, through a proxy that has certain type safety properties around it, also 

known as a reference. 

A reference is essentially a small piece of memory that points to the actual location of the reference type—

in many ways, it‘s fair to think of the reference as a pointer. However, references have several advantages 

over pointers in the classic C/C++ sense: 

References are strongly-typed 

An object instance cannot be assigned to a reference unless it is assignment-compatible; this means a 

programmer cannot assign a Person object to a Department reference unless the type Person 

inherits from Department (an unlikely scenario). 

References cannot be incorrectly assigned 

A reference cannot point to a memory location that is not occupied by an object of that specific (or 

compatible) type; similarly, a reference cannot be ―manufactured‖ to point to an arbitrary location in 

memory. 
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References cannot dangle 

As long as a reference points to an object, that object cannot be deallocated. Therefore, a reference will 

always either be good or null, which is a reference literal value that points nowhere. 

These tie into another aspect that separates reference types from value types. With a value type, because the 

instance of the value type is the data in question (remember, a value type is ―represented as a sequence of 

bits‖), allocation of a value type occurs as soon as the value type is declared within the code: 

struct Size 

{ 

  public int x; 

  public int y; 

} 

 

class App 

{ 

  static void Main() 

  { 

    Size s1, s2; 

    int diff; 

 

    diff = s1.x - s2.x; 

  } 

} 

As soon as s1 and s2 are needed for the computation of diff, the compiler allocates enough memory to 

represent them, in this case on the method‘s stack. On the other hand, in many programming languages, 

objects (instances of reference types), must be allocated in a distinct operation using object-specific syntax. 

For example, the code below creates only a reference for s, without creating an object instance for it: 

class Size 

{ 

  public int x; 

  public int y; 

} 

 

class App 

{ 

  static void Main() 

  { 

    Size s; 

  } 

} 

Creating the actual object would require the explicit use of the new operator: 

class App 

{ 

  static void Main() 

  { 

    Size s = new Size(); 

  } 

} 

Similarly, in this code, only one object exists, even if it is referenced by two references: 

 

    class App 

    { 

      static void Main() 

      { 

        Size s = new Size(); 

        Size t = s; 

      } 
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    } 

Observant readers will notice that in none of these code samples is there any mention of deallocation of the 

object pointed to by s. This is because, as we have seen, the CLI is a garbage-collected system—the CLI 

itself takes responsibility for the deallocation and destruction of objects allocated during the CLI‘s lifetime. 

This is also how the CLI guarantees that a reference will never dangle—it ensures that as long as one 

reference to an object exists from reachable code, the object will continue to exist, as well. (How this works 

will be explored in Chapter 9.) 

Interfaces 

An interface, unlike other reference types, is simply a contract, guaranteeing that certain behavior must be 

present on any type that implements it. It provides a strongly typed definition, stipulating that if the type is 

to be usable, the interface‘s entire promised contractual behavior will be completely implemented on any 

concrete object instance whose type claims to implement it, or else either compilation would have failed, or 

in the rare case where the compiler can be hookwinked, the runtime will. For example, the Echo 

component defines an interface, IEchoer, which promises, in this case, that the component will 

implement a single method called DoEcho which returns void and sets the output parameter 

resultingEcho to some value: 

public interface IEchoer  

{ 

  void DoEcho(out EchoValue[] resultingEcho); 

} 

Any implementation of IEchoer must therefore have a DoEcho method that matches this signature. 

Should a type implement IEchoer and fail to provide a DoEcho method, that type must be marked abstract 

(indicating that it cannot be instantiated) or compilation fails.  

The use of interfaces is at once both obvious and subtle. On the surface, an interface provides a simple 

mechanism to guarantee that implementers will provide known methods and a known IS-A relationship 

chain. More subtly, an interface provides the ability to partition types into categories of related 

functionality—of all types in the system, those that can echo messages should in turn implement the 

IEchoer interface, all types that can compare instances of themselves against other instances of other 

types should implement the IComparable interface, and so on. 

Interfaces can define any member type, including properties, methods, and events: 

interface IPerson  

{ 

  string FirstName  

  { 

    get; set; 

  } 

  string LastName  

  { 

    get; set; 

  } 

 

  void Eat(); 

} 

This interface specifies that any type that wishes to provide ―person-like‖ behavior must provide two string 

properties—one called FirstName, one called LastName—and a method matching the Eat signature. 

The fact that the CLI provides the ability to specify interfaces as more than just methods is a very useful 

semantic detail and is worth examining in more detail. Historically, interfaces in other languages 

(specifically, C++ and Java) have provided contracts for all three elements as method declarations on an 

interface—that is, state is represented as accessor and mutator, also known as getter and setter methods; 

behavior is represented as nonstate-related methods; and notification involves a callback interface that 

interested client components must implement somehow. In code, this can be boiled down as such: 
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/* 

 * Fictitious C++ RS-232 Serial Port component class; to make 

 * this an "interface" in C++, these would be pure virtual 

 */ 

class SerialPort 

{ 

public: 

  SerialPort(); 

  ~SerialPort(); 

 

  // State methods 

  // 

public: 

  // Getter/setter for the baud rate on the serial port 

  // 

  int getBaud(); 

  void setBaud(int newBaudValue); 

 

  // Flow control state 

  // 

  bool getFlowControl(); 

  void setFlowControl(int newFlowControlValue); 

 

  // Behavior methods 

  // 

public: 

  void send(int data); 

  int read(); 

 

  // Notification methods 

  // 

public: 

  class Callback 

  { 

  public: 

    // Called when data is ready to be read 

    // 

    virtual void onDataReady() = 0; 

  }; 

 

  void registerListener(const Callback& listener); 

  void removeListener(const Callback& listener); 

}; 

Java code can be similarly imagined. The key here is that the interface‘s contract can be expressed using 

only method declarations and definitions, even though the method calls aren‘t particularly expressive of the 

intent. The state methods, for example, are reflected as nothing more than methods in the metadata, as are 

the behavioral methods and the notification methods. In short, only by examining the naming patterns 

(―getters and setters‖, as they are colloquially known in Java) of the method names can you ascertain what 

the intent of the interface is. 

Within the CLI (again, using C# as the language), the interface can be coded more clearly and intentionally: 

 

public interface SerialPort 

{ 

  public int Baud 

  { 

    get; 

    set; 

  } 

 

  public bool FlowControl 
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  { 

    get; 

    set; 

  } 

 

  public void send(int data); 

  public int read(); 

 

  public delegate void DataReadyDelegate(); 

  public event DataReadyDelegate OnDataReady; 

} 

Here, the intent of each is much clearer, but more importantly, the intent is fully captured in metadata, 

again making SerialPort entirely self-descriptive: any tool, from a compiler to a code-generation tool, 

will have full awareness of the fact that Baud and DataReadyDelegate are state of the serial port 

component, while things like send and OnDataReady are behavioral—no convention involving method 

names is required. 

Delegates and Managed Pointers 

Delegates and managed pointers are both encapsulated pointers, which are reference types that augment an 

internal reference with additional information to enable unique CLI features. Take, for example, the 

references to code that are called function pointers. 

Function pointers are supported as a first-class construct by the CLI. However, function pointers, used to 

refer to a method of an object, are not enough to capture the locations of both the method code and the 

object‘s instance data. Because the need to capture both locations together is very common in object-

oriented code, to represent events and for the purpose of passing callback functions as method parameters, 

the designers of the CLI invented delegates  for this purpose.  

Delegates are essentially the object-oriented equivalent of function pointers (more specifically, they are a 

special kind of closure), and as you can see from Example 3-18, they bundle a method pointer and a 

reference to a specific object instance, into a single type. 

Example Error! No text of specified style in document.-18. The elements of a delegate (defined in 

clr/src/bcl/system/delegate.cs) 

 

public abstract class Delegate : ICloneable, ISerializable 

{ 

  // _method is the MethodInfo representing the target 

  private IntPtr _methodPtr; 

 

  // _target is the object we will invoke on 

  private Object _target; 

 

  // In the case of a static method passed to a delegate, this field stores 

  // whatever _methodPtr would have stored: and _methodPtr points to a 

  // small thunk which removes the "this" pointer before going on 

  // to _methodPtrAux. 

  internal IntPtr _methodPtrAux; 

 

  // additional implementation omitted 

Because the delegate contains an object reference, it can rely on the metadata for this object to maintain 

typesafety at runtime. Note that the class is abstract—the Delegate class is used to derive other delegate 

types, most notably the MulticastDelegate that is used to implement events in the CLI. 

Managed pointers might be a little harder to understand than delegates, although they work under a similar 

principle. (And unless you are one of the lucky readers who are building compilers, you‘ll probably never 

need to understand the details.) There are a number of places where compilers and development tools need 

to work with pointers directly—for example, when they are allocating new chunks of memory. However, 
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the execution engine needs to preserve typesafety at all times and, because of this, cannot pass pointers 

directly to the compiler. To solve this problem, a mechanism similar to delegates is used—a ―raw‖ pointer 

is stored alongside type information that enables the JIT to verify that the pointer will be used properly and 

to create code accordingly. 

There are a number of CIL instructions that result in pointer manipulation that are informed by metadata in 

this way, including the box.any and unbox.any instructions, allocation-related instructions such as 

newarr and newobj, and more esoteric instructions such as mkrefany. 

An implementation that shows this technique is the value type TypedReference, seen in Example 3-19. 

Note that both the pointer (which is somewhat confusingly called Value in this code) and the type 

information are stored generically in integers. At this level of implementation, the execution engine has no 

abstractions to fall back on—the ugly details of mapping are exposed directly. 

Example Error! No text of specified style in document.-19. The elements of a typed reference (from 

clr/src/bcl/system/typedreference.cs) 

 

public struct TypedReference 

{ 

  private IntPtr Value; 

  private IntPtr Type; 

 

  // additional implementation omitted 

A managed pointer is used in the Echo component in Example 3-1 to represent the ―out‖ parameter to the 

DoEcho method. If you examine the CIL and the metadata for the component, you will find that a stack 

location is allocated, into which the newarr opcode places a newly allocated instance of an array of value 

types. This array is then filled with return values and is available on the heap until all references to it are 

dropped, at which point it becomes available for garbage collection. 

The key to managed pointers, delegates, and all other encapsulated pointers is that they are opaque. Since 

their inner data contents are not accessible, and since their implementations are completely contained 

within the code implementing the CLI, the execution engine can guarantee that their use is safe despite the 

fact that their use equates to manipulating addresses directly. 

Identity and Equality for Reference and Value Types 

As part of a discussion of type, we should examine the difference between object identity and object 

equality. Tests for both identity and equality are used throughout the Rotor CLI implementation. Of the 

two, identity is particularly important, being found in many of the runtime services such as code access 

security and garbage collection. 

Identity is a property of an object‘s location—the memory address at which the object‘s data is located 

describes the value‘s identity, rather than the data contained at that address. Equality, on the other hand, is a 

measure of the value‘s contents—the data for two objects, rather than their locations, determines whether 

they are equal. This implies that two values that are identical must also be equal, but the reverse does not 

necessarily hold. For example, consider this snippet of C#: 

System.Object A, B, C, D; 

A = "A string"; 

B = A; 

C = "A string"; 

D = "A different string"; 

Figure 3-1 shows the results schematically. 
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Figure Error! No text of specified style in document.-5. Identity versus equality 

A and B, since their data share the same location, are identical, as well as equal. A and C, although their 

data are in different locations, both contain bitwise matching data, and therefore they are equal, even 

though they aren‘t identical. Finally, A and D, having unmatched data in different locations, are neither 

identical nor equal. 

Within the CLI, the properties of identity and equality are provided via two methods on the base 

System.Object type: ReferenceEquals, which provides identity comparison capabilities, and 

Equals, which provides equality comparison. Since the Equals operation is heavily dependent on the 

semantics of a given component, it is not unusual for its behavior to be replaced or augmented in derived 

types. Identity, on the other hand, is a simple test that rarely needs to be overridden. Both Equals and 

ReferenceEquals may sometimes be mapped to operators in programming languages, although this is 

purely in the hands of the language‘s designers. 

The code used to implement Equals and ReferenceEquals for System.Object should help drive 

home the difference between equality and identity. First, Example 3-20 is the simple, one-line C# method 

that compares two references to determine whether they represent the identical object. 

Example Error! No text of specified style in document.-20. ReferenceEquals tests for identity (defined in 

clr/src/bcl/system/object.cs) 

 

public static bool ReferenceEquals (Object objA, Object objB) { 

  return objA == objB; 

} 

Identity is easy to test for! (Assuming that no sneaky programmer has overridden the equality operator... ) 

Equality, on the other hand, is trickier. Example 3-21 shows the generic test that is the default behavior for 

managed objects in the CLI. (Note that the implementation of this object method is C++ code rather than 

C#.) 

Example Error! No text of specified style in document.-21. Object’s equality test (simplified from 

clr/src/vm/comobject.cpp “internal call” implementation) 

 

BOOL ObjectNative::Equals(Object *pThisRef, Object *pCompareRef) 

{ 

     if (pThisRef == pCompareRef)     

        return TRUE; 

 

    // Since we are in FCALL, we must handle NULL specially. 

    if (pThisRef == NULL || pCompareRef == NULL) 

        return FALSE; 

 

    MethodTable *pThisMT = pThisRef->GetMethodTable(); 
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    // If it's not a value class, don't compare by value 

    if (!pThisMT->IsValueClass()) 

        return FALSE; 

 

    // Make sure they are the same type. 

    if (pThisMT != pCompareRef->GetMethodTable()) 

        return FALSE; 

 

    // Compare the contents (size - vtable - sink block index). 

    BOOL ret = memcmp( 

        (void *) (pThisRef+1),  

        (void *) (pCompareRef+1),  

        pThisRef->GetMethodTable()->GetBaseSize() - sizeof(Object) - sizeof(int)) == 

0; 

 

    return ret;  ; 

} 

The code first checks for identity—if the two object references passed as arguments are identical, they will 

always be equal. If they are not identical, additional tests are performed to make sure that the objects being 

compared are values of the same type, since values of differing types cannot equal each other. As stated 

previously, reference types can certainly test for equality, but to do this, a type must replace the default 

implementation found in Object, which implements equality only for value types. Eventually, if all tests 

are passed, the contents of the two objects are compared directly, and if they match, the two values are 

determined to be equal. 

Type Interoperability 

Because the CLI type system regards interoperability with native code as an important goal, CLI consumers 

can expose their own component frameworks or unique features of an underlying operating system without 

compromise. Unlike execution environments that claim to provide ―write once, run anywhere‖ facilities, 

the CLI was designed to augment existing system abstractions with its type system rather than fully 

duplicate such facilities in a new layer. To implement this approach, it follows that CLI types must not only 

be consistent among themselves, but must also be capable of representing the complete set of native 

constructs provided by the underlying system and microprocessor, and of using these constructs within its 

component model. 

Built-in Types 

Built-in types are perhaps the simplest form of type interoperability to understand: they are directly 

understood by the CLI execution engine, and have obvious value type equivalents. For example, the built-

in type System.Int32 represents a 4-byte signed integer. These types are commonly mapped directly to 

types that the microprocessor implements in hardware by a given CLI implementation. In the ECMA 

specification, these mappings and the semantics associated with them are termed the ―virtual execution 

system.‖ 

The actual constants used to represent built-in types within the JIT compiler are shown in Example 3-22. 

Example Error! No text of specified style in document.-22. The map used to convert abstract CLI types 

into processor-specific types (defined in clr/src/vm/jitinterface.cpp) 

 

static const BYTE map[] = { 

 CORINFO_TYPE_UNDEF, 

 CORINFO_TYPE_VOID, 

 CORINFO_TYPE_BOOL, 

 CORINFO_TYPE_CHAR, 

 CORINFO_TYPE_BYTE, 

 CORINFO_TYPE_UBYTE, 
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 CORINFO_TYPE_SHORT, 

 CORINFO_TYPE_USHORT, 

 CORINFO_TYPE_INT, 

 CORINFO_TYPE_UINT, 

 CORINFO_TYPE_LONG, 

 CORINFO_TYPE_ULONG, 

 CORINFO_TYPE_FLOAT, 

 CORINFO_TYPE_DOUBLE, 

 CORINFO_TYPE_STRING, 

 CORINFO_TYPE_PTR,            // PTR 

 CORINFO_TYPE_BYREF, 

 CORINFO_TYPE_VALUECLASS, 

 CORINFO_TYPE_CLASS, 

 CORINFO_TYPE_VAR,            // VAR (type variable) 

 CORINFO_TYPE_CLASS,          // ARRAY 

 CORINFO_TYPE_CLASS,          // WITH 

 CORINFO_TYPE_REFANY, 

 CORINFO_TYPE_VALUECLASS,     // VALUEARRAY 

 CORINFO_TYPE_NATIVEINT,      // I 

 CORINFO_TYPE_NATIVEUINT,     // U 

 CORINFO_TYPE_DOUBLE,         // R 

  

 // put the correct type when we know our implementation 

 CORINFO_TYPE_PTR,            // FNPTR 

 CORINFO_TYPE_CLASS,          // OBJECT 

 CORINFO_TYPE_CLASS,          // SZARRAY 

 CORINFO_TYPE_VAR,            // MVAR 

  

 CORINFO_TYPE_UNDEF,          // CMOD_REQD 

 CORINFO_TYPE_UNDEF,          // CMOD_OPT 

 CORINFO_TYPE_UNDEF,          // INTERNAL 

}; 

In addition to the basic types one would expect to see in this list, void, bool, char, and various sizes of 

floating-point and integral numbers, the CLI also defines several other built-in types that carry additional 

structure or semantics. OBJECT, arrays, strings, and VALUECLASS aren‘t too surprising, along with the 

several flavors of CLASS, since these are important fundamentals for the component model. The natively 

sized flavors of integers, and floating-point numbers that take on whatever word size the underlying 

hardware‘s CPU uses, are also to be expected. 

More interestingly, there are several varieties of pointer that show up in this map: function pointers, 

BYREF, PTR, and REFANY. Pointer types are fully supported by the CLI, despite the fact that they can 

cripple the advantages of typesafety. The CLI both provides a broad set of types to work with and the rules 

of engagement—in this case, ―don‘t use pointers unless you understand that your code will not be 

verifiably typesafe, and because of this, you will be completely responsible for maintaining typesafety in 

place of the CLI execution engine.‖ To use trusted code within the CLI implementation that manipulates 

addresses and interoperates with unmanaged code, pointers must be called out as a special case or else 

represented like any other primitive type. The designers of the CLI opted for the single mapping, which had 

the side effect of greatly enhancing interoperability—in many cases, well-defined pointers can be used 

within typesafe code. For example, function pointers to methods are used extensively and exposed as 

delegates. Typed references and managed pointers are additional typesafe constructs that are available to 

compiler writers. 

All of the types in Example 3-22 form the backbone of the CLI type system, since to be useful, the CLI 

must ultimately translate abstract types and their behavior into native instructions, datatypes, and data 

layouts represented by addresses and offsets. This list is used by the internals of the CLI and is never 

exposed directly to consumers, who see CLI runtime services, CIL and metadata, or interoperability 

facilities in their place. 
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Wrapper Classes, Marshaling, and Interop 

An interoperability requirement that makes a good sample case is the use of opaque handles in APIs. 

Opaque handles are forms of names. They are pointers or indexes to data whose structure is not meant to be 

visible to the clients of a programming API, but is important internally to that API. Handles are dispensed 

to clients to track resources that belong to the API‘s implementation; they are stored and returned to other 

runtime routines as parameters by clients when they need to programmatically refer to the original 

resource. Because handles are often used to represent operating-system entities, the CLI needs to be able to 

interact with and use them without intrinsic knowledge of the structure of the resources that they represent. 

In this case, how should typed abstractions like handles (or semaphores, or ...) be represented in the CLI? 

The usual approach has been to enable call-level interop so that API calls can be embedded directly into 

―wrapper classes,‖ which themselves can be managed code. This kind of use places additional requirements 

on the runtime services used by components—explicit layout of memory regions must be possible, 

finalization becomes important during garbage collection for cleanup, exception mechanisms need to 

coexist peacefully, threading and thread sensitivity must be recognized... the list goes on and on. A 

discussion of this kind of interop will be found in the chapters on extending the SSCLI. From the 

perspective of types, low-level resources can be represented as managed pointers, callbacks, or components 

themselves. Much more will be said about these techniques later. 

Wrapped APIs and value types are clearly essential for programming languages that do 

not support components. A major design point for the CLI is enabling a language 

agnostic approach—just because this book concentrates on the component model, this 

point should not be lost. Classes that are not instantiable and have only static methods, 

for example, make great wrappers; the component model can accommodate these cases. 

The ECMA specification has an extensive and more formal discussion of its typesystem 

in its sections on the Common Language Specification and the Common Type System. 

Using Types in Data-Driven Code 

Earlier, in the section entitled ―Type, Object, and Component‖, we saw how the loading and compilation 

process of the CLI is data-driven, with many decisions made by examining embedded metadata tokens at 

the last possible moment. This technique is not limited to the JIT compiler—it can be used by custom 

programs as well. The use of type information to drive program decisions is called introspection or 

reflection—the component‘s code is reflecting on its own structure and making decisions based on this 

information. 

Programs with sufficient permissions can create, manipulate, and examine type metadata, either from 

managed code (using the System.Reflection family of types) or from unmanaged code (using the 

unmanaged APIs described in clr/src/inc/metadata.h that are outside the CLI specification). Type 

descriptions can be used to defer decisions until runtime, enabling looser linkages between components and 

more robust load-time adaptations. 

This last point deserves a bit more in the way of explanation—specifically, the idea of using component 

metadata to promote looser coupling between components may be a new concept for many. Consider, for a 

moment, a desire to take an existing in-memory object instance and save its current state to some secondary 

storage stream (e.g., the filesystem, or sent as part of an HTTP request, or even to a binary field in a 

database.) Under formal, object-oriented approaches, this is common behavior across types and therefore 

should be represented as a base type from which derived types inherit this functionality. 

On closer examination, however, serious problems begin to creep in. To begin with, this base type knows 

absolutely nothing of the derived type‘s data, yet it‘s the derived type‘s data that needs to be stored (along 

with any further derived types that in turn derive from the derived type). In addition, because we also look 

to use inheritance as a mechanism for unifying commonality among domain types (Employee is a 

Person, whereas Department is not), this in turn begs the argument for multiple inheritance within the 

system, a road the C++ community already went down and discovered significant issues with. 
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Within a single-inheritance environment, like Java, one possible solution is to create an interface that serves 

as a well-understood ―flag‖ to components that indicate that this type wants to participate in this ―object-to-

disk‖ behavior. A type inherits this ―marker interface,‖ which has no methods, and when instances of this 

type are passed to the ―object-to-disk‖ APIs, this flag is checked to ensure that this type does, in fact, want 

to be stored. 

In turn, this approach has some significant flaws. For starters, the level of granularity on an interface is 

again centered on methods. If the component wants or needs to indicate some additional information about 

its desire to be stored to disk, it needs to specify a method in the interface, called by the storing APIs, to 

obtain that information. This in turn means the components wishing to be stored must implement those 

methods, making this an intrusive operation—in essence, it ―pollutes‖ the API of the component with code 

that isn‘t domain-related. 

What we really want for this system, at this point, is the ability to place information at the type level into 

the code, available to interested parties, but otherwise a non-intrusive (and non-polluting) specification. 

Custom attributes were designed exactly for this purpose. Attributes are metadata that is attached to various 

facets of types, using either special language syntax or tools that enable after-the-fact type annotation. The 

Serializable attribute, for example, could be attached to the Echo component with the very simple 

one-line declaration shown in Example 3-23, creating a capability for this component simply by the act of 

annotating it. 

Example Error! No text of specified style in document.-143. C# syntax of the serializable attribute 

 

[ Serializable() ] 

public class Echo : IEchoer  

{ 

    // Rest of component declaration would follow 

} 

At runtime, when the now-serializable component is asked to serialize its state, a serialization engine can 

use the component‘s metadata to determine exactly how to read and write the values of the type to or from 

an external representation. The state of the component can be freeze-dried using such a technique and then 

reloaded later. Note that like component assemblies, serialized component state can persist across runtime 

incarnations of the component itself; serialized state information saved by Version 1 of a component may 

very well be reloaded into Version 3 of the same type. By making the process data-driven, a well-designed 

component can adapt to this eventuality. 

Example 3-24 contains the code from the SSCLI that implements serialization. 

Example Error! No text of specified style in document.-154. Code from the serialization engine (defined 

in clr/src/bcl/system/runtime/serialization/formatter.cs) 

 

protected virtual void WriteMember(String memberName, Object data) 

{ 

    BCLDebug.Trace("SER", "[Formatter.WriteMember]data: ", data); 

 

    if (data==null) { 

        WriteObjectRef(data, memberName, typeof(Object)); 

        return; 

    } 

 

    Type varType = data.GetType(); 

 

    BCLDebug.Trace("SER", "[Formatter.WriteMember]data is of type: " , varType); 

 

    if (varType==typeof(Boolean)) { 

        WriteBoolean(Convert.ToBoolean(data, CultureInfo.InvariantCulture), 

memberName); 

    } else if (varType==typeof(Char)) { 

        WriteChar(Convert.ToChar(data, CultureInfo.InvariantCulture), memberName); 



Chapter 3: Using Types to Describe Components  | 70 

    } else if (varType==typeof(SByte)) { 

        WriteSByte(Convert.ToSByte(data, CultureInfo.InvariantCulture), memberName); 

    } else if (varType==typeof(Byte)) { 

        WriteByte(Convert.ToByte(data, CultureInfo.InvariantCulture), memberName); 

    } else if (varType==typeof(Int16)) { 

        WriteInt16(Convert.ToInt16(data, CultureInfo.InvariantCulture), memberName); 

    } else if (varType==typeof(Int32)) { 

        WriteInt32(Convert.ToInt32(data, CultureInfo.InvariantCulture), memberName); 

    } else if (varType==typeof(Int64)) { 

        WriteInt64(Convert.ToInt64(data, CultureInfo.InvariantCulture), memberName); 

    } else if (varType==typeof(Single)) { 

        WriteSingle(Convert.ToSingle(data, CultureInfo.InvariantCulture), 

memberName); 

    } else if (varType==typeof(Double)) { 

        WriteDouble(Convert.ToDouble(data, CultureInfo.InvariantCulture), 

memberName); 

    } else if (varType==typeof(DateTime)) { 

        WriteDateTime(Convert.ToDateTime(data, CultureInfo.InvariantCulture), 

memberName); 

    } else if (varType==typeof(Decimal)) { 

        WriteDecimal(Convert.ToDecimal(data, CultureInfo.InvariantCulture), 

memberName); 

    } else if (varType==typeof(UInt16)) { 

        WriteUInt16(Convert.ToUInt16(data, CultureInfo.InvariantCulture), 

memberName); 

    } else if (varType==typeof(UInt32)) { 

        WriteUInt32(Convert.ToUInt32(data, CultureInfo.InvariantCulture), 

memberName); 

    } else if (varType==typeof(UInt64)) { 

        WriteUInt64(Convert.ToUInt64(data, CultureInfo.InvariantCulture), 

memberName); 

    } else { 

        if (varType.IsArray) { 

            WriteArray(data, memberName, varType); 

        } else if (varType.IsValueType) { 

            WriteValueType(data, memberName, varType); 

        } else { 

            WriteObjectRef(data, memberName, varType); 

        } 

    } 

} 

Because the metadata for any object instance is available through the reflection APIs, the code to 

implement the writing out of values is nearly trivial. If the serialization engine wants to provide additional 

services later, like the ability to optionally encrypt the serialized data, then the attribute could be enhanced 

to include a boolean Encrypt flag, defaulted to false. But because this is not an intrusive part of the 

client wishing to be serialized, the client component suffers no substantive changes to its own 

implementation—a change to the metadata attribute would be the worst required. 

Summary 

We will have much more to say about the data-driven approach to execution used in the CLI in later 

chapters. For now, it is important to note that metadata-rich types are the abstraction that makes this 

approach possible. 

The type system of the CLI is designed to promote maximal flexibility in a language-agnostic approach to 

component integration. By creating completely self-descriptive components and preserving their metadata 

as the executable representation, no intrinsic binding to the underlying platform is created until the JIT 

compiler is run. Using this approach, a single executable can adapt to a variety of platforms, environments, 

and system versions over time. Armed with more intimate knowledge about how this is possible in the type 
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system of the CLI, we can now turn our attention to how types are packaged and distributed as stored 

component assemblies. 
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4. Extracting Types from Assemblies 

Types attain their full power as an integration mechanism when they are packaged in a form that can be 

easily transported from machine to machine and reconstituted safely. The CLI devotes a great deal of its 

design to enabling exactly this scenario, using a packaging approach based on assemblies. Assemblies are 

central to understanding components, since as we saw in the discussion of metadata, the component 

architecture of the CLI is data-driven: the data found in assemblies is a blueprint for all of the types that 

will populate the execution engine at runtime. Although such metadata can be synthesized directly at 

runtime, it is far more common to find it in the form of a file on disk, in which form it can propagate from 

machine to machine and from microprocessor to microprocessor, via traditional disk-to-disk copy or via 

network download. 

Type Packaging 

Assemblies are the basic unit of packaging and code security for the CLI runtime. The requirement that 

most influenced their design was the need for packaging that would allow self-contained components to be 

moved easily from location to location and yet still interoperate with high fidelity. To accommodate this, 

assemblies took on the following characteristics , which will serve to guide us further in our examination of 

the CLI: 

Assemblies are self-describing 

Assemblies, to enable data-driven execution, are completely self-descriptive and preserve full-fidelity 

metadata. 

Assemblies are platform-independent 

The CLI achieves a good measure of platform independence by ensuring a well-known, standard 

format for assemblies. 

Assemblies are bound by name 

Clients locate assemblies by querying for a four-part tuple that consists of a human-friendly name, an 

international culture, a multipart version number, and a public key token. 

Assembly loading is sensitive to version and policy 

Assemblies are loaded using tunable binding rules, which allow programmers and administrators to 

contribute policy to assembly-loading behavior. 

Assemblies are validated 

Each time an assembly is loaded, it is subjected to a series of checks to ensure the assembly‘s integrity. 

We‘ll examine each of these concepts in turn. 

Assemblies Are Self-Describing 

Assemblies contain blueprints for types in the form of metadata and CIL, which are referred to as modules . 

A module is a single file containing the structure and behavior for some or all of the types and/or resources 

found in the assembly. An assembly always contains at least one module but has the capacity to include 

multiple modules if desired, usually to gain packaging and performance flexibility. 
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The types exposed by an assembly are actually represented in the metadata as redirections to the modules 

that contain the types; it is not possible to expose types without modules. Allowing multiple modules in a 

single assembly makes it easier to isolate changes as requirements evolve. In particular, resources or types 

that are either infrequently accessed or are frequently changed can be contained in separate files. 

As you can see from Figure 4-1, the modules in an assembly can also contain resources, which is a squishy 

term for passive data (meaning anything that isn‘t intended as executable code or metadata). Resources are 

typically packaged as part of the assembly to take advantage of its namespace, as well as the locality and 

trust that come from being within, rather than outside, its logical boundaries. Both types and resources are 

optional; assemblies that contain types with no resources are common, while assemblies that contain 

resources can be useful only for tasks such as localization. 

Like the type-describing modules that they contain, assemblies themselves have metadata that describe 

their structure. This metadata takes the form of a manifest that itemizes the contents of the assembly, 

contains the compound name for the assembly, describes public types that the assembly exports, and 

describes types that the assembly will import from other 

 

 
 

Figure Error! No text of specified style in document.-5. Assemblies can use one or more 

modules, but only one contains a manifest 

assemblies. Manifests are built using the same metadata table mechanisms that are used to describe types—

to see this in action, look in assembly.cpp and assemblymd.cpp in the sscli/clr/src/vm and 

sscli/clr/src/md/compiler directories. 

As we‘ve already seen, there are several tools that are part of the SSCLI distribution 

whose implementation can help illuminate the structure of modules and assemblies. The 

first of these is ildasm.exe, the CIL disassembler, whose code can be found in 

sscli20/clr/src/ildasm. The job of ildasm is fairly simple: take a file and disassemble it 

into its component parts. All source is displayed as CIL, and complete metadata tables 

can be dumped. As a development and diagnostic tool, ildasm is peerless. More 

importantly, however, to the Rotor experimenter, ildasm provides the ability to examine 

CLI metadata from both a black-box and white-box perspective; developers can use it to 

examine the metadata of compiled assemblies, as well as use the code that comprises 

ildasm as a template from which to build their own unmanaged applications and tools that 

examine CLI executables. Another useful tool to examine is al.exe, the assembly linker, 

which is used to piece together different modules into a single assembly and whose code 

can be found in sscli20/csharp/alink. 
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Usually, the assembly manifest is built when the source is compiled; to see this in action, take the Echo 

component from Chapter 3 and compile it into a library using the C# compiler. After it has successfully 

compiled, run the metainfo tool against the single-module assembly contained in echo.dll by typing: 

 

    > metainfo /assem echo.dll 

The /assem switch restricts the output of metainfo to show only assembly metadata, which means that 

you‘ll see something similar to the following: 

 

Microsoft (R) Shared Source CLI Runtime Meta Data Dump Utility   Version 2.0.50826.0 

Copyright (c) Microsoft Corporation.  All rights reserved. 

//////////////////////////////////////////////////////////////// 

 

File echo.dll:  

Assembly 

------------------------------------------------------- 

 Token: 0x20000001 

 Name : echo 

 Public Key    : 

 Hash Algorithm : 0x00008004 

 Version: 0.0.0.0 

 Major Version: 0x00000000 

 Minor Version: 0x00000000 

 Build Number: 0x00000000 

 Revision Number: 0x00000000 

 Locale: <null> 

 Flags : [none] (00000000) 

 CustomAttribute #1 (0c000001) 

 ------------------------------------------------------- 

  CustomAttribute Type: 0a000001 

  CustomAttributeName: System.Diagnostics.DebuggableAttribute :: instance 

void .ctor(value class DebuggingModes) 

  Length: 8 

  Value : 01 00 07 01 00 00 00 00                      

  ctor args: ( <can not decode> ) 

 

 CustomAttribute #2 (0c000002) 

 ------------------------------------------------------- 

  CustomAttribute Type: 0a000002 

  CustomAttributeName: 

System.Runtime.CompilerServices.CompilationRelaxationsAttribute :: instance void 

.ctor(int32) 

  Length: 8 

  Value : 01 00 08 00 00 00 00 00           

  ctor args: (8)) 

This dump shows the values of the assembly‘s attributes. If you instead run the following against the 

component, you‘ll see a great deal more of the metadata: 

 

    > ildasm /metainfo echo.dll 

The results are too lengthy to include here, but in the ildasm output, you‘ll be able to see assembly 

versioning and dependency information, in addition to imported and exported types. If this were a 

multimodule assembly spread out over several files, you would get information for every module. 

The ildasm program provides a superset of the functionality found in metainfo. As is the 

case with many small utility programs, each has its role, and this role is governed by 

programmer taste. Some think that the /assem switch, for example, is the easiest way to 

get to assembly attributes. Playing with each is a fine way to fritter away a few moments 

of free time. 
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Assemblies are, at their core, the metadata that comprises their manifests (which, of course, transitively 

include type metadata and behavior, as well as resources). The distinction between an assembly and a 

module is important; in particular, it must be stressed that ―assembly‖ and ―file‖ are not equivalent terms. 

The CLI is built on top of abstractions that can be used in many different situations on many different 

platforms, and because of this, there are cornerstone concepts that do not correspond directly to common 

operating system abstractions. Since assemblies can be made up of multiple files, one cannot always point 

to a file that corresponds to the assembly. In our example, Echo.dll happens to be a file that comprises the 

entire assembly and contains both the singleton module and the assembly manifest, but this will not always 

be the case. You might decide to split the implementation into two modules, one for backward 

compatibility and one containing new code, for example. Or you might decide to localize using a separate 

module to contain resources. The important thing to remember is that assemblies and their manifests 

always refer to modules. 

Assemblies Are Location-Agnostic 

On-disk assemblies can be successfully loaded on many different machine architectures. This isn‘t magic, 

but it is fundamental to portability. An easy-to-try experiment is to compile an assembly using the SSCLI 

and examine or run it using the .NET Framework SDK tools, or the Ximian/Novell ―Mono‖ CLI 

implementation. Using a shared format is a venerable and well-understood way to begin a quest for 

interoperability. 

The persistent structure for an assembly and its types is very different than what it will eventually become 

in memory. In the Chapter 2 tutorial, we briefly saw that the file format is based on the PE/COFF 

executable format, but most of the interesting structure is entirely contained within a single opaque .text 

section. Because of this, the ECMA format does not rely heavily on the PE/COFF headers and file 

structure. 

The Microsoft Portable Executable (PE) file format is the format used by Microsoft 

Win32-based operating systems for storing executable resources (DLLs and EXEs). PE 

depends, in turn, on the Common Object File Format (COFF) , which is an even older 

executable format. A complete description of the PE/COFF format, besides being 

excruciatingly dull, is beyond the scope of this book; however, the segmented format is 

well-documented in a specification that can be found on Microsoft‘s MSDN web site. 

Within the Rotor code base, the task of loading, parsing, and verifying the PE file structure falls to a single 

class called (cleverly enough) PEFile , located in sscli20/clr/src/vm/pefile.h and pefile.cpp. A PEFile 

instance is a C++ class wrapper around a Portable Executable image. This image doesn‘t have to exist on 

disk; it can in fact be created around an image that the program hosting the execution engine has mapped 

into memory already or created directly. The PEFile itself is fairly simple: once created, the PEFile 

provides an easy way to obtain various headers—the Win32 headers (an instance of an 

IMAGE_NT_HEADERS struct), the COR headers (an instance of an IMAGE_COR20_HEADERS struct), 

and instances to metadata objects (an instance of an IMDInternalImport interface). 

Examining the PEFile class doesn‘t take long; there‘s not much to PEFile beyond verifying the 

structural integrity of the file and then using it to obtain the sections of a file to be picked apart further by 

hand. Within Rotor, the principal aim is to get at the part of the PE file where the 

IMAGE_COR20_HEADER lives, as shown in Example 4-1 (which is defined in clr/src/inc/corhdr.h). 

Example Error! No text of specified style in document.-1. The IMAGE_COR20_HEADER 

 

typedef struct IMAGE_COR20_HEADER 

{ 

    // Header versioning 

    DWORD                   cb;               

    WORD                    MajorRuntimeVersion; 

    WORD                    MinorRuntimeVersion; 
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    // Symbol table and startup information 

    IMAGE_DATA_DIRECTORY    MetaData;         

    DWORD                   Flags;            

   

    // If COMIMAGE_FLAGS_NATIVE_ENTRYPOINT is not set, EntryPointToken represents a  

    // managed entrypoint. 

    // If COMIMAGE_FLAGS_NATIVE_ENTRYPOINT is set, EntryPointRVA represents an RVA  

    // to a native entrypoint. 

    union { 

        DWORD               EntryPointToken; 

        DWORD               EntryPointRVA; 

    }; 

     

    // Binding information 

    IMAGE_DATA_DIRECTORY    Resources; 

    IMAGE_DATA_DIRECTORY    StrongNameSignature; 

 

    // Regular fixup and binding information 

    IMAGE_DATA_DIRECTORY    CodeManagerTable; 

    IMAGE_DATA_DIRECTORY    VTableFixups; 

    IMAGE_DATA_DIRECTORY    ExportAddressTableJumps; 

 

    IMAGE_DATA_DIRECTORY    ManagedNativeHeader; 

     

} IMAGE_COR20_HEADER, *PIMAGE_COR20_HEADER; 

Important fields include the version numbers and the entry point, as well as the segment addresses for the 

metadata, the resources, and the digital signature, if present. Note that there is no segment address for the 

code itself; the entrypoint token will be resolved like every other metadata token, via the metadata segment, 

by the ExecuteMainMethod method of Assembly. The token is resolved to a MethodDef, its calling 

convention and signature are verified, and, eventually, the method is given control by the execution engine. 

Loading Assemblies by Name 

 Assemblies are as self-contained as possible to impart independence and maximize their chances at being 

versionable. The types in an assembly are exposed as public or are purely internal to the assembly; there are 

no friend constructs to complicate binding relationships. To ensure adaptability, they attach to their 

surrounding environment at runtime by binding to names, rather than addresses or offsets. 

Types are the universal abstraction that drives execution in the CLI, and types use other types by referring 

to them by name. Fully qualified type names combine the assembly name and the base type name, plus an 

optional namespace prefix, if present. The name of the type is scoped by the assembly, and types are joined 

together (or bound) by name. 

Although the namespaces that components populate appear to be hierarchically 

structured, they are not. (This differs, in particular, from Java, in which package structure 

is mapped directly to the filesystem.) The namespace prefix in a fully qualified name is 

just an optional string that can precede a type‘s name and typically follows a hierarchal 

naming convention used by developer tools to group types together. They are purely 

conventional, and they are not isolated; multiple assemblies can contribute to the same 

namespace. 

The loose coupling that comes from name-based binding is consistent with adaptability over time. To 

remain viable over time, the assembly must be capable of propagating itself through future generations, no 

matter how harsh conditions become. The best way to do this robustly in the face of changing conditions is 

to meticulously describe all parts of the system and develop ways to make small changes, while still 

remaining compatible with the overall system. It is precisely this ability to make small changes 

transparently and swap component implementations in and out behind names that enables clever 

programmers to ensure good release-to-release binary compatibility. 
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 Example 4-2 shows how assembly names are represented in the System.Reflection namespace. 

Example Error! No text of specified style in document.-2. The elements of assembly names (simplified 

from clr/src/bcl/system/reflection/assemblyname.cs) 

 

public sealed class AssemblyName : _AssemblyName, ICloneable, ISerializable, 

IDeserializationCallback 

{ 

 private String          _Name;                  // Name 

 private byte[]          _PublicKey; 

 private byte[]          _PublicKeyToken; 

 private CultureInfo     _CultureInfo; 

 private String          _CodeBase;              // Potential location to get the 

file 

 private Version         _Version; 

  

 private StrongNameKeyPair _StrongNameKeyPair; 

 private SerializationInfo m_siInfo; // A temp variable which we need during 

deserialization. 

  

 private byte[]                _HashForControl; 

 private AssemblyHashAlgorithm _HashAlgorithm; 

 private AssemblyHashAlgorithm _HashAlgorithmForControl; 

  

 private AssemblyVersionCompatibility _VersionCompatibility; 

 private AssemblyNameFlags            _Flags;  

} 

The full name of an assembly includes four parts; all but the base name itself are optional. A full assembly 

name typically consists of the filename minus its extension plus version information in a format that 

concatenates major version, minor version, build number, and revision number into a dot-separated string. 

After this, the localized culture of the assembly can be referenced by including a two-character 

abbreviation (dictated by IETF RFC-1766). Culture information is particularly important when resources or 

localizable strings are included as part of the assembly. Finally, a public key or a public key token (an 

abbreviated form of the public key formed using a cryptographic hash) that identifies the developer of the 

assembly can be included. This is used when exploiting the CLI‘s support for cryptographic strongnames . 

When the parts of the full name are combined in a canonical way, the result is called the displayname of the 

assembly. Displaynames can be either complete or partial. Strongnames are optional, and if they are used, 

they have a radical effect on the binding regimen used; the rules for finding strongnamed libraries 

supplement the rules for finding libraries without strongnames, and enable sharing scenarios that wouldn‘t 

otherwise exist. 

An assembly‘s display name can be seen within managed code by interrogating the FullName property of 

the System.Reflection.Assembly instance for the assembly. Printed, it appears as ―assembly-

name, Version=x.x.x.x, Culture=culture, PublicKeyToken=token‖; the assembly for the Echo component, 

for example appears as: 

 

    echo, Version=0.0.0.0, Culture=neutral, PublicKeyToken=null 

when displayed. As you can see, the assembly is unsigned, and no version number has been assigned to it. 

To set the other three parts of the assembly name, the SSCLI uses assembly-level custom attributes to 

directly emit the values into the assembly manifest. 

The implementation of assembly-level attributes is strictly a compiler convention, and 

can be found in assemblyattributes.cs in the bcl/system/reflection directory. Assembly-

level attributes are not implemented in the same way as custom attributes, which is a 

shortcoming of the current CLI specification. It is possible to use the more general 
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custom attribute mechanism for module-level attributes, but not for assembly level 

attributes. 

So to set the version and strongname signature of the Echo component, you could use the following 

attributes at the top of the Echo.cs file: 

 

    [assembly: AssemblyVersion("1.0.0.0")] 

    [assembly: AssemblyKeyFile("echo.snk")] 

in which echo.snk is a file containing a cryptographic public key/private key pair generated by the 

sn.exe utility. This would then change the display name of Echo to: 

 

    echo, Version=1.0.0.0, Culture=neutral, PublicKeyToken=fcd14a8abe06f0d2 

Of course, the value of PublicKeyToken will vary given unless readers use the exact same public 

key/private key token file used to generate the example. Throughout this chapter, whenever we show a 

public key token, you should assume that your own will differ. 

Assembly names were constructed with as many parts as they have to support versioning and side-by-side 

loading. Embedding the version number into the name permits the CLI to highlight dependencies as part of 

its component-to-component contract. 

Alternatively, public key tokens allow two assemblies of the same name from different parties to coexist. 

There are repercussions to this technique, however; in the presence of many versions of a single assembly, 

name resolution and binding rules become quite complex. 

Binding to Versioned Assemblies 

Of course, it is possible to manually load assemblies from code using the Load or LoadFrom methods of 

the Assembly type, but the more normal case is that assemblies are loaded as they are needed. The 

assembly loading code, like so many of the other portions of the CLI, follows the principle of deferred 

actions: by deferring a costly action until it is actually needed, you can avoid performing it unnecessarily. If 

an application rarely calls a method or rarely accesses a named resource, the assembly will rarely be 

loaded. In fact, an application can be built to run successfully with assemblies that are referenced, but not 

deployed. Debugging code, or optional features, might benefit from this treatment. 

Once a call is made to a method in an assembly, the first step in binding is to decide what version of the 

assembly, containing the type, should be used. To determine this, the execution engine consults the 

manifest of the assembly that made the call, where it can find an exact version specifier in the table of 

external references. Once this version number is procured, the CLI hunts down a file that corresponds to it, 

using the loosely-defined runtime service referred to in the SSCLI code base as fusion. 

―Fusion‖ was the codename for the assembly loader at the development of the Microsoft 

.NET Framework, and because of this, you will see many comments and variable names 

that contain the word. There is also a directory in the SSCLI distribution, named 

sscli20/clr/src/fusion, in which you‘ll find some of the code used during assembly 

loadtime. (This code is deployed as the fusion.dll shared library that is dynamically 

loaded by the SSCLI at runtime.) However, the configuration and loading code that can 

be found in this library is augmented by a fair amount of code that resides in the 

execution engine directory (sscli20/clr/src/vm). Like many projects, the SSCLI has 

accreted partial layers of imperfectly factored subsystems over time. When searching for 

implementation details, one way to approach the division of code between fusion and the 

execution engine is to remember that the CLI is concerned with loading types from 

assemblies, while fusion is concerned with locating and loading files.<< JOEL : Resolve 

the ambiguity here—I think Fusion was part of the OS that had to be backported into 

Rotor v1, but I don‘t have the historical perspective here. Help? >> 
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The execution engine checks to see whether the appropriate assembly is already loaded, since once an 

assembly is loaded, it can never be reloaded within a given application domain. (Application domains will 

be discussed later in this chapter.) If the assembly is not loaded, but is strongly named and fully qualified, a 

machine-wide cache, called the Global Assembly Cache (GAC), is checked. Details about the GAC are, for 

the moment, irrelevant—just recognize it as a common place for assemblies to live. If the assembly is 

found in the GAC, it is loaded; otherwise, the execution engine then searches for codebase elements in 

configuration files, which specify locations from which assemblies can be loaded. If no codebase 

locations are provided, the execution engine will look in the appbase as a last resort, which is a variety of 

likely locations in the filesystem. By default, the appbase is the relative root directory from which the 

application was executed. 

Key-Based Binding to Assemblies 

The CLI supports the use of cryptographic signatures as a way to uniquely identify assemblies. The 

presence of the AssemblyKeyFileAttribute in an assembly‘s metadata denotes that it is strongly 

named, and that this attribute will be used as a part of the loading process to verify that the assembly being 

loaded is identical to the referenced assembly. It is possible to turn off this verification, and during 

development, this is an important configuration option, since code under development is usually both 

trusted and broken at the same time, and the time spent signing and verifying strongnames could almost 

certainly be better spent fixing bugs! 

The verification mechanism for strongnames requires the build process to have access to both the public 

and private elements of a cryptographic key pair at the time that it builds an assembly. The public key 

becomes part of the assembly name, and a cryptographic hash of the metadata of the assembly is calculated 

using the private key and is inserted into the assembly. At load time, the execution engine uses the public 

key to extract a hash value for the assembly being verified that is then compared against a direct 

cryptographic hash of the metadata, proving that the producer of the assembly had access to the private key. 

The implementation of the strongname crypto code can be found in strongname.cpp in the clr/src/vm 

directory. It is used by the execution engine from files such as assembly.cpp. 

The Shared Source CLI is not intended for use as a secure environment, although the 

source code does provide a good example of how a secure execution environment might 

be built. For example, strongname verification is turned off by default in the SSCLI for 

several important public keys, which means that no assembly built as part of the SSCLI 

can be trusted with respect to origin. Since you have control of access to the Rotor source 

code on your machine, you are the only person who understands the level of trust to 

impart to your own build output. If you want to make Rotor secure, you will need to audit 

source code modifications, restrict access to keypairs used to build the execution engine, 

do the work necessary to establish trust relationships between the execution engine and 

its assemblies, and, in general, pay a lot of attention to the process used to build and 

deploy the executables that comprise the built output of the distribution. 

The GAC, as mentioned previously, is part of the extended search path for assemblies. To be found in the 

GAC, an assembly must have a public key. Public keys are normally attached by dropping an 

AssemblyKeyFile attribute into a C# source file and compiling; the C# compiler will extract the key 

pair from the key file and sign the assembly. (An assembly with a public key does not have to be signed to 

be in the GAC, although such a delay signed assembly must still have a public key attached. Since it cannot 

be safely loaded, it can be used only with verification turned off.) In the commercial implementation, which 

supports running many different versions of the CLI on a single machine, the GAC is implemented as a 

subdirectory under the Windows installation directory (typically C:\WINDOWS\Assembly); in the SSCLI, 

the GAC is tied to the directory structure of the particular version of sscoree.dll that is being used. 
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Sharing Assemblies on a Computer 

The GAC essentially represents a machine-wide library of assemblies for use by any CLI process. It is, in 

essence, the communal pool of shared assemblies. Like any communal resource, there are strict rules for 

use, to protect the peace and to ensure correct behavior. If a programmer doesn‘t wish to play by these rules 

or has no need to share an assembly, then she may simply place her assembly in the same directory as the 

managed executable that needs it, and it will be found and loaded from there. 

Within the Rotor source base, as mentioned previously, the GAC is implemented as a subdirectory of the 

build tree. In particular, the Rotor binaries will be in a directory named something like 

binaries.x86chk.rotor (with the directory name changing according to version, platform, and the kind of 

build being used). The GAC_MSIL subdirectory will be in the rotor/assembly subdirectory underneath that 

location. Exploring this subdirectory reveals that each assembly is placed into further subdirectories, first 

separated by the assembly name as a subdirectory, then the assembly‘s version number and public key 

token. For example, the GAC_MSIL directory looks something like the following on Windows: 

 

  Directory of C:\sscli20\binaries.x86chk.rotor\rotor\assembly\GAC_MSIL 

  

 <DIR>          ISymWrapper 

 <DIR>          Microsoft.JScript 

 <DIR>          Microsoft.Vsa 

 <DIR>          System 

 <DIR>          System.Configuration 

 <DIR>          System.Data.SqlXml 

 <DIR>          System.Runtime.Remoting 

 <DIR>          System.Runtime.Serialization.Formatters.Soap 

 <DIR>          System.Xml.Xml 

These are the assemblies that ship with Rotor out of the box. Drilling down into the System directory, 

you‘ll find something like this: 

 

  Directory of C:\sscli20\binaries.x86chk.rotor\rotor\assembly\GAC_MSIL\System 

  

 <DIR>          2.0.0.0__b77a5c561934e089  

Drilling down one level further: 

 

  Directory of 

C:\sscli20\binaries.x86chk.rotor\rotor\assembly\GAC_MSIL\System\2.0.0.0__b77a5c56193

4e089 

  

 1,949,696 System.dll  

And, sure enough, running ildasm on the System.dll contained in this directory reveals that the version 

number of System.dll is 2.0.0.0, and its public key token matches that of the other half of the subdirectory 

name.  

Having demonstrated this implementation detail, however, it is important to once again note that the GAC 

is communal property, and dropping compiled assemblies into this GAC subdirectory without using the 

proper utility program is strongly discouraged; the mechanism chosen by a CLI implementer is entirely in 

that implementer‘s hands and is almost guaranteed to vary from one platform to the next. 

To manage moving assemblies in and out of the GAC, the Rotor code base ships with a utility that eases 

management details, known creatively as gacutil. (The source for gacutil can be found in the directory  

Factoring Assemblies by Culture 
Another way to factor assemblies is to centralize the parts that are not locale-dependent and break 

locale-specific parts into files that can be loaded on demand. Assemblies that use this technique 

are referred to as culture neutral. 
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For those who wish to build ―culture neutral‖ assemblies, the Shared Source CLI provides 

command-line utilities, including the resgen.exe program for building managed resources and 

resourcecompiler.exe for building unmanaged string resources. See the tools documentation in the 

SSCLI distribution for details of how to use these tools to build resource-only assemblies. 

Managed code that is designed to be global can be built in a way that leverages the infrastructure 

for finding and binding to assemblies that already exist in the CLI. Because of this, most of the 

advantages that come from the use of this infrastructure (such as loosely coupled, strongly 

versioned, configurable binding) also accrue to the code being globalized. 

The globalization support that is part of the SSCLI is a hidden gem and comprises a very complete 

set of components that can be found in sscli20/clr/src/bcl/system/globalization. It is not only 

interesting to consider the implementation of these components on their own, but also to notice 

how they are tied into the low-level implementation of the execution engine and the frameworks. 

Because of their role, they relate directly to resource loading, to the implementation of datatypes 

such as strings, and to marshaling mechanisms. Unfortunately, covering the details of the 

globalization code is outside of the scope of this book, but it is definitely worth browsing. 

sscli20/clr/src/tools/gac; examining the source reveals that it is actually a thin wrapper around fusion API‘s 

(IAssemblyCache and IAssemblyEnum interfaces.) This utility provides the ability to install, 

remove, and enumerate the various assemblies stored in the GAC, as well as the ability to manage traced 

reference counts, which keep assemblies from being accidentally uninstalled. Example 4-3 is an example of 

how to enumerate the assemblies currently in the GAC by using its -l option. 

Example Error! No text of specified style in document.-3. Using gacutil to examine the default shared 

assemblies in the SSCLI 

 

C:\sscli20> gacutil -l 

 

Microsoft (R) Shared Source CLI Global Assembly Cache Utility.  Version 2.0.50826.0 

Copyright (c) Microsoft Corporation.  All rights reserved. 

 

The Global Assembly Cache contains the following assemblies: 

  ISymWrapper, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a, 

processorArchitecture=MSIL 

  Microsoft.JScript, Version=8.0.0.0, Culture=neutral, 

PublicKeyToken=b03f5f7f11d50a3a, processorArchitecture=MSIL 

  Microsoft.Vsa, Version=8.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a, 

processorArchitecture=MSIL 

  System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089, 

processorArchitecture=MSIL 

  System.Configuration, Version=2.0.0.0, Culture=neutral, 

PublicKeyToken=b03f5f7f11d50a3a, processorArchitecture=MSIL 

  System.Data.SqlXml, Version=2.0.0.0, Culture=neutral, 

PublicKeyToken=b77a5c561934e089, processorArchitecture=MSIL 

  System.Runtime.Remoting, Version=2.0.0.0, Culture=neutral, 

PublicKeyToken=b77a5c561934e089, processorArchitecture=MSIL 

  System.Runtime.Serialization.Formatters.Soap, Version=2.0.0.0, Culture=neutral, 

PublicKeyToken=b03f5f7f11d50a3a, processorArchitecture=MSIL 

  System.Xml, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089, 

processorArchitecture=MSIL 

  ISymWrapper, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a 

  Microsoft.JScript, Version=8.0.0.0, Culture=neutral, 

PublicKeyToken=b03f5f7f11d50a3a 

  Microsoft.Vsa, Version=8.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a 

  System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089 

  System.Configuration, Version=2.0.0.0, Culture=neutral, 

PublicKeyToken=b03f5f7f11d50a3a 

  System.Data.SqlXml, Version=2.0.0.0, Culture=neutral, 

PublicKeyToken=b77a5c561934e089 

  System.Runtime.Remoting, Version=2.0.0.0, Culture=neutral, 

PublicKeyToken=b77a5c561934e089 
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  System.Runtime.Serialization.Formatters.Soap, Version=2.0.0.0, Culture=neutral, 

PublicKeyToken=b03f5f7f11d50a3a 

  System.Xml, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089 

Custom=null 

Binding Scenarios 

For many programmers, strict versioning, strongnames, the GAC, and domain-based isolation are 

unfamiliar ground. Many developers are still living the ―good ol‘ days‖ of C++, in which the results of 

running any given program are configuration-dependent and, as a result, trying to make sense of the CLI 

approach to management, deployment, and loading policies is bewildering. Using the Echo component 

that we‘ve been developing so far as an example will help demonstrate how versioning the GAC and the 

loading policies of the CLI can serve useful and beneficial purposes. 

Step one: Baseline 

The first step is, of course, to establish the baseline functionality with which most programmers are 

familiar. In this case, this is the standard ―everything-in-one-directory‖ scenario used up until this point for 

all code examples. Echo.cs is compiled into Echo.dll and rests in the current directory: 

 

    using System; 

 

    namespace SampleEcho { 

      public enum EchoVariation { Louder, Softer, Indistinct } 

      public struct EchoValue { 

          public string theEcho; 

          public EchoVariation itsFlavor; 

      } 

      public interface Echoer { 

          void DoEcho(out EchoValue[] resultingEcho); 

      } 

 

      public class Echo : Echoer { 

        private string toEcho = null; 

        private static int echoCount = 0; 

        private const System.Int16 echoRepetitions = 3; 

 

        public delegate void EchoEventHandler(string echoInfo); 

        public event EchoEventHandler OnEcho; 

 

        public Echo(string initialEcho) { 

          toEcho = initialEcho; 

        } 

        public string EchoString { 

          get { return toEcho; } 

          set { toEcho = value; } 

        } 

        public void DoEcho(out EchoValue[] resultingEcho) { 

          if (toEcho == null) { 

            throw(new Exception("Alas, there is nothing to echo!")); 

          } 

          resultingEcho = new EchoValue[echoRepetitions]; 

          for (sbyte i = 0; i < echoRepetitions; i++) { 

            resultingEcho[i].theEcho = toEcho; 

            switch (i) { 

              case 0: resultingEcho[i].itsFlavor = EchoVariation.Louder; break; 

              case 1: resultingEcho[i].itsFlavor = EchoVariation.Softer; break; 

              default: resultingEcho[i].itsFlavor = EchoVariation.Indistinct; 

    break; 

            } 

          } 
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          if (OnEcho != null) { 

            OnEcho(System.String.Format("Echo number {0}", echoCount)); 

          } 

          echoCount++; 

          return; 

        } 

      } 

    } 

MainProgram.cs is compiled, referencing Echo.dll as part of the compilation step, and also resides in the 

current directory: 

 

    using System; 

    using SampleEcho; 

 

    namespace MainSampleProgram { 

      class EchoProgram { 

        static void Main(string[] args) { 

          SampleEcho.Echo myEcho; 

          SampleEcho.EchoValue[] result; 

 

          if (args.Length > 0) 

            myEcho = new SampleEcho.Echo(args[0].ToString()); 

          else 

            myEcho = new SampleEcho.Echo("Hi mom!"); 

 

          // Set up an event handler and hook to component 

          SampleEcho.Echo.EchoEventHandler handler = 

            new SampleEcho.Echo.EchoEventHandler(CallMe); 

          myEcho.OnEcho += handler; 

 

          try { 

            myEcho.DoEcho(out result); 

            System.Console.WriteLine("Main program received echo!"); 

            for (int i = 0; i < result.Length; i++) 

              Console.WriteLine("{0}: {1}, {2}", i, 

                                result[i].theEcho, result[i].itsFlavor); 

          } 

          catch (System.Exception e) { 

            System.Console.WriteLine("Caught exception: {0}", e.Message); 

          } 

        } 

 

        static void CallMe(string msg) { 

          System.Console.WriteLine(msg); 

        } 

      } 

    } 

Executing MainProgram.exe produces what we‘d expect: 

 

    C:\sscli20> clix mainprogram 

    Echo number 0 

    Main program received echo! 

    0: Hi mom!, Louder 

    1: Hi mom!, Softer 

    2: Hi mom!, Indistinct 

The Echo.dll assembly could also be placed into a subdirectory whose name is the same as the assembly 

(minus extension), from which it would also be successfully loaded. 
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Step two: The GAC 

The Echo component has turned out to be an extremely useful component, so much so that Echo needs to 

be shared with other assemblies that also desire echoing behavior. Echo could be copied into private code 

bases for each application, but this loses a large part of the benefit of shared libraries; instead, we want to 

share it from a single place, the GAC. To do this, Echo needs to be installed into the GAC: 

 

    C:\sscli20> gacutil -i echo.dll 

 

    Microsoft (R) Shared Source CLI Global Assembly Cache Utility.  Version 

2.0.50826.0 

 Copyright (c) Microsoft Corporation.  All rights reserved. 

 

    Failure adding assembly to the cache: Attempt to install an assembly 

    without a strong name 

Recall that in order for an assembly to be stored into the GAC, it needs to be either strongly named or 

partially signed with verification turned off. Both of these options are most easily accomplished by creating 

a keypair using the sn utility and compiling in the key file using the C# compiler. Generate a key with sn 

-k echo.snk and recompile the file using the following C# compiler switch:  

 

C:\sscli20>csc /target:library /keyfile:echo.snk echo.cs 

 

Microsoft (R) Shared Source CLI C# Compiler version 2.0.0001 

for Microsoft (R) Shared Source CLI version 2.0.0 

Copyright (C) Microsoft Corporation. All rights reserved. 

Gacutil will now accept the assembly as installable. Unfortunately, running MainProgram yields an 

exception, since the assembly it was compiled against was ―echo, Version=0.0.0.0, Culture=neutral, 

PublicKeyToken=null,‖ and there is no assembly that matches that criteria. MainProgram needs to be 

recompiled against the new, strongly named Echo. 

Once that‘s done, to prove that MainProgram will in fact pull the component out of the GAC, try deleting 

Echo.dll from the current directory; MainProgram should still run. In fact, once the assembly has been put 

into the GAC, it will be preferentially loaded from the GAC rather than from the local directory. 

Step three: Versioning 

Having deployed the Echo component into the public arena, however, another concern arises—what 

happens if and when Echo needs to support new functionality? This is precisely what versioning and 

versioning-aware load policies are for. Create a new file called AssemblyInfo.cs add the following: 

 

    // AssemblyInfo.cs 

 

 using System.Reflection; 

    [assembly: AssemblyVersion("1.0.0.0")] 

and recompile the Echo program adding AssemblyInfo.cs to the csc command line parameters. This will 

include the AssemblyInfo file and the resulting assembly attribute to the echo.dll file. To test versioning-

bound load policies, it‘s helpful to make sure the version (which will be changing in just a moment to 

illustrate the side-by-side capabilities of the CLI) is what‘s expected; to do this, MainProgram will display 

the complete display name of the Echo assembly when it first references Echo: 

 

    // MainProgram.cs, in class EchoProgram 

 

        static void Main(string[] args) { 

          Console.WriteLine("Echo assembly: " + 

                            typeof(SampleEcho.Echo).Assembly.FullName); 

          // . . . as before . . . 
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        } 

Recompile MainProgram, install echo v1.0.0.0 into the GAC, delete the local Echo.dll, and run 

MainProgram. It works as expected. 

Step four: Side-by-side versioning 

Echo has reached a state where it needs to be versioned; it now looks to echo messages back five times, 

instead of the previous version‘s three (the echoRepetitions field, a constant, has been changed from 

3 to 5). To do this, the AssemblyVersion attribute changes its value: 

 

    // AssemblyInfo.cs 

    using System.Reflection; 

 [assembly: AssemblyVersion("2.0.0.0")] 

     

 

 // Echo.cs 

    public class Echo : Echoer { 

      // ... 

      private const System.Int16 echoRepetitions = 5; 

      // ... 

    } 

 

    // rest as before 

Again, recompile Echo.cs and install the new echo component into the GAC. 

As a point of experimentation, before moving on, consider what‘s just taken place: there are now two 

entirely different (as far as the CLI is concerned) versions of the same component now living in the GAC; 

running gacutil -l proves this. And, if the CLI supports version-aware binding, then MainProgram, which 

was originally compiled against v1.0.0.0 of the Echo component, should still load and run against the still-

installed echo.dll v1.0.0.0 version, which it will. 

Don‘t forget to run MainProgram.exe and MainProgramv1.exe under clix. In many cases, 

you can run SSCLI assemblies at the Windows command prompt without clix (this runs 

them using the .NET CLR). However, the examples in this chapter need to bind against 

assemblies that can only be found in the SSCLI‘s GAC, and if you run them with the 

.NET CLR, it will not find them. This also raises the question of which version of gacutil 

you‘re running. If you see ―Shared Source CLI Global Assembly Cache Utility‖ in the 

banner when you run it, you‘ve got the right one. If not, run env.bat to make sure your 

environment is properly set up for the SSCLI. 

Save the current MainProgram to MainProgramv1.exe or something similar, and recompile MainProgram 

against v2 of echo.dll. Delete echo.dll out of the current directory, and each version of MainProgram in 

turn binds to the current version of echo stored in the GAC. It should be noted before moving on that 

versioning the main program and its libraries, as shown here, does not need to be done at the same time; it 

is also certainly possible to version them one at a time, in an uncoordinated fashion. 

Configuring How Assemblies Load 

In addition to the very complete versioning scheme detailed previously, administrators and developers can 

add their own configuration guidance into the mix. The policy used when binding to an assembly can be 

specified on a per-application, per-assembly, or per-machine basis. 

The need for this is obvious. Frequently, developers won‘t make the final determination about which 

component version an application needs to work correctly. Service packs, bug fix releases, and product 

upgrades all occur long after the developer has shipped the product to manufacturing for release. One of the 

key weaknesses, in fact, that most shared library systems have is the evolutionary nature of the machines on 
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which they exist. On Windows platforms, this phenomenon is known by the unpleasant name ―DLL Hell,‖ 

but it exists quietly in every software environment that relies on shared, dynamically loaded libraries. 

Developers, administrators, and users must all occasionally influence how their assemblies load. They need 

the ability to not only upgrade an assembly to a later version, but also to revert from an upgraded assembly 

back to the original version (due to unworkable bugs found in the new release, or even just incomplete 

backwards incompatibility). 

When components are loaded from their dormant state, the loading process takes local environmental 

information into account, as well as information provided by the programmer and by the administrator of 

the system. Because the CLI doesn‘t mandate any specific mechanism, different CLI implementations are 

left up to their own devices. By default, the SSCLI examines the runtime version number that has been 

placed in the metadata header by the compiler, and uses this hint to first load the correct version of the CLI, 

and then load the assembly into it. 

Rotor expects to find v2.0.0 (or v1.0.0 if you‘re using the original version of Rotor) in the 

assembly‘s metadata header, which is a special number that should also be supported by 

other CLI implementations. If this number isn‘t supported, executables that run on the 

SSCLI won‘t load into other CLI implementations. This is because other CLI 

implementations will first attempt to match the assembly to their execution engine. Only 

after this fails will they fall back to using v2.0.0. 

The simplest form of configuration in Rotor takes the form of XML configuration files . There are also 

many settings of interest to developers that can be configured by using either XML files or environment 

variables; these are listed in Rotor‘s online documentation. The XML files are the most important of the 

two mechanisms because they allow an administrator or developer to influence binding policy in a 

structured way. 

Configuration files are named, by convention, using the same name as the entry point assembly that they 

configure, with the extension ―.config‖. For example, a configuration file for the MainProgram.exe 

assembly from the previous example would be MainProgram.exe.config. In addition, the SSCLI offers the 

ability to provide publisher policy configuration information on a per-assembly basis and machine policy 

configuration information that applies to the entire machine. 

Because there can be multiple versions of the SSCLI running side-by-side, machine-wide 

policy is per-installation, and the configuration file for machine policy is stored in the 

machine.config file in the config subdirectory of the version-specific SSCLI build 

directory. 

The basic format of the part of a configuration file used to configure binding parameters looks something 

like the following: 

 

    <configuration> 

      <runtime> 

        <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1"> 

          <!-- assembly-related configuration goes here --> 

        </assemblyBinding> 

      </runtime> 

    </configuration> 

Other sections (such as system.runtime.remoting configuration elements) appear as children of the 

configuration root element. Note that the namespace declaration on the assemblyBinding 

element is crucial, since Microsoft CLI implementations look specifically for assembly-related 

configuration elements that use this namespace. 

Services and applications are also free to store their own private information within configuration files, 

much as .properties files are used in Java or .ini files are used in Windows. 
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Influencing binding policy 

Users and administrators can drive the assembly-binding policy in a configuration file by creating 

dependentAssembly elements as children of the assemblyBinding element that in turn contain 

assemblyIdentity elements to identify which assembly they wish to influence and 

bindingRedirect elements to indicate the versioning redirection. Multiple dependentAssembly 

elements can be declared as children of the assemblyBinding element, but each 

dependentAssembly element can describe only one assembly. 

To see this in action, recall that the MainProgram.exe application from the previous example currently uses 

Version 2.0.0.0 of the Echo component. Unfortunately, Version 2.0.0.0 has a horrible bug within it, and 

the developer of MainProgram cannot (or will not) release a version of MainProgram that depends on 

Version 1.0.0.0 of Echo. The administrator or user needs to essentially redirect MainProgram‘s load-

request for 2.0.0.0 of Echo back to Version 1.0.0.0. To do so, the administrator writes 

MainProgram.exe.config, similar to the following: 

 

    <configuration> 

      <runtime> 

        <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1"> 

          <dependentAssembly> 

            <assemblyIdentity name="echo" 

                              publicKeyToken="fcd14a8abe06f0d2" 

                              culture="neutral" /> 

            <bindingRedirect oldVersion="2.0.0.0" 

                             newVersion="1.0.0.0" /> 

          </dependentAssembly> 

        </assemblyBinding> 

      </runtime> 

    </configuration> 

Once again, remember that public key tokens will differ from what is printed. 

When run, MainProgram, even though its assembly reference indicates that it requires the use of ―echo, 

Version=2.0.0.0, ...‖ will in fact load and run ―echo, Version=1.0.0.0,‖ and only echo three times instead of 

five (which was version 2‘s behavior): 

 

C:\sscli20> ildasm MainProgram.exe 

 

//  Microsoft (R) Shared Source CLI IL Disassembler.  Version 2.0.50826.0 

//  Copyright (c) Microsoft Corporation.  All rights reserved. 

.assembly extern mscorlib 

{ 

  .publickeytoken = (B7 7A 5C 56 19 34 E0 89 ) 

  .ver 2:0:0:0 

} 

.assembly extern echo 

{ 

  .publickeytoken = (FC D1 4A 8A BE 06 F0 D2 ) 

  .ver 2:0:0:0 

} 

.assembly MainProgram 

{ 

  .hash algorithm 0x00008004 

  .ver 0:0:0:0 

} 

 

 (dump elided for clarity) 

 

> clix MainProgram.exe 

 

Echo assembly: echo, Version=1.0.0.0, Culture=neutral, 



Chapter 4: Extracting Types from Assemblies  | 88 

PublicKeyToken=fcd14a8abe06f0d2 

Echo number 0 

Main program received echo! 

0: Hi mom!, Louder 

1: Hi mom!, Softer 

2: Hi mom!, Indistinct 

This is powerful and is important to the successful evolution of a system over time. Versioning is a constant 

balancing act between the robust, conservative policy of always binding to the original versus the 

―politically correct‖ policy of binding to a version that contains fixes (such as security patches) or new 

features. Unfortunately, no one has discovered how to make this choice automatic; the best that can be done 

is to offer control over the configuration of the binding process. 

Validating Assemblies for Consistency 

Since the CLI uses a data-driven architecture for its services, there are many codepaths in the SSCLI that 

perform consistency checks on data. When we examine JIT compilation, for example, we will see how the 

metadata for individual types is validated and how the CIL is verified. Each layer of data that drives the 

execution engine must be loaded and checked before it is used so that the next layer can be guaranteed a 

good-clean life. 

Keeping with this principle, assemblies are loaded from disk in a way that guards against changes, 

malicious or unintentional, made while the assembly has lain dormant. While they are loaded, they are 

checked for consistency by the PEDecoder class, the code for which is shown in Example 4-4. 

Example Error! No text of specified style in document.-4. PE validation (from 

clr/src/utilcode/pedecoder.cpp) 

 

 CHECK PEDecoder::CheckFormat() const 

 { 

     CONTRACT_CHECK 

     { 

         INSTANCE_CHECK; 

         NOTHROW; 

         GC_NOTRIGGER; 

     } 

     CONTRACT_CHECK_END; 

  

     CHECK(HasContents()); 

  

     if (HasNTHeaders()) 

     { 

         CHECK(CheckNTHeaders()); 

  

         if (HasCorHeader()) 

         { 

             CHECK(CheckCorHeader()); 

  

             if (IsILOnly())           

                 CHECK(CheckILOnly()); 

  

             if (HasNativeHeader()) 

                 CHECK(CheckNativeHeader()); 

  

             CHECK(CheckWillCreateGuardPage()); 

         } 

     } 

  

     CHECK_OK; 

 }     
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The CHECK macro in this code simply results in calls to segment-specific verification functions, all of 

which are found in Check.h. They each encode very specific rules, depending on the segment; this is a 

useful file to read if you are looking for specifics of the CLI format. 

PE validation, which is what PEDecoder does, is distinct from metadata validation, which is also very 

important. Metadata tokens are essentially a form of indirect addressing, and because they are directly 

embedded into both CIL and attribute values for assemblies, they must be consistent with the tokens found 

in their assemblies to be valid. CIL and the metadata tables themselves are checked for consistency in 

several stages. We will take a careful look at how this is done in Chapter 5. 

Application Domains 

Application domains (also frequently called ―app domains‖) are critical to understanding assembly loading 

within the execution engine. They tend to be a bit mysterious and are often described in terms of their 

similarity to process address spaces, since they scope the visibility of components and resource handles, as 

well as provide a security and fault isolation barrier. But from our component model implementation point 

of view, they are not mysterious at all; application domains are the architectural elements that are 

responsible for loading and unloading assemblies into the execution engine. In addition, while assemblies 

are resident in memory, application domains provide for isolation on their behalf. 

Although the isolation provided by application domains may bear some passing similarities to an operating 

system address space, they actually coexist within a single address space for a process. Because of this, all 

domains in a process share execution engine services such as the garbage collector. Application domains 

provide the means for externalizing references to their components, which means that their components can 

set up channels of communication between one another under a programmer‘s control. Because component 

instances can pass such externalized references among themselves, threads of execution can traverse app 

domain boundaries; the execution engine carefully monitors these transitions to maintain isolation. 

Assemblies are always loaded within the context of an app domain. All communication to and from 

external processes or components in other domains is mediated by the presence of a component‘s domain; 

the execution engine has remoting and marshaling machinery that enforces isolation under the control of 

the app domain. When the cost of using this machinery is too high or when it is unnecessary, managed 

processes have the alternative of caching their assemblies in a domain that is reserved for the purpose of 

sharing assemblies. This is a special case, and it should be used only when necessary, since it compromises 

the protection afforded by domain isolation. 

There are three well-known domains in every SSCLI process. The first is called the system domain, which 

is essentially a bootloader for types that are integral to the loading process, such as System.AppDomain 

and System.Exception. The system domain loads and maintains a single assembly, named 

mscorlib, which contains only trusted types and is not available for use for any other purpose. The 

system domain provides programmers with a way to root their searches for assemblies—there is a closure 

across all loaded types, which emanates from the system domain. 

For nonsystem types that need to be shared, there is another special domain called the shared domain. 

Assemblies loaded in the shared domain are said to be domain-neutral, and their types are made directly 

available within every domain in the process. To be eligible for loading within this domain, an assembly 

must be strongly named and highly trusted. Advantages to being domain-neutral include resource savings 

in load time and memory consumption, and possibly lower marshaling costs. Note that not everything in 

the shared domain is shared; even when assemblies use it to cache their execution engine data structures 

and JIT-compiled code, individual domains still maintain private instances of the statics needed by the 

assembly‘s types. 

Normal types, such as your own unshared executables and shared libraries, load into a default domain. 

However, programmers may also choose to partition and isolate application-defined boundaries by creating 

their own application domains programmatically, either directly from managed code or else from 

unmanaged code hosting the execution engine. When multiple domains are used in this way, if a single type 

is loaded into more than one domain, each domain will contain an independent set of execution engine data 



Chapter 4: Extracting Types from Assemblies  | 90 

structures to represent the type. This is necessary because the loading parameters may vary from domain to 

domain. Both class loaders and the security engine, which we will learn about in later chapters, are in 

cahoots with the implementation of app domains. 

See appdomain.cpp in sscli20/clr/src/vm for the implementation of AppDomain and the 

two special domains, SystemDomain and SharedDomain. All three C++ classes 

share a common superclass named BaseDomain, which implements many of their basic 

mechanisms. 

One of the most important features of application domains is that they provide the only way to unload types 

(and the dependent resources of these types) from the execution engine. When a domain is unloaded, it 

carefully reclaims all of the resources associated with it before removing itself from service. A domain 

tracks both managed and unmanaged object instances and resources, and to clean these up and implement 

unloading, load activity for these entities must be carefully tracked and contained in the first place. 

Agile Components 

Despite all of these precautions, in some very special cases, it is both permissible and desirable to leak 

object state across app domain boundaries. Components that behave in this way are called agile, since they 

can effectively move from domain to domain. Some important agile components include: 

Strings 

These are both common and have immutable state once loaded. This means that performance gains can 

be had by copying and caching their state across domains. 

Generics 

While Generics are not shared in Rotor, they are heavily shared in the commercial CLR 

implementation. See the various footnotes and sidebars in Chapter 6 for more information on Generics 

and its sharing mechanisms on the commercial platform. 

Type Handles 

The runtime data structures that encapsulate Reflection based information about types are cached and 

shared between domains. An all too common anti-pattern is to try and take a lock on a 

System.Type, only to wait forever while other code in another domain greedily locks on to it.   

Security objects 

These are part of the execution engine infrastructure even though they are implemented as managed 

code. Security objects are backed by the global state of the execution engine itself, and because they 

can get to their state from within any domain, they qualify as agile. 

Localization tables 

These are very large, and duplicating them on a per-domain basis would be expensive, so they are 

implemented as agile. 

Components that are part of the remoting infrastructure 

These components must, by the nature of the service that they provide, be able to cross domain 

boundaries. They too are part of the execution engine infrastructure and are implemented as managed 

components. 

The set of agile components is important but limited. They are often loaded into the system domain, since 

this domain can act as a home for trusted components that need to be available in every context. The 

complexities of implementing agile components, which include limits such as a strict ban on holding any 

references to non-agile components, restrict their representational possibilities. 
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Bootstrapping the Assembly Load Process 

Executing the code stored within an assembly is a chicken-and-egg scenario. The assembly cannot execute 

until it has been resolved, loaded into the CLI, verified, and JIT-compiled. The CLI itself is simply a body 

of code, contained in assemblies that must be loaded into the process space and run. Fortunately, this is a 

classic bootstrapping problem, and implementation solutions abound. For the SSCLI implementation, a 

special entry point into the primary assembly is all that is needed, along with some initial security 

conditions, which are attached to the assembly as data. 

The bootstrap API makes hosting the CLI a simple thing to do, as evinced by Rotor‘s program launcher, 

clix.exe, whose code can be found in sscli20/clr/src/tools/clix, and whose main function, Launch, appears 

without error handling in Example 4-5. 

Example Error! No text of specified style in document.-5. The Launch function of clix.exe 

 

DWORD Launch(WCHAR* pFileName, WCHAR* pCmdLine) 

{ 

    WCHAR exeFileName[MAX_PATH + 1]; 

    DWORD dwAttrs; 

    DWORD dwError; 

    DWORD nExitCode; 

 

    dwAttrs = ::GetFileAttributesW(pFileName); 

 

    if (dwAttrs == INVALID_FILE_ATTRIBUTES)  

    { 

        dwError = ::GetLastError(); 

    } 

    else if ((dwAttrs & FILE_ATTRIBUTE_DIRECTORY) != 0)  

    { 

        dwError = ERROR_FILE_NOT_FOUND; 

    } 

    else  

    { 

        dwError = ERROR_SUCCESS; 

    } 

  

    if (dwError == ERROR_FILE_NOT_FOUND)  

    { 

        // If the file doesn't exist, append a '.exe' extension and 

        // try again. 

  

        const WCHAR *exeExtension = L".exe"; 

        if (wcslen(pFileName) + wcslen(exeExtension) < 

                sizeof(exeFileName) / sizeof(WCHAR)) 

        { 

            wcscpy(exeFileName, pFileName); 

            wcscat(exeFileName, exeExtension); 

            dwAttrs = ::GetFileAttributesW(exeFileName); 

 

            if (dwAttrs == INVALID_FILE_ATTRIBUTES)  

            { 

                dwError = ::GetLastError(); 

            } 

            else if ((dwAttrs & FILE_ATTRIBUTE_DIRECTORY) != 0)  

            { 

                dwError = ERROR_FILE_NOT_FOUND; 

            } 

            else  

            { 

                pFileName = exeFileName; 
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                dwError = ERROR_SUCCESS; 

            } 

        } 

    } 

  

    if (dwError != ERROR_SUCCESS)  

    { 

        // We can't find the file, or there's some other problem. Exit with an 

error. 

        fwprintf(stderr, L"%s: ", pFileName); 

        DisplayMessageFromSystem(dwError); 

        return 1;   // error 

    } 

 

    nExitCode = _CorExeMain2(NULL, 0, pFileName, NULL, pCmdLine); 

 

    // _CorExeMain2 never returns with success 

    _ASSERTE(nExitCode != 0); 

 

    DisplayMessageFromSystem(::GetLastError()); 

 

    return nExitCode; 

} 

With this code, an assembly is loaded, fed to the CLI, executed, and the return code is fed back to the 

operating system.  

Why is clix necessary? On Windows, the commercial .NET Framework uses a tiny 

executable entrypoint to launch managed executables directly, without the need for a 

helper program. This executable stub consists of a jmp instruction that transfers control 

to _CorExeMain and is defined as part of the image‘s file format. 

There are two reasons that Rotor doesn‘t do this. First, such a mechanism cannot be done 

portably (although platform-specific code could certainly be written for the purpose). 

Second, and more importantly, to enable many versions of the CLI to easily run side-by-

side, the Rotor team opted use a simple and configurable helper program that is tied to 

the version being run, rather than more complex launch mechanisms. 

clix performs the following steps when hosting the runtime: 

1. Registers the rotor_palrt library using PAL_RegisterLibrary. The rotor_pal and rotor_palrt 

libraries combine to provide the PAL implementation that is needed to run the SSCLI. 

2. Obtains the assembly name to feed to the CLI as the executing assembly. Within clix, this is obtained 

from the command line. 

3. Obtains the name of the execution engine to be loaded. In the case of clix, this is obtained by working 

from the full path to clix.exe and stripping out the program name. 

4. Loads the sscoree library and obtains the function pointer for _CorExeMain2. A host could of 

course choose to bind directly against the CLI library but would then be unable to take advantage of 

running against newer versions of the CLI. 

5. Call _CorExeMain2 with the mapped file for the assembly to be loaded, and let the CLI execution 

engine take over. 

Having loaded the CLI into the process space, the call from clix to _CorExeMain2 will cause the CLI to 

initialize itself, through a call to CoInitializeEE, to create the system and default domains and other 

necessary internal bookkeeping constructs, then calls the ExecuteMainMethod method, which 

ultimately calls RunMain on the ClassLoader instance for the assembly. 
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Example Error! No text of specified style in document.-6. Bootstrap assembly loading (from 

appdomain.cpp) 

 

void SystemDomain::ExecuteMainMethod(HMODULE hMod, __in LPWSTR path /*=NULL*/) 

{ 

    Thread *pThread = GetThread(); 

    _ASSERTE(pThread); 

 

    FrameWithCookie<ContextTransitionFrame> frame; 

    pThread->EnterContextRestricted( 

        SystemDomain::System()->DefaultDomain()->GetDefaultContext(), &frame); 

    _ASSERTE(pThread->GetDomain()); 

    { 

        AppDomain *pDomain = GetAppDomain(); 

  

        PEImageHolder pTempImage(PEImage::OpenImage(path)); 

        if (!pTempImage->CheckILFormat()) 

        { 

            ThrowHR(COR_E_BADIMAGEFORMAT); 

        } 

        PEFileHolder pTempFile(PEFile::Open(pTempImage.Extract())); 

 

        // Check for CustomAttributes - Set up the DefaultDomain and the main thread 

        // Note that this has to be done before ExplicitBind() as it 

        // affects the bind 

        mdToken tkEntryPoint = pTempFile->GetEntryPointToken(); 

            ReleaseHolder<IMDInternalImport> scope(pTempFile->GetMDImportWithRef()); 

 

        // This can potentially run managed code. 

        InitializeDefaultDomain(FALSE); 

 

 

        if((!IsNilToken(tkEntryPoint)) && (TypeFromToken(tkEntryPoint) == 

mdtMethodDef)) 

            SystemDomain::SetDefaultDomainAttributes(scope, tkEntryPoint); 

 

        NewHolder<PEFileSecurityDescriptor> pSecDesc( 

            new PEFileSecurityDescriptor(pDomain, pTempFile)); 

        Security::Resolve(pSecDesc); 

        if (Security::AllowBindingRedirects(pSecDesc)) 

            pDomain->TurnOnBindingRedirects(); 

 

     

        PEAssemblyHolder pFile(PEAssembly::Open(pFusionAssembly, NULL, pFusionLog)); 

 

        pDomain->m_pRootAssembly = GetAppDomain()->LoadAssembly(NULL, pFile, 

FILE_ACTIVE); 

        if (CorCommandLine::m_pwszAppFullName == NULL) { 

            StackSString friendlyName; 

            StackSString assemblyPath = pFile->GetPath(); 

            SString::Iterator i = assemblyPath.End(); 

 

            if (PEAssembly::FindLastPathSeparator(assemblyPath, i)) { 

                i++; 

                friendlyName.Set(assemblyPath, i, assemblyPath.End()); 

            } 

            else 

                friendlyName.Set(assemblyPath); 

 

            pDomain->SetFriendlyName(friendlyName, TRUE); 

        } 

    } 
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} 

 

Notice how the code in Example 4-6 demonstrates the use of metadata tokens. The entrypoint for an 

executable assembly is stored as a method metadata token. Note the use of the PEImageHolder in 

Example 4-6 to retrieve the entrypoint token. As we saw in Example 4-4, this class is a wrapper that yields 

the location of important data about disk layout. Also note the operational details: a garbage collection pass 

should not be happening when the main entrypoint is called, and the thread that the code will be running on 

must not be marked as ―background,‖ since background threads do not keep the execution engine alive. 

 

Example Error! No text of specified style in document.-7. Bootstrap assembly loading (from clsload.cpp) 

 

HRESULT ClassLoader::RunMain(MethodDesc *pFD , 

                             short numSkipArgs, 

                             INT32 *piRetVal, 

                             PTRARRAYREF *stringArgs /*=NULL*/) 

{ 

    STATIC_CONTRACT_THROWS; 

    _ASSERTE(piRetVal); 

 

    DWORD       cCommandArgs = 0;  // count of args on command line 

    DWORD       arg = 0; 

    LPWSTR      *wzArgs = NULL; // command line args 

    HRESULT     hr = S_OK; 

 

    *piRetVal = -1; 

 

    if (!pFD) { 

        _ASSERTE(!"Must have a function to call!"); 

        return E_FAIL; 

    } 

 

    CorEntryPointType EntryType = EntryManagedMain; 

    ValidateMainMethod(pFD, &EntryType); 

 

    if ((EntryType == EntryManagedMain) && 

        (stringArgs == NULL)) { 

  

        wzArgs = CorCommandLine::GetArgvW(&cCommandArgs); 

  

        if (cCommandArgs > 0) { 

            if (!wzArgs) 

                return E_INVALIDARG; 

        } 

    } 

 

    EX_TRY_NOCATCH 

    { 

        MethodDescCallSite  threadStart(pFD); 

         

        PTRARRAYREF StrArgArray = NULL; 

        GCPROTECT_BEGIN(StrArgArray); 

 

        // Build the parameter array and invoke the method. 

        if (EntryType == EntryManagedMain) { 

            if (stringArgs == NULL) { 

                // Allocate a COM Array object with enough slots for cCommandArgs - 

1 

                StrArgArray = (PTRARRAYREF) AllocateObjectArray( 

                    (cCommandArgs - numSkipArgs), g_pStringClass); 
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                // Create Stringrefs for each of the args 

                for( arg = numSkipArgs; arg < cCommandArgs; arg++) { 

                    STRINGREF sref = COMString::NewString(wzArgs[arg]); 

                    StrArgArray->SetAt(arg-numSkipArgs, (OBJECTREF) sref); 

                } 

            } 

            else 

                StrArgArray = *stringArgs; 

        } 

 

        ARG_SLOT stackVar = ObjToArgSlot(StrArgArray); 

 

        if (pFD->IsVoid())  

        { 

            // Set the return value to 0 instead of returning random junk 

            *piRetVal = 0; 

            threadStart.Call(&stackVar); 

        } 

        else  

        { 

            *piRetVal = (INT32)threadStart.Call_RetArgSlot(&stackVar); 

            if (stringArgs == NULL)  

            { 

                SetLatchedExitCode(*piRetVal); 

            } 

        } 

 

        fflush(stdout); 

        fflush(stderr); 

    } 

    return hr; 

}  

 

Notice how the code in Example 4-7 demonstrates the use of a MethodDesc token. The entrypoint for an 

executable assembly is stored as a method metadata token and the predecessor in the call stack 

(ExecuteMainMethod, found in Example 4-6), which converts the metadata token of the Main method 

in to a MethodDesc handle. Invocation of the Main method is done through a MethodDescCallSite 

instance, which wraps the Main method. 

 

    threadStart.Call(&stackVar); 

Securing Against Harmful Assemblies 

The SSCLI supports Code Access Security (CAS) , which is a component-aware approach to security that 

extends traditional OS security concepts. The goal for the SSCLI is to provide a level playing field for the 

components themselves, to enable code from many sources to be combined into applications. Since 

programs run under the control of the execution engine, and since component code is verified when it is JIT 

compiled, it is possible for the CLI execution engine to intervene when components misbehave. Because 

this is possible, the runtime enforcement mechanisms of code access security have real teeth. They would 

not be possible without managed execution as their foundation. 

Code access security combines permissions with evidence and policy. There are two parts to CAS: the 

assembly load phase and the runtime enforcement phase. We will talk briefly about the load phase at this 

point and defer the discussion of how runtime enforcement is achieved until Chapter 8. 

Permissions represent specific capabilities, such as the ability to read a file. Permissions are used in 

permission grants and permission demands, which are runtime actions that are tracked and enforced by the 

CAS service within the execution engine. A permission grant (henceforth referred to as just a ―grant‖) is an 
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authorization based on some combination of policy and evidence; a demand is a check for the 

corresponding grant. 

Within an assembly, permissions may be associated with resources, code identity, or user identity, and are 

granted to code on a per-assembly basis rather than on a per-user or per-process basis. Permissions are 

applied to code either declaratively, in which case custom attributes specify behavior in conjunction with 

policy, or imperatively, in which case code is written to manipulate the CAS service directly to specify 

behavior. There are numerous resource permissions built into the SSCLI, such as the 

FileIOPermission, the EnvironmentPermission, and the UIPermission. There is also 

support for code identity permissions based on strongname. Finally, there is very basic skeletal support for 

generic user identities and authorization, as well as role-based identities. To see how these are implemented 

and to learn about others, look in the sscli20/clr/src/bcl/system/security/permissions directory. 

The programmer responsible for an assembly provides the nucleus around which the CAS service operates. 

In the assembly‘s code, either as attributes or as direct API calls, security requirements are specified 

through grants and demands. On top of this nucleus, the user or administrator who is responsible for the 

runtime well-being of its applications must also have a say in specifying security requirements and 

behaviors. In the CAS service, this is referred to as policy and is implemented as a set of XML 

configuration files (much like the versioning configurations that we examined earlier in this chapter). 

Evidence is information about the assembly to be loaded and is used by the CLI in conjunction with policy 

to make binding decisions about which permissions to grant and which to deny. Evidence is implicitly 

trusted information, and the execution engine has built-in support for certain types of evidence, such as 

digital signatures or the directory from which an assembly is loaded. Assemblies can also provide 

additional evidence in the form of permission set requests, which are useful because they allow 

programmers who create components to provide evidence on their own behalf. The evidence to support 

permission set requests can be put into an assembly in serialized form, to be deserialized when the CAS 

engine prepares to audit the evidence at runtime. 

An assembly‘s set of grants is determined by combining evidence, assembly demands, and policy at 

runtime. In order for this to be secure, a careful loading sequence must be followed, during which evidence 

and policy are created in preparation for their interpretation. One of the great advantages of the CLI‘s data-

driven model is that the persistent representation of assemblies can accommodate this carefully specified 

mechanism in a way that allows new or custom data to be added after the fact. Evidence is an example of 

the sort of annotation for which this capability is important, since the runtime conditions under which a 

component is used may change drastically over the years. 

Evidence attached to code is itself represented as components, and is extensible. Of course, custom 

evidence will be taken into consideration only if the policy being applied looks for it during the loading 

process, but the execution engine has been designed to allow for this kind of extension. Assemblies can 

contain custom evidence directly as serialized data or can provide it programmatically. 

Summary 

In many ways, assemblies are what programmers think of as components. In their on-disk form, they are 

durable atoms that can move, as needed, from CLI to CLI and from application version to application 

version. As a key element of the CLI component model, they are the packages within which types are 

named and implemented, and from which types are extracted. Assemblies also define the unit of isolation 

for the code access security model, which facilitates safe interactions between independently developed 

components by enforcing isolation (in conjunction with the execution engine). 

Binding to disk-based assemblies is usually name-based, and the namespace used to bind to assemblies 

provides scoping flexibility as systems evolve over time. While the common path is to load from disk, it is 

also important for compilers and tools to have the ability to create assemblies on the fly, and dynamic 

assemblies are supported for this purpose. Dynamic assemblies can be used to create new on-disk 

assemblies programmatically or create new in-memory assemblies that can be run immediately. 
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Once an assembly has been loaded into the CLI either dynamically or by using an application domain, its 

types and security data are ready to be converted from their passive PE format into the runtime structures 

that drive the CLI. Each type will be loaded and compiled in turn from the assembly on demand, which is 

the subject of the next two chapters. 
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5. Synthesizing Components 

In CLI component-based applications, references between types are represented symbolically using names, 

as we saw in Chapter 4. This chapter investigates how a set of running components can be synthesized just-

in-time by following these symbolic names. Just-in-time synthesis customizes component structure and 

behavior to a local environment. Using this technique, the execution engine can create optimizations and 

adaptation wrappers for the benefit of the component. 

A gap exists between the CLI‘s logical representation of a component, expressed as assembly metadata and 

CIL, and the physical structure and machine instructions needed to execute on an actual microprocessor. To 

create components and run the behaviors associated with them, the execution engine must bridge this gap 

and convert the logical representation into data types and instructions that the underlying CPU can 

understand. CIL must be transformed into opcodes and operands; component metadata must be realized as 

in-memory data structures that fit both the microprocessor‘s conventions and any constraints imposed by 

the host operating system. In short, the execution engine must play by the rules imposed by the hardware 

and operating system at runtime. 

In a traditional approach to compilation, a compiler frontend parses high-level type descriptions and 

converts them into an intermediate representation, performing data layout at the same time. The back-end 

then converts the CIL to a flow graph, optimizes it, and produces relocatable native code along with two 

sets of symbols: imports, which will be used to locate foreign addresses during linkage, and exports, whose 

addresses will likewise be provided for the use of other modules. At link time, multiple modules are 

combined into a single executable image, addresses and offsets contained within their code are recalculated 

as necessary, and symbolic names are resolved by patching these recalculated addresses into the compiled 

code. Once the linker has produced a complete executable image, a loader is responsible for placing it into 

virtual memory with execution permissions, as well as performing any remaining relocations (such as 

taking care of dynamically loadable libraries). 

While this approach has proven to be effective for many years, it has weaknesses when it comes to 

deployment. In particular, at the moment that code is generated, data structures are laid out, names are 

bound to addresses, or the implementation is tied to processor-specific details. This approach is more brittle 

than it needs to be, especially when components must adapt within systems that change over time. The 

designers of the CLI wanted to alleviate this brittleness by allowing compilation, layout, and linkage to be 

deferred until the last possible moment, totally sidestepping many of the issues that come from changes in 

the execution environment. To do this, the jobs performed by compiler, linker, and loader had to be 

redistributed. Although compilers still produce intermediate language in the form of CIL, the execution 

engine has become responsible for all other tasks. In addition, CLI metadata is not thrown away as it is 

used by these compilers, but is instead kept for later use by runtime services. (We will see some of the 

ways that they use it in Chapter 9 and Chapter 10.) Many gains result from this approach, including 

improved security and reduced on-disk code size. We will discuss these as we discuss how compilation and 

linkage happen within the SSCLI. 

The Anatomy of a Component 

Given an instance of a managed component, how is it concretely represented within the CLI‘s execution 

engine? We know that we can get a detailed look at the logical structure of a component by running ildasm 

and viewing the metadata for its type members; however, this tool shows logical structure only. This is not 

enough; the decision process used by the execution engine to turn these elements into actual memory 
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locations that contain processor instructions or data cannot be predicted by examining metadata alone 

(except for rare cases in which explicit layout information has been provided by the programmer). 

The physical way in which Rotor maintains an object instance and its related type information is quite 

complex, and the elements that compose its parts are split across many different regions of memory. Figure 

5-1 shows the anatomical detail, in gruesome detail. We will spend most of this and the next two chapters 

dissecting the parts contained in this diagram. 

 

 
 

Figure Error! No text of specified style in document.-6. The structure of an object and 

its type is complex 

To understand how the execution engine augments CLI metadata through the application of environment-

specific layout rules, we will examine the elements of an object instance, and work our way backwards 

through the data structures that represent its type and their creation. Although this might seem like putting 

the cart before the horse, it gives us a chance to appreciate the large differences between the abstract world 

of the CLI and its concrete realization within a specific operating system/processor pair. 

Component Instance Structure 

Object instances, although they appear to be tightly consolidated units in high-level programming 

languages, are actually not represented as monolithic chunks of contiguous memory within the SSCLI. Of 

course, an object can be represented with a single, pointer-sized reference in memory, as anyone who has 

looked at the parameters associated with CIL‘s opcodes can attest. Given that component references of this 

form are the only tangible manifestation for managed objects, it stands to reason that it is possible to find 

and navigate the important data structures associated with such instances by starting from references to 

them. 

As we saw in the first chapter, component instances are created within the CLI‘s garbage-collected heap by 

CIL instructions such as newobj or newarr. (Chapter 9, which covers memory management, will cover 

this heap in detail; however, to talk about runtime representation, we will present a basic understanding of 

internal layout without delving into how the memory is allocated or managed.) Every component instance 

created in this way contains a reference to a table of function pointers called a MethodTable, whose 

entries point to code for method implementations. (In many ways, MethodTable is an imprecise name 
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for this structure, because it will end up holding far more than just methods when all is said and done.) The 

MethodTable, since it contains per-type data, can be shared by all instances of a given type; all 

component instances contain a reference to a MethodTable in their first available memory location. 

When you are holding a reference to a component, you are actually holding a pointer to its 

MethodTable. While instance-specific data resides in the garbage collector‘s heap, or on a thread‘s 

stack, all of the type description information, compiled code, and execution engine context that goes along 

with that instance data resides in memory belonging to the execution engine. All of it is accessed by using 

the object‘s MethodTable pointer, behind which lives the bewildering maze of type information shown 

in Figure 5-1. 

Before diving into this type information, however, we should examine the structure of the instance data. 

Recall that reference types have a small amount of overhead associated with each object instance (for 

synchronization support, for example). Intuitively, one would expect to find that overhead clearly 

delineated in a core C++ class somewhere, perhaps in the CLI implementation of System.Object. 

Unfortunately, it‘s not quite that easy. 

Looking in clr/src/vm/object.h, which represents the structure and implementation of the most generic type, 

System.Object, only one field, the MethodTable pointer mentioned earlier, is defined in the C++ 

Object class, as shown in Example 5-1. 

Example Error! No text of specified style in document.-1. The C++ class that represents objects within 

the execution engine 

 

class Object 

{ 

  protected: 

    MethodTable    *m_pMethTab; 

    // many method declarations follow 

}; 

The impression given by this C++ class—that there is a single, pointer-sized field shared by every object—

is wrong because not all of the data for a given instance of every component lies in the heap. There is an 

additional ―invisible‖ field in every component instance that is used for memory bookkeeping, and the 

minimum size of an object is actually larger than 8 bytes, as we will find out in our discussion of heap 

traversal in the ―Reclaiming Memory‖ section of Chapter 9. These implementation factoids aside, the 

simple case holds true in many situations: an instance can often be found completely on the heap. If the 

instance does not use execution engine services that tack on additional state, the instance data will be a 

simple single block of memory. However, any instance, once it has been created, may use execution engine 

services (such as automatic thread synchronization) that dynamically allocate control structures and then 

associate them with an instance. These structures are allocated in memory that is private to the execution 

engine rather than in the garbage collector‘s heap, making matters more complex. To solve this problem, 

instance data and instance control structures are split, and the control structures are accessed using what is 

called the instance‘s sync block index. The name is something of a misnomer, since the sync block can 

contain many things besides synchronization data, but like the MethodTable pointer, it is a field that is 

contained in every component instance. 

To ―see‖ the sync block index, look at the implementation of the GetHeader method of Object, shown 

below (again, from clr/src/vm/object.h): 

 

    // Access the ObjHeader which is at a negative offset on the object (because of 

    // cache lines) 

    ObjHeader   *GetHeader() 

    { 

        return PTR_ObjHeader(PTR_HOST_TO_TADDR(this) - sizeof(ObjHeader)); 

    } 

If this construct is unfamiliar, don‘t panic. It is an approach that is sometimes used in C/C++, in which 

there is an anonymous slot before the MethodTable reference that can be cast to an ObjHeader. This 
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allows every object reference to carry information that‘s not formally part of the Object class. C++ 

compilers often put vtable references in front of the object‘s address for similar reasons: given a pointer to 

user-visible data, the internal implementation of the language knows where to find associated 

administrative data very quickly (in this sample case, the vtable for virtual method dispatch). Pictorially, 

the technique looks something like Figure 5-2. 

 

 
 

The PTR_HOST_TO_ADDR macro is a part of a general widespread cleanup that took 

place with the Whidbey source base after the release of the first version of the CLR. 

Because pointers will need to be marshaled and unmarshaled during debugging scenarios 

from remote (where ―remote‖ here means anything outside this process) debuggers, like 

WinDbg, cbd, ntsd, or Visual Studio, Microsoft created a library (the Data Access 

Component, or DAC) that would handle the process of preparing pointer-based data for 

transport across these boundaries. In order to simplify the usage of the DAC library, all 

access to it is done through macros like the above. 

Looking at clr/src/vm/syncblk.h, the class definition of ObjHeader reads as follows: 

 

    class ObjHeader 

    { 

      private: 

        DWORD  m_SyncBlockValue;      // the Index and the Bits 

      public: 

     // Access to the Sync Block Index, by masking the Value. 

     DWORD GetHeaderSyncBlockIndex() 

     { 

         LEAF_CONTRACT; 

  

         // pull the value out before checking it to avoid race condition 

         DWORD value = m_SyncBlockValue; 

         if ((value & (BIT_SBLK_IS_HASH_OR_SYNCBLKINDEX | BIT_SBLK_IS_HASHCODE)) 

!= 

                BIT_SBLK_IS_HASH_OR_SYNCBLKINDEX) 

             return 0; 

         return value & MASK_SYNCBLOCKINDEX; 

     }; 

 

         

     // Ditto for setting the index, which is careful not to disturb the 

underlying 

     // bit field -- even in the presence of threaded access. 
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     //  

     // This service can only be used to transition from a 0 index to a non-0 

index. 

     void SetIndex(DWORD indx) 

     { 

         LONG newValue; 

         LONG oldValue; 

         while (TRUE) { 

             oldValue = *(volatile LONG*)&m_SyncBlockValue; 

             _ASSERTE(GetHeaderSyncBlockIndex() == 0); 

             // or in the old value except any index that is there -  

             // note that indx could be carrying the  

                // BIT_SBLK_IS_HASH_OR_SYNCBLKINDEX bit that we need to preserve 

             newValue = (indx |  

                 (oldValue & ~(BIT_SBLK_IS_HASH_OR_SYNCBLKINDEX |  

                                  BIT_SBLK_IS_HASHCODE |  

                                  MASK_SYNCBLOCKINDEX))); 

             if (FastInterlockCompareExchange((LONG*)&m_SyncBlockValue,  

                                              newValue,  

                                              oldValue) 

                 == oldValue) 

             { 

                 return; 

             } 

         } 

     } 

} 

Figure Error! No text of specified style in document.-7. The ObjHeader and Object for 

instances lie back-to-back in the heap 

ObjHeader and Object, although they are distinct C++ classes, are actually allocated as a pair and 

located back-to-back at the beginning of every component instance. In the code for ObjHeader note that 

the field m_syncBlockValue is a compound value that can contain a number of different things: a 

LONG value used as an index, some bitflags and a bit used as a spinlock (which is a lock that can be taken 

by actively looping until the bit becomes available using an atomic test-and-set opcode). Because of this, it 

is important to be careful when changing the value contained in the field—the call to 

FastInterlockCompareExchange guards against race conditions. 

Additional instance state is accessed by using the index portion of m_syncBlockValue; if it is 0, there 

is no additional state. If it has a nonzero value, then there will be an entry at the corresponding offset in the 

table contained in the global variable named g_pSyncTable. For more details as to how this lazy 

initialization works and the things that it can contain, such as locks and hash values, see the comments in 

clr/src/vm/syncblk.h. 

ArrayBase and other derived types such as StringObject or StringBufferObject will contain 

additional fields tacked onto the instance, such as lowerbound or length, and, in general, component 

instances will include storage for the instance data that they encapsulate. Do note, however, that JIT-

compiled components make no guarantees about ordering of the layout within an object instance; the 

compiler is free to make optimal choices. We will see how type members such as fields are created by the 

JIT compiler later in this chapter. 

The Hierarchy of Runtime Metadata 

Besides the instance data itself, it is important to have an instance‘s type information available at runtime; 

this information can be explicitly queried by the programmer using methods of System.Object, and it 

is also needed for the normal workings of the execution engine during compilation, garbage collection, 

virtual dispatch, and other runtime services. 

Assembly loading in the SSCLI, as we‘ve seen, is the first step in the process of converting type 

descriptions from their original format (which is designed to be used for persistent storage) into in-memory 
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structures and opcode sequences. Once an assembly has been loaded in this way, its type metadata becomes 

available in a different, pointer-based format, which can easily be combined with information about the 

ambient execution environment to plan the layout of types in memory. This layout format is described 

below; it is divided into two different structures, one of which contains ―hot‖ data that needs to be quickly 

available during program execution (such as method pointers or information used by the garbage collector), 

and the other which contains ―cold‖ data such as structural information about sizes and members that is 

typically needed only by compilers or by the CLI reflection APIs. MethodTable, which we‘ve already 

seen, contains the hot data, while EEClass contains the cold. These structures are split to achieve better 

locality of reference and take advantage of processor caches, when possible. 

More about MethodTables 

MethodTable is a complex data structure that consists of a header followed by the variable-length table 

of method and interface pointers that is the origin of its name. It also has a companion class, named 

GCDesc, which optionally lives before the header at a negative offset and, if it is needed, is allocated with 

the MethodTable as a pair. (GCDesc will be discussed in Chapter 7, since it is an important piece in the 

garbage-collection puzzle.) The header portion of MethodTable is shown in Example 5-2, and Figure 5-

1 shows the back-to-back relationship of the MethodTable and the GCDesc. 

Example Error! No text of specified style in document.-2. The header portion of MethodTable (defined in 

clr/src/vm/methodtable.h) 

 

 

class MethodTable 

{ 

    // Low WORD is component size for array and string types, zero otherwise 

    DWORD           m_wFlags; 

 

    // Base size of instance of this class when allocated on the heap 

    DWORD           m_BaseSize; 

 

    WORD            m_wFlags2; 

         

    WORD            m_wNumMethods;  

    WORD            m_wNumVirtuals; 

    WORD            m_wNumInterfaces; 

 

    PTR_MethodTable m_pParentMethodTable; 

 

    PTR_Module      m_pLoaderModule;     

 

    PTR_MethodTableWriteableData m_pWriteableData; 

 

    PTR_EEClass     m_pEEClass; 

 

     

    DPTR(PTR_Dictionary) m_pPerInstInfo; 

 

 static MetaSig      *s_cctorSig; 

 DispatchMap         *m_pDispatchMap; 

}; 

 

 

 

The MethodTable has two roles: it uniquely identifies a type at runtime, and is a fast and efficient way 

of navigating object layout at runtime, whether to dispatch to methods or fetch instance data. As a result, 

MethodTable is a data structure that has been optimized for high performance. Note that the 

m_pEEClass pointer links the hot data of the MethodTable to the cold data stored in an EEClass 

instance associated with the type. Also note the kind of information that is in this header: sizes, slot counts, 
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―maps,‖ and various indexes. Indexes, maps, and pointers are effectively computed shortcuts that enable 

fast traversal of important type data structures. 

Type Identity 
Version 1.0 of the SSCLI used the EEClass as the representation of type uniqueness. With the 

introduction of Generics in Version 2.0, MethodTable was refactored to be used as the strongest 

form of type identity as EEClasses became shared across Generic types.  

 

Example Error! No text of specified style in document.-3-1. The GetVTable method of MethodTable 

(defined in clr/src/vm/methodtable.h) 

 

    inline PTR_SLOT GetVtable() 

    { 

        return PTR_SLOT((PTR_HOST_TO_TADDR(this) + TADDR(GetVtableOffset()))); 

    } 

 

    static inline DWORD GetVtableOffset() 

    { 

        return (sizeof(MethodTable)); 

    } 

Example 5-2-1 shows vtable accessor methods declared in MethodTable. When the MethodTable is 

allocated, an array of SLOTs will be placed at the end of the MethodTable instance. Pictorially, this 

looks like the diagram in Figure 5-3.  

 

 
 

Figure Error! No text of specified style in document.-8. A MethodTable in memory has 

its length customized to the type that it represents 

The reason for using this technique is performance, just as it was for ObjHeader in the object instance. In 

both cases, lookup needs to be as fast as possible, since the MethodTable stores frequently accessed 

data. While the obvious thing to do would be to allocate the SLOT array using a separate dynamic 

allocation and then store the pointer in the MethodTable object, this would require an extra pointer 

indirection; this implementation requires no such indirection, since the beginning of the table lies at a fixed 

offset from the beginning of the object. 

The order of the vtable slots is carefully computed, as we will see below. Each slot contains a pointer to an 

executable piece of code in the form of a function that follows the standard CIL calling convention (more 

on that to follow). There are three sections in the array of slots: the static methods for the type being 

described, followed by any inherited methods that it has, followed by any introduced methods, which are 

methods defined by the type directly. Embedded within any or all of these three subsections are ranges of 

the table that constitute interface implementations. How this table is built will be covered in detail in the 
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later section ―Laying Out Method and Interface Tables‖; it is a somewhat complex process. The 

DispatchMap object also hangs off the MethodTable - this is used to execute a version 2.0 feature 

called Virtual Stub Dispatch, which is a dispatch mechanism for interface calls. This feature is further 

explained in the section ―Virtual Stub Dispatch‖. 

The final thing to note at this point is the MetaSig for the class constructor, found in s_cctorSig. This 

will be used to start up the managed type once it is loaded and an instance of the type has been requested. 

 

EEClasses 

Compared to MethodTable, EEClass is quite large, but it is also more straightforward. Near the top of 

the class definition, we find a number of struct definitions that begin with the prefix bmt, which stands for 

BuildMethodTable; these are used, along with a few of the EEClass fields, when constructing the 

type‘s MethodTable in the function of that name. Further down in the definition is the heart of the data 

structure, which contains the following fields, as shown in Example 5-3. 

Example Error! No text of specified style in document.-4. Some of the fields in the EEClass used by the 

execution engine. (defined in clr/src/vm/class.h) 

 

PTR_Module m_pModule; 

mdTypeDef m_cl; 

PTR_MethodTable m_pMethodTable; 

 

WORD m_wCCtorSlot; 

WORD m_wDefaultCtorSlot; 

BYTE m_NormType; 

WORD m_wNumInstanceFields; 

WORD m_wNumStaticFields; 

WORD m_wNumHandleStatics;  

WORD m_wNumBoxedStatics;  

WORD m_wNumGCPointerSeries; 

 

DWORD m_cbModuleDynamicID; 

DWORD m_cbNonGCStaticFieldBytes; 

DWORD m_dwNumInstanceFieldBytes; 

 

FieldDesc *m_pFieldDescList; 

 

DWORD m_dwAttrClass; 

volatile DWORD m_VMFlags; 

SecurityProperties m_SecProps; 

 

PTR_MethodDescChunk m_pChunks; 

 

BitMask m_classDependencies; 

 

DWORD m_dwReliabilityContract; 

Again, we find a number of fields that contain structural information for the type: not only things like 

counts of instance fields (m_wNumInstanceFields) and static fields (m_wNumStaticFields), but 

also less obvious, but highly important, things like m_wNumGCPointerSeries, which will contain the 

number of places where the object references can be found in an instance of this type. (This instance is used 

by the JIT compiler when it computes the contents of the GCDesc structure.)  

The list of FieldDesc entries (m_pFieldDescList) contains complete information about fields that 

are declared by the type represented by this EEClass. To find inherited fields, you must visit the parent 

EEClass instances by walking the chain of superclasses, starting with the parent class (obtained by calling 

m_pMethodTable->GetParentMethodTable()->GetClass(); in Rotor v1, this was given by 
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the field m_parentClass). The FieldDesc structure itself (defined in clr/src/vm/field.h) is quite 

compact; Example 5-4 shows its two data fields. 

Example Error! No text of specified style in document.-5. The FieldDesc class (defined in 

clr/src/vm/field.h) 

 

class FieldDesc 

{ 

    friend class MethodTableBuilder; 

 

  protected: 

    PTR_MethodTable m_pMTOfEnclosingClass; 

 

 unsigned m_mb               : 24; 

  

 unsigned m_isStatic         : 1; 

 unsigned m_isThreadLocal    : 1; 

 unsigned m_isContextLocal   : 1; 

 unsigned m_isRVA            : 1; 

 unsigned m_prot             : 3; 

 unsigned m_isDangerousAppDomainAgileField : 1;  

  

 unsigned m_dwOffset         : 27; 

 unsigned m_type             : 5; 

 

    // ... 

}  

Again, because of efficiency concerns (remember, there will be one of these for every field of every type 

throughout the entire CLI), FieldDesc is as compact as it can possibly be. As a result, key administrative 

information (such as whether it is a static field, whether it is thread-local or class-local, and so on) is kept in 

bitfields, sharing with fields that can spare the room. 

Method information is also stored in the EEClass, in batched form, using MethodDescChunk 

structures that are chained together; a single MethodDescChunk is, as its name implies, a ―chunk‖ of 

MethodDesc entries strung together for rapid access. As with fields, finding MethodDesc information 

introduced by superclasses requires walking the inheritance chain. As with FieldDesc,  MethodDesc is 

a compact structure marked with few data fields and many accessor methods to manipulate those fields. 

Consider the (very brief and heavily edited) definition of MethodDesc in Example 5-5, edited from 

clr\src\vm\method.hpp. 

Example Error! No text of specified style in document.-6. The MethodDesc structure (defined in 

clr/src/vm/method.hpp) 

 

UINT16      m_wTokenRemainder; 

BYTE        m_chunkIndex; 

 

enum { 

 // enum_flag2_HasPrecode implies that enum_flag2_HasStableEntryPoint is set. 

 enum_flag2_HasStableEntryPoint      = 0x01,    

        // The method entrypoint is stable (either precode or actual code) 

 enum_flag2_HasPrecode               = 0x02,    

        // Precode has been allocated for this method 

 enum_flag2_IsUnboxingStub           = 0x04, 

 enum_flag2_MayHaveNativeCode        = 0x08,    

        // May have jitted code, ngened code or fcall entrypoint. 

}; 

 

BYTE        m_bFlags2; 

 

// The slot number of this MethodDesc in the vtable array. 
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WORD           m_wSlotNumber; 

 

// Flags. 

WORD           m_wFlags;; 

 

 

ARG_SLOT CallOnInterfaceWorker      (const BYTE* pUNUSED, MetaSig* pMetaSig,  

                                     const ARG_SLOT* pArguments  

                                     DEBUG_ARG(BOOL fPermitValueTypes)); 

ARG_SLOT CallTransparentProxyWorker (const BYTE* pUNUSED, MetaSig* pMetaSig,  

                                     const ARG_SLOT* pArguments  

                                     DEBUG_ARG(BOOL fPermitValueTypes)); 

ARG_SLOT CallTargetWorker           (const BYTE* pTarget, MetaSig* pMetaSig,  

                                     const ARG_SLOT* pArguments, BOOL fCriticalCall  

                                     DEBUG_ARG(BOOL fPermitValueTypes)); 

 

ARG_SLOT CallDescr(const BYTE *pTarget, MetaSig* pMetaSig, const ARG_SLOT 

*pArguments,  

                   BOOL fIsStatic, BOOL fCriticalCall  

                   DEBUG_ARG(BOOL fPermitValueTypes)); 

  

There is an additional hidden field that precedes the MethodDesc at a negative offset. This field, which 

contains a thunk, is a critical and interesting piece of the SSCLI‘s runtime plumbing. It is discussed in the 

later section entitled ―Verifying and Compiling CIL‖. 

Within MethodDesc, the Call* methods are of paramount interest, since they represent the path that the 

execution engine will use to execute a method on a type—for example, during reflection-based invocation, 

or at the point that an assembly‘s .entrypoint method is called during startup, the 

CallTargetWorker method will be executed. Note that this does not imply that all method calls will 

come through the relevant Call* methods.  In fact, most JIT-compiled code will call an actual method 

body and bypass the MethodDesc entirely. When a method is invoked by name, the call must be made 

explicitly using the MethodDesc. 

The SecurityProperties that will be used when loading the class can be also be seen in this 

structure, as well as a pointer to a ClassLoader, which plays a critical role in the loading process; it 

synthesizes the runtime structures for the type, including this EEClass, from the assembly. 

Readers familiar with Java may wonder about the relationship between this 

ClassLoader and Java‘s ClassLoader architecture; even worse, they may draw 

dangerous inferences based on the similarity of the names. In point of fact, there is no 

relationship beyond their shared name. Both entities load classes in their respective 

execution environments—from there, however, all details wildly diverge. 

To summarize, component instances always contain a MethodTable pointer, which references a 

MethodTable that itself always contains a pointer to an EEClass. Although these two structures are 

separated for runtime efficiency, both are logically part of the same runtime data. The EEClass and the 

MethodTable (along with the optional SyncTable entry in some cases) define the structural properties 

of a class at runtime, and are initialized from the metadata found in a component‘s assembly. Referring 

once again to Figure 5-1, the MethodTable pointer, the one-to-many relationship between EEClass 

and MethodTable, and the optional SyncTable entry can all be seen. 

Viewing the Type, Method, and Interface Tables 

Having taken a quick tour of the elements that comprise the runtime structures used to describe types, it‘s 

time to examine how they are created and populated during the load of an assembly. 
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The Echo component, viewed from the debugger, will act as our concrete example of the class structure at 

runtime. Besides the physical layout of its structs, statics, and fields, the component has an interface, 

inherited methods, and introduced methods to deal with. Virtual methods are represented by contiguous 

chunks of method SLOTs, called vtables, a term that is borrowed from C++ that refers to the table of 

function pointers used to implement dispatch tables for virtual method calls. Interfaces are also defined in 

the vtable, but have a special semantic for dispatch – this is explained in the section titled ―Interface Layout 

and Virtual Stub Dispatch‖. The Echoer interface, as an example, contains a single virtual method, and so 

its vtable will have a single corresponding SLOT. The Echo class, on the other hand, has a constructor, a 

class constructor, a property (which will have two method SLOTs, one for the get implementation and 

another for the set implementation), an event handler (which will also have two method SLOTs), and 

finally, an introduced method named DoEcho. Echo also inherits all of the fields and methods of its 

superclass, which is System.Object. Taking these into account, Echo will have an inherited vtable for 

System.Object, and six new SLOTs added to the end of the MethodTable to hold its introduced 

methods and constructors. Thus, the final vtable for the Echo class will look, schematically, like Figure 5-

4. 

 

 
 

Figure Error! No text of specified style in document.-9. Method and interface layout for 

the Echo component 

Consider the code that exercises the Echo component, shown in Example 5-6. 

Example Error! No text of specified style in document.-7. Exercising the Echo component 

 

using System; 

using SampleEcho; 

 

namespace MainSampleProgram 

{ 

  class EchoProgram 

  { 

    static void Main(string[] args) 

    { 

      Echo myEcho; 

      EchoValue[] result; 

 

      if (args.Length > 0) { 

        myEcho = new Echo(args[0].ToString()); 

      } else { 

        myEcho = new Echo("Hi, mom!"); 

      } 

 

      // Set up an event handler and hook to component 

      Echo.EchoEventHandler handler = 

        new Echo.EchoEventHandler(CallMe); 

      myEcho.OnEcho += handler; 
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      try  { 

        System.Console.WriteLine(); 

        myEcho.DoEcho(out result); 

        System.Console.WriteLine("Main program received echo!"); 

        for (int i = 0; i < result.Length; i++) { 

          Console.WriteLine("{0}: {1}, {2}", i, 

            result[i].theEcho, result[i].itsFlavor); 

        } 

      } 

      catch (System.Exception e) { 

        System.Console.WriteLine("Caught exception: {0}", e.Message); 

      } 

    } 

 

    static void CallMe(string msg) { 

        System.Console.WriteLine(msg); 

    } 

  } 

} 

Using the Windows windbg debugger, for which the SSCLI distribution contains a managed code 

extension, you can easily view the EEClass,  MethodTable, and MethodDesc structures allocated by 

Rotor as part of executing EchoProgram. This debugger extension is written in such a way that can be 

used from other debuggers as well (such as NTSD—this is covered in docs/debugging/sos.html); the 

sources for it can be found in sscli20\clr\src\toolbox\sos. While it would certainly be possible to do the kind 

of spelunking that we are about to undertake in a debugger that didn‘t use these extensions, it would 

involve manually walking data structures and would be considerably less easy. 

Since we are dealing with translations to native microprocessor instructions, a few 

samples will be shown in assembler. Readers unfamiliar with x86 assembly language 

may be feeling a bit uncomfortable at this point, since this seems to imply that an in-

depth understanding of x86 is a core requirement to understanding the chapter. As it turns 

out, however, only a passing familiarity with x86 is needed, and it‘s entirely possible that 

readers familiar with just the concepts of an assembly language will still be able to carry 

through with flying colors. In fact, one of the authors proudly claims never to have 

written any sort of x86 assembly language program except as a final assignment in 

college, while another author is really fluent only in assembly languages that were 

popular before many readers of this book were born. Fear not! 

Besides debugger extensions, there are two configuration file settings that may be useful for watching the 

construction of runtime type descriptions: BreakOnClassBuild and BreakOnClassLoad. By 

specifying a type name as the parameter for these configuration variables, you can cause the execution 

engine to drop into the debugger when a particular class is built or loaded. (These settings work only in 

debug-enabled builds; see the documentation on logging that accompanies the Rotor distribution for 

details.) 

Using WinDbg and the SOS debugger extension 

At this point, a minitutorial on debugging seems as though it would be useful. We will illustrate techniques 

using the latest windbg debugger (Version 6.7.5.1) from Microsoft, which can be downloaded from 

Microsoft‘s Platform SDK download area on http://msdn.microsoft.com. Recent Windows operating 

systems ship with a copy of the ntsd debugger as part of the standard distribution, which is the original 

command-line program on which windbg is based (and with which it is command-compatible). Which one 

you choose to use is purely a matter of GUI versus command line.  

The obvious first step is to fire up the debugger. The easiest way to do this is to make sure that windbg.exe 

is on your path, and fire it up from the command line: 
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    > windbg clix.exe MainProgram.exe 

A few things need to be done before you can get to spelunking—most notably, you need to tell windbg 

about Rotor-specific extensions and where to find debug symbols. (You did remember to build the SSCLI 

checked build, to enable all of those debugging hooks, right? The fast checked build is the default, but to 

really experience debugging paradise, checked is the way to go.) 

In SSCLI version 2.0, there is a requirement to copy the sos.dll.manifest file over to be 

the debugger exe manifest in order to load the sos extensions properly. An example of 

this follows:  

C:\sscli20\binaries.x86chk.rotor\> copy sos.dll.manifest 

c:\debuggers\windbg.exe.manifest 

For more information on this operation, please see sscli20/docs/debugging/sos.html. 

To set the extension into motion in a command window that has been prepared using the env script for the 

SSCLI, you should be able to type: 

 

    0:000> !sos.help 

If the extension is loaded, this will return help on all the commands   available in the extension: 

 

    0:000> !sos.help 

    ------------------------------------------------------------------------------- 

 SOS is a debugger extension DLL designed to aid in the debugging of managed 

 programs. Functions are listed by category, then roughly in order of 

 importance. Shortcut names for popular functions are listed in parenthesis. 

 Type "!help <functionname>" for detailed info on that function.  

    // list of commands continues 

The output from this command has been truncated. It is summarized in Table 5-1. 

Table Error! No text of specified style in document.-3. Commands in the SOS debugger 

extension 

Command Description 

IP2MD <addr> Converts an instruction pointer address into the 

corresponding MethodDesc (used to move from 

JIT-compiled code into the execution engine‘s data 

structures) 

DumpMD <addr> Dumps the contents of a MethodDesc 

DumpMT [-MD] <addr> Dumps a MethodTable (use-MD to see 

MethodDescs for each method) 

DumpClass <addr> Dumps the contents of a type 

DumpModule <addr> Dumps the contents of a module 

DumpObj <addr> Dumps the contents of an object 

u [<MD>] [IP] Disassembles code, showing managed symbols 

where possible (this is especially useful for 

examining JIT-compiled code) 

Threads Listsmanaged threads 

ThreadPool Lists stats about the threadpool 

DumpStack [-EE] [top stack [bottom Dumps the stack, showing information about JIT-
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stack]] compiled code 

DumpStackObjects [top stack [bottom 

stack]] 
Finds object references on the stack and lists them 

EEStack [-short] [-EE] Listsstacks 

SyncBlk [-all|#] Dumps the syncblock table 

DumpDomain [<addr>] Lists stats for an application domain, along with the 

assemblies and modules that it contains 

Token2EE Finds EE info for token 

Name2EE Finds EE info about name (expressed in C# form) 

If the extension is not loaded, or if you are not using an SSCLI command window, the same thing can be 

done by using the .load command to load the extension DLL into WinDbg‘s process space, as follows: 

 

    0:000> .load C:\sscli20\binaries.x86chk.rotor\sos.dll 

    0:000> !sos.help 

The fully qualified pathname is necessary unless sos.dll is on what‘s called the debugger extension 

path, which is read from an environment variable called _NT_DEBUGGER_EXTENSION_PATH at the 

time the debugger starts up; this is one of the things that the standard Rotor environment prompt sets up for 

you automatically. 

If you see an error ―Failed to find runtime DLL (mscorwks.dll), 0x80004005‖, you 

should force the load of the SSCLI runtime by running a piece of managed code, then 

breaking after the runtime has loaded. Once you‘ve completed this, you can use the 

following command to load up sos:  

!loadby sos mscorwks  

As you can see, there are a large number of commands available; we won‘t go over all of them, but a little 

experimentation will reveal their usage and purpose in short order. 

Loading the executable for debugging 

At this point, the executable is not yet loaded. Furthermore, since clix.exe dynamically loads the PAL and 

the SSCLI execution engine as shared libraries (you will remember that this is how versioning of the 

execution engine can be accomplished), there is not yet a way to actually view any PAL or execution 

engine routines. Instead, a couple of options are open to us. One is to set a deferred breakpoint on a 

common routine, execute the program, and wait: 

 

    0:000> bp rotor_pal!pal_writefile 

    0:000> g 

When new modules are loaded (in this case, the rotor_pal module), the debugger will look to see whether 

there are breakpoints that should be set. Once it has set them, the breakpoints will function as expected. 

Alternatively, you can single-step through the clix code, and once you see a message that sscoree.dll is 

loaded, you can set a breakpoint or step into the _CorExeMain2 routine. A third technique is to use an 

environment variable from the set shown in Table 5-2 to trigger a break from within the execution engine 

code itself; this is probably the simplest method and is very convenient to use against debug-enabled builds. 

Whichever technique you choose, you should at this point be able to view and manipulate SSCLI routines 

directly. 

Table Error! No text of specified style in document.-4. Environment variables can be 

used to trigger breakpoints 

Configuration setting   Values Comment 
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COMPlus_BreakOnEELoad 0 or 1 Break on startup 

COMPlus_BreakOnEEShutdown 0 or 1 Break on shutdown 

COMPlus_BreakOnClassBuild Classname Break when loading 

classname 

COMPlus_JitBreak class::method Break before compiling 

method 

COMPlus_JitHalt class::method Break when method 

executes 

If windbg complains of an inability to see source files, either set the _NT_SOURCE_PATH environment 

variable before starting it, or add a directory using the FileSource File Path menu item. At a minimum, 

you should add the SSCLI source directory. In a similar vein, symbols must be on the 

_NT_SYMBOL_PATH (or else defined using the FileSymbol File Path menu item). Again, this is 

something the Rotor env.bat script will establish for you automatically when it is run. 

Halting execution 

At this point, you could set a breakpoint on ClassLoader::LoadTypeHandleThrowIfFailed 

and watch each and every type get loaded into Rotor, but you are likely to find that this becomes slightly 

tedious after the tenth or twentieth type to be loaded, particularly in view of the fact that there are still 

hundreds of types left to go before you get to Echo, the type we‘re interested in seeing. Again, there are a 

couple of ways to go about this. 

A quick-and-dirty way would be to set a breakpoint on SystemDomain::ExecuteMainMethod (in 

appdomain.cpp). Since this method is the entrypoint for MainProgram.cs, you know that when Echo and 

its related types are loaded, this function will be called. A better approach is to use the environment 

variable configuration tactic to inform the execution engine specifically which type you would like to 

examine. Referring to Table 5-2, note that by setting COMPlus_JitBreak to EchoProgram::Main 

(remembering that CLR environment variable names are case-sensitive) and then running the program 

under the debugger, the debugger will return control to exactly where you want to poke around. 

Viewing internal structures 

Once the Echo type has been loaded, you can view the internal implementation details for the loaded type 

using the SOS DumpClass command. DumpClass, however, requires the address of an EEClass 

instance to dump, and we don‘t happen to have one of those handy. Fortunately, it is possible to get class 

pointers from a number of other SOS commands; for example, Name2EE can be used, after which it is 

simple to pass it to DumpClass: 

 

    0:000> !sos.Name2EE Echo3.dll SampleEcho.Echo 

    -------------------------------------- 

 Module: 00a42f80 (echo.dll) 

 Token: 0x02000005 

 MethodTable: 00a43658 

 EEClass: 036f11ec 

 Name: SampleEcho.Echo 

 

    0:000> !sos.DumpClass 0x036f11ec 

     Class Name: SampleEcho.Echo 

 mdToken: 02000005 (C:\sscli20\binaries.x86chk.rotor\echo.dll) 

 Parent Class: 034adc88 

 Module: 00a42f80 

 Method Table: 00a43658 

 Vtable Slots: 5 

 Total Method Slots: b 

 Class Attributes: 100001   

 NumInstanceFields: 2 
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 NumStaticFields: 1 

       MT    Field   Offset                 Type VT     Attr    Value Name 

 034c57ec  4000008        4        System.String  0 instance           toEcho 

 00a43f58  400000a        8 ...+EchoEventHandler  0 instance           OnEcho 

 0369adec  4000009       24         System.Int32  0   static        0 echoCount 

As you can see, quite a lot of information is available here; of the most interest is verification of what you 

wrote earlier, that static fields occupy their own slot in the MethodTable (see the last line in the 

DumpClass output). Note also that this isn‘t the complete MethodTable; to see that, use the DumpMT 

command with the -MD switch to see a summary of each of the MethodDesc structures in the table: 

 

    0:000> !sos.DumpMT -MD 0x00a43658 

 EEClass: 036f11ec 

 Module: 00a42f80 

 Name: SampleEcho.Echo 

 mdToken: 02000005  (C:\sscli20\binaries.x86chk.rotor\echo.dll) 

 BaseSize: 0x10 

 ComponentSize: 0x0 

 Number of IFaces in IFaceMap: 1 

 Slots in VTable: 11 

 -------------------------------------- 

 MethodDesc Table 

    Entry MethodDesc      JIT Name 

 00a65d7d   00a65838     NONE System.Object.ToString() 

 03757118   00a65860      JIT System.Object.Equals(System.Object) 

 03755e78   00a658d8      JIT System.Object.GetHashCode() 

 00a65d91   00a65900     NONE System.Object.Finalize() 

 00a43869   00a435e8     NONE SampleEcho.Echo.DoEcho(SampleEcho.EchoValue[] 

ByRef) 

 00a43855   00a43520     NONE SampleEcho.Echo.add_OnEcho(EchoEventHandler) 

 00a43859   00a43548     NONE SampleEcho.Echo.remove_OnEcho(EchoEventHandler) 

 00a4385d   00a43570     NONE SampleEcho.Echo..ctor(System.String) 

 00a43861   00a43598     NONE SampleEcho.Echo.get_EchoString() 

 00a43865   00a435c0     NONE SampleEcho.Echo.set_EchoString(System.String) 

 00a4386d   00a43610     NONE SampleEcho.Echo..cctor()  

And there, in glowing detail, is the Echo class MethodTable—constructors, property methods, event 

methods, the ―whole nine yards,‖ as they say. From here, we could follow each of the MethodDesc 

structures and poke around further, but we‘ll leave that as an exercise you can do on your own. Enjoy! 

Laying Out Method Tables 

Building up the runtime layout (including vtables) described by the MethodTable and the EEClass for 

a component is a complex process, with much attention paid to optimization. Most of the work is done by 

the ClassLoader and MethodTableBuilder classes. The ClassLoader class starts by 

determining the number and types of fields and methods on the component; this information will be used to 

allocate memory and dictate offsets when creating instances. The ClassLoader then traces the 

relationship of the component description being loaded to its parent (because parents contribute their own 

member types) and resolves ambiguities or plumbing details such as method overrides. Layout is done in 

clsload.cpp, class.cpp, and method.cpp (all in the clr/src/vm subdirectory) and is controlled by a central 

ClassLoader method named CreateTypeHandleForTypeDefThrowing. This method begins 

with a module and a metadata token for the type being loaded, along with any Generic argument 

information needed (Generics and their impact on the runtime is described in the Chapter 6 ―Generics‖) and 

returns a TypeHandle which is another unique representation of the type: 

TypeHandle ClassLoader::CreateTypeHandleForTypeDefThrowing( 

  Module *pModule, 

  mdTypeDef cl, 

  TypeHandle *genericArgs, 

  AllocMemTracker *pamTracker) 
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 { 

     EEClass *pClass = NULL; 

     size_t   dwAllocRequestSize = 0; 

     MethodTable *pParentMethodTable = NULL; 

     PCCOR_SIGNATURE parentInst; 

     mdTypeDef tdEnclosing = mdTypeDefNil; 

     DWORD       cInterfaces; 

     BuildingInterfaceInfo_t *pInterfaceBuildInfo = NULL; 

     IMDInternalImport* pInternalImport = NULL; 

     LayoutRawFieldInfo *pLayoutRawFieldInfos = NULL; 

     MethodTableBuilder::bmtGenericsInfo genericsInfo;; 

Type handles form a core part of runtime identity, and are at the heart of the Reflection 

subsystem. Type handles are explored in depth in Chapter 7 Dynamism and Code 

Generation.  

Note pClass and pParentMethodTable, which are the first order of business. After getting the 

metadata for the module and checking to see that the type is actually defined in the module, you need to 

load both the MethodTable for the type‘s parent superclass, if it has one and for the type itself. 

(System.Object is the only type in the entire CLI that won‘t have a superclass.) The call to 

GetEnclosingClassThrowing yields the metadata token for the type rather than the parent; the 

name is a bit confusing: 

 

 pParentMethodTable = LoadApproxParentThrowing(pModule, cl, &parentInst, 

                             &genericsInfo.typeContext);     

 

 if (pParentMethodTable) { 

        // Since methods on System.Array assume the layout of arrays, we can not 

allow 

        // subclassing of arrays, it is sealed from the users point of view. 

        if (pParentMethodTable->IsSealed() || pParentMethodTable == g_pArrayClass) 

            pAssembly->ThrowTypeLoadException(pInternalImport, cl, 

IDS_CLASSLOAD_SEALEDPARENT); 

 

        genericsInfo.numDicts += pParentMethodTable->GetNumDicts(); 

    } 

 

    GetEnclosingClassThrowing(pInternalImport, pModule, cl, &tdEnclosing); 

 

Verification code ensuring that the right metadata is present has been omitted from this walk-through. We 

skip directly to the next important step, which is to populate the EEClasses with data: 

 

 // Create a EEClass entry for it, filling out a few fields, such as the parent 

class token 

 // (and the generic type should we be creating an instantiation) 

 MethodTableBuilder::CreateClass(pDomain, 

                                 pModule, 

                                 cl, 

                                 fHasLayout, 

                                 fIsAnyDelegateClass, 

                                 fIsEnum, 

                                 &genericsInfo, 

                                 &pClass, 

                                 &dwAllocRequestSize, 

                                 pamTracker); 
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The MethodTableBuilder essentially ―compiles‖ a type into an EEClass, MethodTable, 

DispatchMap and VTable. It is generally short lived, and once the respective data structures are created 

and populated, is thrown away. 

After ensuring that a bogus EEClass was not created (not shown), the interfaces of the type are loaded 

and resolved: 

 

    // Now load all the interfaces 

 HENUMInternalHolder   hEnumInterfaceImpl(pInternalImport); 

 hEnumInterfaceImpl.EnumInit(mdtInterfaceImpl, cl); 

  

 cInterfaces = pInternalImport->EnumGetCount(&hEnumInterfaceImpl); 

  

 if (cInterfaces != 0) { 

     DWORD i; 

  

     // Allocate the BuildingInterfaceList table 

     pInterfaceBuildInfo = (BuildingInterfaceInfo_t *)  

            GetThread()->m_MarshalAlloc.Alloc(cInterfaces * 

sizeof(BuildingInterfaceInfo_t)); 

  

     mdInterfaceImpl ii; 

     for (i = 0; pInternalImport->EnumNext(&hEnumInterfaceImpl, &ii); i++) { 

  

         // Get properties on this interface 

         mdTypeRef crInterface = pInternalImport->GetTypeOfInterfaceImpl(ii); 

         // validate the token 

         mdToken crIntType =  

                RidFromToken(crInterface)&&pInternalImport-

>IsValidToken(crInterface) ? 

                 TypeFromToken(crInterface) : 0; 

         switch(crIntType) 

         { 

             case mdtTypeDef: 

             case mdtTypeRef: 

             case mdtTypeSpec: 

                 break; 

             default: 

                 pAssembly->ThrowTypeLoadException(pInternalImport, cl, 

                                                     IDS_CLASSLOAD_INTERFACENULL); 

         } 

  

         TypeHandle intType = LoadApproxTypeThrowing(pModule, crInterface, NULL, 

                                                       &genericsInfo.typeContext); 

  

         pInterfaceBuildInfo[i].m_pMethodTable = intType.AsMethodTable(); 

         if (pInterfaceBuildInfo[i].m_pMethodTable == NULL) 

             pAssembly->ThrowTypeLoadException(pInternalImport, cl, 

                                                 IDS_CLASSLOAD_INTERFACENULL); 

  

         // Ensure this is an interface 

         if (pInterfaceBuildInfo[i].m_pMethodTable->IsInterface() == FALSE) 

              pAssembly->ThrowTypeLoadException(pInternalImport, cl, 

                                                  IDS_CLASSLOAD_NOTINTERFACE); 

  

         // Check interface for use of variant type parameters 

         if (genericsInfo.pVarianceInfo != NULL && TypeFromToken(crInterface) == 

mdtTypeSpec) 

         { 

             ULONG cSig; 

             PCCOR_SIGNATURE pSig; 

             pInternalImport->GetTypeSpecFromToken(crInterface, &pSig, &cSig); 
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             // Interfaces behave covariantly 

             if (!pClass->CheckVarianceInSig(genericsInfo.GetNumGenericArgs(), 

                                             genericsInfo.pVarianceInfo,  

                                             SigPointer(pSig),  

                                             gpCovariant)) 

             { 

                 pAssembly->ThrowTypeLoadException(pInternalImport, cl, 

                                                     

IDS_CLASSLOAD_VARIANCE_IN_INTERFACE); 

             } 

         } 

     } 

     _ASSERTE(i == cInterfaces); 

 } 

The activity is straightforward: if there are interfaces, enumerate them, check them, and then load their 

types. If they have generic parameters, then pull out the Generic type specification, the details of which is 

described in more detail Chapter 6. After they‘ve been loaded, we need to remember how many were 

specified. 

After this, the fields of the class requiring explicit layout will be built by enumerating those fields and 

accumulating metadata while the enumeration is being performed: 

 

 if (fHasLayout || 

     /* Variant delegates should not have any instance fields of the variant. 

        type parameter. For now, we just completely disallow all fields even 

        if they are non-variant or static, as it is not a useful scenario. 

        @TODO: A more logical place for this check would be in  

        MethodTableBuilder::EnumerateClassMembers() */ 

     (fIsAnyDelegateClass && genericsInfo.pVarianceInfo)) { 

      

     // check for fields and variance 

     ULONG               cFields; 

     HENUMInternalHolder hEnumField(pInternalImport); 

     hEnumField.EnumInit(mdtFieldDef, cl); 

  

     cFields = pInternalImport->EnumGetCount(&hEnumField); 

  

     if (cFields && fIsAnyDelegateClass && genericsInfo.pVarianceInfo) 

     { 

         pAssembly->ThrowTypeLoadException(pInternalImport, cl, 

                                             IDS_CLASSLOAD_VARIANCE_IN_DELEGATE); 

     } 

  

     if (fHasLayout) 

     { 

         // Though we fail on this condition, we should never run into it. 

         CONSISTENCY_CHECK(nstructPackingSize != 0); 

         // MD Val check: PackingSize 

         if((nstructPackingSize == 0)  || 

            (nstructPackingSize > 128) || 

            (nstructPackingSize & (nstructPackingSize-1))) { 

             THROW_BAD_FORMAT_MAYBE(!"ClassLayout:Invalid PackingSize",  

                                       BFA_BAD_PACKING_SIZE, pClass); 

             pAssembly->ThrowTypeLoadException(pInternalImport, cl, 

IDS_CLASSLOAD_BADFORMAT); 

         } 

  

         pLayoutRawFieldInfos = (LayoutRawFieldInfo*) 

                GetThread()->m_MarshalAlloc.Alloc((1+cFields) * 

sizeof(LayoutRawFieldInfo)); 

         // Warning: this can load classes 

         EEClassLayoutInfo::CollectLayoutFieldMetadataThrowing(pDomain, 
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                                            cl, 

                                            nstructPackingSize, 

                                            nstructNLT, 

                                            fExplicitOffsets, 

                                            pParentMethodTable, 

                                            cFields, 

                                            &hEnumField, 

                                            pModule, 

                                            &genericsInfo.typeContext, 

                                            &(((LayoutEEClass *) pClass)-

>m_LayoutInfo), 

                                            pLayoutRawFieldInfos, 

                                            pamTracker); 

     } 

 } 

After this, dependencies are loaded (which is omitted here), and the piece de resistance is performed: the 

construction of the method table itself: 

 

 // Resolve this class, given that we know now that all of its dependencies are  

    // loaded and resolved. 

 // !!! This must be the last thing in this TRY block: if MethodTableBuilder  

    // succeeds, it has published the class and there is no going back. 

 MethodTableBuilder builder(pClass); 

  

 builder.BuildMethodTableThrowing(pDomain, 

                                  pLoaderModule, 

                                  pModule, 

                                  cl, 

                                  pInterfaceBuildInfo, 

                                  pLayoutRawFieldInfos, 

                                  pParentMethodTable, 

                                  &genericsInfo, 

                                  parentInst, 

                                  (WORD) cInterfaces, 

                                  pamTracker); 

BuildMethodTableThrowing, like CreateTypeHandleForTypeDefThrowing, is given a 

module, a token, and any relevant generic type information, along with both the interface and layout 

information gathered up to this point. The implementation of the method is massive, taking up much of 

class.cpp, and because of this, we will only touch on highlights. It is a method of 

MethodTableBuilder and has the effect of creating the MethodTable that corresponds to the 

EEClass. It uses the bmt* struct definitions found in MethodTableBuilder to pass bundles of 

related state from subfunction to subfunction, rather than force each subfunction to have parameter lists that 

run for half a page. The structs and the subfunctions are just ways of structuring the data and the code to 

make it slightly more modular; in pattern terminology, the bmt structures are parameter objects. 

The method begins by resolving and gathering together all structural data about interfaces, method 

implementations, and class members for the type. This is used to call PlaceMembers, which computes 

where in physical memory the members will go, and gather important facts about the members, such as 

how they will use the security service or what calling convention they will use. 

With this member layout data in hand, work begins on the interface mappings, which uses a different 

technique, known as virtual stub-based dispatch.  

Virtual Stub Dispatch 

Virtual stub dispatch (VSD) uses generated stubs for virtual method invocations instead of the traditional 

virtual method table. As described in the first edition of this work, SSCLI version 1.0 interface dispatch 

required interfaces to have process-unique identifiers, and each interface loaded by the execution engine 
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thus was added to a global interface virtual table map. This approach required all interfaces and all 

interface-implementing classes to be restored at runtime, which had significant impact on startup time and 

increased the memory working set of the process. This execution time and running memory footprint ―hit‖ 

was much of the motivation for stub dispatching: to eliminate much of the related working set, as well as 

distribute the remaining work throughout the lifetime of the process. 

Although it is possible for VSD to dispatch both virtual instance and interface method calls, it is currently 

used only for interface dispatch. 

While startup time and working set are not traditionally important to the SSCLI 

distribution, they are extremely important to the production version of the CLR. As the 

SSCLI version 2.0 is closely based on the production source code, Virtual Stub Based 

dispatch was included in the release. While it may be overkill for the SSCLI distribution, 

it reinforces the idea that the SSCLI is born of the commercial CLR product, and stands 

as an interesting optimization technique for researchers and academics to examine and 

study, not to mention as good background information to those who use the commercial 

CLR on a regular basis and want to know how the CLR ekes out the best performance it 

can. 

Virtual Stub Dispatch Design 

Stub based dispatch follows the same general principles of delayed compilation and invocation as seen in 

the MethodDesc prestub code. In the case of VSD, however, instead of using the classic vtable dispatch 

mechanism, the runtime relies on generated stubs to resolve and invoke all interface based calls. Recall, 

from version 1.0, interface method invocation went through a series of pointer indirections, lookups and 

large data structures, all of which was needed to support interface invocation through the classic vtable. 

VSD was introduced primarily to make interface calls faster, and lighter weight by eliminating the table 

lookup entirely, and directing the method call to the actual method code directly; in essence, VSD 

eliminates the table and the corresponding lookup. 

Since an example almost always serves better than straight prose, we will use the following code as the 

backdrop for following the VSD implementation, and it will stand as the basic framework to help 

understand the various VSD data structures as well as the various stub bits that are generated along the 

way.   

interface IFoo 

{ 

  void Bar(); 

} 

 

class FooImpl : IFoo 

{ 

  public void Bar() { ... } 

} 

 

public void InvokeMethod() 

{ 

  IFoo foo = new FooImpl(); 

  foo.Bar(); 

} 

When the IFoo interface is loaded for the first time, VSD code will assign the interface an AppDomain-

scoped Domain Specific ID. This ID is unique throughout the AppDomain, and serves, as its name implies, 

to keep the various interfaces unique within the AppDomain. It also lays out the classic vtable for the 

interface, and interface methods are assigned respective slot numbers.  

When the InvokeMethod method gets JIT compiled, the JIT will ask the VSD mechanism to provide it 

with callsite information for the foo.Bar() call. The Stub Dispatch manager does two things: create a 

Lookup Stub (described below) if it doesn‘t currently exist for that type of callsite, and create a small 
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thunk—called an indirect cell--which will invoke the freshly-minted the Lookup Stub. Figure 5-5 shows 

this abstractly: 

 

 

caller generic resolverlookup stub

dispatch stub

resolve stub

target

indirect cell

 

 

Figure 5-5. High level overview of the different types of stubs generated for stub based 

dispatch. 

Note that, in the figure above, ―caller‖ is JIT compiled code—in this case, the InvokeMethod code for 

the foo.Bar call—and ―indirect cell‖ is a pointer to a Lookup Stub, unique to that type of callsite. 

The Lookup Stub is simply code that pushes a unique callsite identifier called a dispatch token onto the 

stack, then calls the Generic Resolver Stub. A dispatch token is designed to be unique to the callsite type, 

and consists of the interface‘s domain-specific ID and the vtable slot index of the interface method. The 

Generic Resolver Stub is a general-purpose block of code (that is, not generated per each interface), that 

resolves the dispatch token to a dispatch stub and resolve stub. The goal of all of this is simple: resolve this 

Interface ID and slot index to the implementing type‘s vtable slot, so that execution of the method 

implementation can occur. 

Once the JIT-compiled code executes (meaning, an object implementing the interface has been asked to 

execute one of the interface‘s implemented methods), the Lookup Stub is invoked via the indirect cell 

pointer and execution is passed on to the Generic Resolver. The Generic Resolver stub takes the dispatch 

token and resolves the token to the relevant implementing type‘s vtable slot via a data structure called the 

Slot Map (called the DispatchMap in code). Slot Maps are found on all MethodTable instances for 

types which implement an interface, and sit directly following the vtable in memory. Figure 5-6 shows the 

Slot Map for the code above: 



Chapter 5: Synthesizing Components  | 120 

 

[0] Bar()

IFoo

ID for I 0 scope I 0
Slot Map

vtable

MethodTable

[0] ToString()

FooImpl

ID for I 0 virtual 4Slot Map

vtable

MethodTable

[1] Equals(Object)

[2] Equals(Object, Object)

[3] GetHashCode()

[4] IFoo.Bar()

. 

 

Figure 5-6. MethodTable layout including Slot Map 

The Slot Map for IFoo has a map of the IFoo.Bar method from a slot index of 0 to the vtable index of 0 

(remembering that Interfaces don‘t inherit from System.Object, so the layout of interface methods 

starts from 0).  

The Slot Map for FooImpl requires a mapping from the IFoo.Bar method to the FooImpl.Bar 

implementation found in the FooImpl vtable. The Slot Map data structure is simple: a row exists for each 

interface method implemented, which states the Interface ID of the method, and a mapping from the 

Interface ID‘s Slot Map index, to the implementing method‘s vtable index. In this case, IFoo.Bar has a 

IFoo Slot Index of 0, which maps to the 5
th

 vtable slot on the FooImpl MethodTable.  

If a Slot Map for an interface implementation cannot be found, the Generic Resolver will walk the parent 

class hierarchy via the parents MethodTable, looking for the appropriate slot mapping. Once found, it 

simply uses the superclasses mapped vtable index, which will work fine because the vtable layout of the 

class hierarchy is always inherited.  

There are code and algorithmic optimizations to make the Slot Map lookup super fast, yet 

make the code a little less approachable. For example:  the slot maps are bit-encoded and 

take advantage of typical interface implementation patterns using delta values, which 

significantly reduce the map size. Be careful when wandering (or, more critically, 

modifying) this code, as an invariant designed to increase performance could bite at any 

time! 

Once the Generic Resolver has found the relevant method implementation, it generates the code for 

Dispatch and Resolver stubs, and back-patches the Indirect Cell to the Dispatch Stub, essentially removing 

the Lookup Stub and Generic Resolver from the equation.  
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The Dispatch Stub is generated per call site type, and is shared app-domain wide. This means a call to 

IFoo.Bar from an object of type FooImpl found at two different callsites will use the same Dispatch 

Stub. The Dispatch Stub has two jobs: checking to see if the object‘s type matches what it expects, and then 

dispatching to the method implementation. Checking for type equivocation is important, because the same 

code path could invoke an Interface method from two different (yet polymorphically equivalent) objects. 

For example:  

    class FooImpl : IFoo 

    { 

     void IFoo.Bar() { ... } 

    } 

 

 class MyNewClass : FooImpl, IFoo 

 { 

  void IFoo.Bar() { ... } 

 } 

 

    void DispatchMe(FooImpl fooObject) 

 { 

  ((IFoo)fooObject).Bar(); 

 } 

Upon JIT compiling DispatchMe, a Generic Resolver would resolve, and generate both a Dispatch stub 

and a Resolver stub for the callsite (that is, the (IFoo)fooObject).Bar() callsite). The Dispatch 

Stub would be hard coded to check to see if the callsite object was of type FooImpl, but what if we passed 

in a MyNewClass instance instead? The Dispatch Stub code would inevitably fail on the type check and 

would then forward the call on to the Resolver Stub to handle the failed case. 

The Resolve Stub‘s job is to deal with polymorphic call sites as described in the above example. These 

stubs use the method token (the IFoo.Bar token) and the type token, to try and resolve the target via the 

Resolve Stub global cache. If the global cache does not contain a match for the callsite, then it asks the 

Generic Resolver to resolve the call site appropriately. One key side effect of the Generic Resolver is to 

insert an entry in to the Resolve Stub cache, so that subsequent Resolver Stub cache lookups to 

polymorphic callsites will be resolved quickly, instead of calling on the Generic Resolver to perform the 

resolution.  

By way of summarization and a final step towards clarity, let‘s walk through this again: 

 Interface IFoo is a simple interface consisting of one method, Bar. Upon load time, the Interface 

will be assigned a unique Interface ID.  

 Once a method (such as InvokeMethod) is JIT compiled, the JIT will ask the runtime for a token to 

call the method. The runtime hands the JIT an indirect cell pointer, and creates a Lookup Stub for that 

callsite, which will inevitably pass through a Dispatch Token unique to that callsite to the Generic 

Resolver. The Lookup Stub is then shared for other instances of this callsite type. 

 When the JIT compiled code is executed, the Lookup Stub is called via the Indirect Cell, and passes 

through the hardcoded Dispatch Token to the Generic Resolver. 

 The Generic Resolver looks inside the Dispatch Token and pulls out the Interface ID and the 

Interface’s Slot Map index. It then looks up the objects Slot Map through the DispatchMap pointer, 

and matches the Interface ID and Slot Map index number to the object’s vtable index.  

 The Generic Resolver then creates both the Dispatch and Resolver stubs unique to that callsite. The 

Dispatch Stub contains a check for type equivocation and a jump if true to the pointer that exists in the 

objects vtable, and a jump if false to the Resolver stub. 

 If the type equivocation test in the Dispatch Stub fails, the Resolver Stub is called. The Resolver 

checks its local cache to see if it has seen this failed case before, and invokes the cached callsite 

receiver if found, otherwise it calls the Generic Resolver to resolve the mapping, and generate a new 

Resolver Stub cache entry.  
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After all this is done and dusted, Interface Stub Dispatch is ready to fly, and thanks to this assembly-level 

legerdemain, executes with great performance.  

Not so hard after all, n’est-ce pas? 

Laying out the method tables and interface stub dispatch is by far the most complex part of the whole 

procedure, so pat yourself on the back, take another deep swig of your favorite caffeinated beverage, and 

let‘s press on. 

Verifying and Compiling CIL 

After the MethodTable and its related EEClass have been laid out, all of the type information 

necessary for compilation and most of the runtime structures necessary for execution are finished. At this 

point, the execution engine is ready to compile and execute the code for the type. But what is it that triggers 

JIT compilation? 

In traditional toolchains (such as that of C++), compilation often occurs as far forward as the language can 

make it—the C++ compiler wants to eliminate as much information as possible from being needed at 

runtime, so as to minimize the amount of processing required. Frequently, this approach results in 

situations in which the assumptions used while compiling no longer apply—methods are compiled that are 

never called in a normal run of the program, for example, or precomputed layouts cannot be used against 

newer libraries. 

The CLI adheres to a principle of maximal deferral: compilation (along with many other activities) does not 

occur until the last possible moment. In the case of method compilation, the ―last possible moment‖ is the 

moment that a method is required to run. We need some kind of tripwire to inform us of this event, 

something that will fire just before method execution, giving the CLI a chance to invoke the JIT compiler 

on the CIL for that method. It would be possible to track all method invocations and force JIT compilation 

when necessary, but this would be a naïve implementation and would perform poorly, since only a small 

number of method invocations actually need to trigger compilation in a typical application. 

The CLI chooses an approach that uses an indirect call to a helper function called the precode helper. 

Although a type‘s MethodTable will eventually contain pointers to the native functions that implement 

its method bodies, every SLOT is initially loaded with a thunk that will trigger both JIT compilation and 

backpatching of the MethodTable when it is called. This tiny, method-specific piece of code is called a 

prestub. With each SLOT holding a pointer to a temporary entry point, any call via the MethodTable 

will set method compilation into motion via the prestub. 

Thunk is a term that is used for different, but similar, concepts in systems programming. 

Some refer to the use of automatic marshaling as thunking; others call nullary helper 

functions thunks. We use it here according to prevailing parlance at Microsoft, in which a 

thunk is a small helper function that is typically inserted automatically by a compiler, 

loader, or some other piece of runtime machinery. 

The prestub, which will do the actual work of compilation, is called by the precode in an unusual way. 

When an as-yet-uncompiled method is called, the precode does nothing more than place the address of the 

method‘s MethodDesc on the stack or into a register and then jump to the prestub helper. The 

MethodDesc is needed during compilation, because it contains all of the method-specific information 

needed for code generation. But rather than look up its address from within the code of the prestub helper, 

Rotor actually uses the precode to record the location of the MethodDesc by attaching the code for each 

precode directly to the body of its MethodDesc as a small piece of assembly code. This code is created 

during the initialization of the MethodDesc, using a wrapper class called Precode and calling the 

method AllocateTemporaryEntryPoints. The code can be found in clr/src/vm/precode.cpp , and 

looks like this: 

 

TADDR Precode::AllocateTemporaryEntryPoints(MethodDescChunk* pChunk, 
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    BaseDomain* pDomain, AllocMemTracker *pamTracker) 

{ 

    CONTRACTL { 

        THROWS; 

        GC_NOTRIGGER; 

    } CONTRACTL_END; 

 

    MethodDesc* pFirstMD = pChunk->GetFirstMethodDesc(); 

 

    int count = pChunk->GetCount(); 

 

    BOOL fForcedPrecode = pFirstMD->RequiresStableEntryPoint(count > 1); 

    BOOL fNativeCodeSlots = fForcedPrecode && pFirstMD-

>ComputeMayHaveNativeCode(count > 1); 

 

    PrecodeType t = PRECODE_STUB; 

 

#if defined(HAS_FIXUP_PRECODE) && !defined(HAS_COMPACT_ENTRYPOINTS) 

    // Default to faster fixup precode if possible 

    if (!fForcedPrecode) 

    {         

        t = PRECODE_FIXUP; 

    } 

#endif // HAS_FIXUP_PRECODE && !HAS_COMPACT_ENTRYPOINTS 

 

    SIZE_T oneSize = SizeOfTemporaryEntryPoint(t, fNativeCodeSlots); 

    SIZE_T allSize = oneSize * count; 

 

#ifdef HAS_COMPACT_ENTRYPOINTS 

    if (!fForcedPrecode && allSize > 

MethodDescChunk::SizeOfCompactEntryPoints(count)) 

        return NULL; 

#endif 

 

    TADDR temporaryEntryPoints = (TADDR)pamTracker->Track(pDomain-> 

        GetHighFrequencyHeap()->AllocAlignedMem(allSize, AlignOf(t), NULL)); 

 

    TADDR entryPoint = temporaryEntryPoints; 

    for (int i = 0; i < count; i++) 

    { 

        MethodDesc* pMD = pChunk->GetMethodDescAt(i); 

 

        ((Precode*)entryPoint)->Init(t, pMD, pDomain); 

        _ASSERTE((Precode*)entryPoint == 

GetPrecodeForTemporaryEntryPoint(temporaryEntryPoints, 

                                                                          i, 

fNativeCodeSlots)); 

 

        entryPoint += oneSize; 

    } 

 

    if (fNativeCodeSlots) 

        pChunk->SetHasNativeCodeSlots(); 

 

    return temporaryEntryPoints; 

}     

The precode is a small fragment of code used to implement both temporary entrypoints and the wrapper for 

other stubs that require code generation (like Dynamic Methods, and some Generic method cases). The 

basic precode that AllocateTemporaryEntryPoints would generate on x86 may look like this: 

 

mov eax,pMethodDesc // Load MethodDesc into scratch register 
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jmp target  // Jump to a target 

The target in the case of calling a method that hasn‘t been JITted yet would be the prestub. Once the code 

for a method is generated by the JIT, the temporary entrypoint found in the original slot is atomically 

replaced with a stable entrypoint. The stable entry point can be either the JITted native code, or the 

precode. The stable entry point has to remain constant for the method lifetime. This invariant is required to 

guarantee thread safety since the method slot is always accessed without any locks taken. 

A method can have both native code and precode if there is a need to do a work before 

the actual method body is executed. This situation happens for remoting stubs or ngen 

fixups. Native code is an optional MethodDesc slot in this case. This is necessary to 

recover the native code of the method in a cheap uniform way. 

 

 

Figure 5-7. Overview of what the temporary entrypoint found in a MethodTable SLOT 

can point to 

The prestub helper function itself, which can be found in the MethodDesc::DoPrestub method in 

clr/src/vm/prestub.cpp, is quite long and involved; it is worth stepping through the entire function to 

understand it, although we will provide only a brief synopsis here. (One way to do this is to set the global 

configuration flag PreStubHalt to true to force a debugger break, using either an environment 

variable or a config file.) 

All of the pre- and post-processing of method calls needed by the execution engine is set up in the prestub: 

 The security engine and the remoting service are each given the opportunity to intercept calls. 

 The profiler is given an opportunity to gather data and even modify the CIL of the method. 

 If it is the first time that a type has been used, ensure that its constructor is called. 

 The SLOT for which the method body is being created is backpatched. 

There are other specialized checks performed, such as checking to see whether the method call is an 

unboxing operation, in which case the appropriate unwrapping code is generated or other similar details. 

All in all, the prestub mechanism is vital to JIT compilation. Understanding its interaction with the 

execution engine will be very important to readers who are interested in understanding the Zen of Rotor‘s 

JIT compiler. 

Referring to Figure 5-1 to recap what we just went over will probably be very helpful at this point. The 

MethodTable for a type initially holds pointers to temporary entry points, which points to a small 

method called the precode, which will then call the prestub to do the JITted compilation. When a method 

body is compiled by the prestub helper, the dispatching MethodTable SLOT temporary entrypoint is 
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backpatched to contain a pointer to a stable entrypoint, which is usually the native code generated by the 

JIT compiler. Each method call dispatched via the backpatched SLOT, from this point on, will consist of a 

call to the native code. 

Verification and JIT Compilation 

To verify that code is typesafe, the JIT compiler must walk through the CIL to ensure that every instruction 

behaves according to the rules specified in the ECMA spec. This may sound strangely similar to what 

needs to happen when CIL is transformed into native code—the JIT-compiler must step through, producing 

native instructions that implement the abstract description. Because these two activities are basically the 

same, JIT compilation and verification proceed apace, and are intermixed. And because code that is JIT 

compiled is not compiled until the last possible moment, both compilation and verification are just-in-time 

activities, which means that both can result in runtime exceptions. Programmers should be prepared for this 

eventuality. 

We‘ve already seen both PE verification and metadata verification in Chapter 4, the first checking the file 

format for consistency and the second checking the integrity of the metadata tables. The third and final kind 

of verification is CIL verification, which will ensure that there is a valid CIL instruction stream for each 

method, and that all potential code paths through it are typesafe. The ECMA specification very carefully 

describes the process of CIL verification, along with an accompanying set of verification types. Only 

verification types need to be considered during the verification process, since their use covers the semantics 

of all types—verification types are more basic than the set of CIL types. 

Verification and compilation in the SSCLI are performed as a single-pass algorithm. As the JIT compiler 

works through a section of CIL, it verifies that the operands are valid for the operations being performed 

and that the stack won‘t either underflow or overflow when the code is executed. At every potential branch, 

the JIT makes sure that the types on the stack will be treated consistently by each fork of the branch—no 

path should interpret the type of a stack entry in a different way. To assure that this is true, the JIT uses an 

internal data structure to remember the stack states associated with each branch. 

The JIT compiler uses a number of different stack-structured variables internally to track 

the state of a compilation while it is in progress. These stacks are of course different from 

the CIL stack and the native microprocessor stack. Don‘t be confused by the presence of 

so many stack-structured entities; we will be clear as to which we are referring to. 

To do its verification and compilation in a single pass, the JIT compiler processes the CIL stream for a 

method in an order that ensures that the state of the stack is always known rather than stepping from 

beginning to end. This reordering is accomplished by deferring compilation of the parts of the CIL stream 

that carry unknown state and noting those locations as ―places to come back to.‖ The data structure used to 

keep these deferrals is called the split stack in the code, and it varies in size depending on the number and 

type of branchpoints encountered. When both the split stack is finally empty and the working opcode 

stream is exhausted, the complete method has been both verified and compiled into native instructions 

successfully. (This algorithm also has the happy side effect of eliminating dead code, which is never 

compiled.) To see the code that implements this verification algorithm, examine 

sscli20/clr/src/fjit/fjitverifier.cpp. 

The main method that performs compilation is FJit::jitCompile in clr/src/fjit/fjit.cpp. To start 

compilation, the JIT sanity checks exception handling for the method by checking that no try block, filter, 

or handler extends beyond the end of the method or has a size of 0. Locals are initialized to 0, or to null in 

the case of references. The compiler also checks to see that no handler or filter is colocated within the 

corresponding try block, and that the type tokens used in any typed catch blocks are valid. After these 

checks, whenever a try block for exception handling is encountered, the compiler pushes the try address, 

along with the starting offsets of matching catch, filter, finally, and/or fault blocks onto its 

split stack for verification, while also remembering the stack state that will be expected at these points 

(which will always consist of a lone object on the stack, thanks to the way that the exception handling 

opcodes work). 
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The compiler then begins stepping through the CIL instructions, starting at the method‘s entrypoint. As it 

compiles code for a given opcode, the compiler takes care of tracking both stack contents and branching 

state for the use of the verifier. When the verifier encounters a branching instruction, its next action is 

dependent on the type of branch. The simplest example is an unconditional branch; the verifier will check 

to see whether the target offset has already been JITted, and if it has, will make sure that the stack state 

matches what is already expected. If the branch target has not been JIT-compiled, the verifier will 

remember the stack state and continue at the target offset. If the split stack is empty, the compilation of the 

method is finished; otherwise, a new offset is fetched and compilation resumes. Variations on this simple 

formula also exist for conditional branches and for leave, throw, ret, and switch instructions—these 

rules describe the overall execution of the verification algorithm. 

Along with these bookkeeping and verification operations, the SSCLI compiles the CIL instructions one at 

a time. Compilation is simple in the SSCLI and designed for maximum ease of portability, as well as 

approachability. The compiler has a buffer into which it places its output, which consists of a stream of 

native microprocessor instructions. CIL opcodes drive a switch statement whose case statements represent 

the entire set of CIL opcodes; for each case, the JIT compiler emits a corresponding sequence of 

instructions into its buffer. Beyond an opportunistic enregistering of top-of-stack values, there are 

essentially no compiler optimizations. (To enregister a value means to place it in a machine register.) 

As an example of code emission, let‘s look at a representative CIL opcode, the add.ovf instruction, 

which adds two numbers from the stack, checking for overflow and leaving its result as a single entry on 

the stack. For the SSCLI, all instructions are defined in a table named opcode.def that can be found in the 

sscli20/clr/src/inc directory. In this file, there is an entry that looks like the following: 

 

    OPDEF(CEE_ADD_OVF, "add.ovf", Pop1+Pop1, Push1, InlineNone, IPrimitive, 1, 0xFF, 

0xD6,    NEXT)) 

The first entry in this macro is the name that will be used in code for this instruction, followed immediately 

by a human-readable string for the use of tools. This is followed by the stack behavior that the opcode will 

exhibit (which in this case is two pops followed by a push), along with parameter characteristics and 

implementation details, such as whether it is a primitive, and how the instruction is encoded in the CIL. The 

final field categorizes the control flow implications of the instruction and is used during verification. 

The information encoded by this macro is used to drive the JIT compiler, which can be found in 

sscli20/clr/src/fjit/fjit.cpp. In this file, there is a large switch statement that discriminates between opcodes 

and calls out to the appropriate compilation function. For our example instruction, the switch arm is quite 

simple: 

 

    switch (opcode) { 

        // omitted many cases 

        case CEE_ADD_OVF: 

            JitResult = compileCEE_ADD_OVF(); 

            break; 

Most of the arms have similar functions that emit opcode-specific code, along the lines of the 

compileCEE_ADD_OVF function in our example. This function appears in the same file as the switch, 

and looks like the following: 

 

 FJitResult FJit::compileCEE_ADD_OVF() 

 { 

     OpType result_add; 

     BINARY_OVERFLOW_RESULT(topOp(),topOp(1), CEE_ADD_OVF, result_add); 

     TYPE_SWITCH_INT(topOp(), emit_ADD_OVF, ()); 

     POP_STACK(2); 

     pushOp(result_add); 

     return FJIT_OK; 

 } 
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The BINARY_OVERFLOW_RESULT is a verification check that is contingent on the types of operands on 

the stack. It checks that the two operands match and sets the value of the result_add variable to the 

expected type of the result. TYPE_SWITCH_INT then calls lower-level macros based on the types of 

operands: 

 

    #define TYPE_SWITCH_INT(type, emit, args)                        \ 

        switch (type.enum_()) {                                      \ 

            case typeI4:                                             \ 

                emit##_I4 args;                                      \ 

                break;                                               \ 

            case typeI8:                                             \ 

                emit##_I8 args;                                      \ 

                break;                                               \ 

            default:                                                 \ 

                FJIT_FAIL(FJIT_INTERNALERROR);                       \ 

        } 

For example, if the stack has 4 byte integers on it, the emit_ADD_OVF_I4 macro is called: 

 

 #ifndef emit_ADD_OVF_I4 

 #define emit_ADD_OVF_I4()                       \ 

 {                                               \ 

     LABELSTACK((outPtr-outBuff),2);             \ 

     callInfo.reset();                           \ 

     emit_tos_arg( 1, INTERNAL_CALL );           \ 

     emit_tos_arg( 2, INTERNAL_CALL );           \ 

     emit_callhelper_I4I4_I4(ADD_OVF_I4_helper); \ 

     emit_pushresult_I4();                       \ 

 } 

The LABEL_STACK macro in this sequence captures the state of the stack during compilation, using a 

StackEncoder (defined in clr/src/fjit/fjit.h), to support garbage collection. It is used whenever calls to 

helper functions are used, and the operation will record the locations of object references on the stack. 

(While on the subject of garbage collection, any time a backward-branching instruction is compiled, the JIT 

compiler emits a call to the garbage collector‘s polling helper function. We will see how both the stack 

encoding information and the polling helper are used by the garbage collector in Chapter 9. ) 

After recording references, callInfo, which is an accumulator used by some of the emit macros used to 

support different calling conventions, is reset, and the native code to do the addition and push the result is 

emitted. (The emit_tos_arg macro is sometimes used to enregister the top-of-stack value, but since in 

this case the add.ovf operation is implemented using an internal function, the arguments should be 

passed on the stack using the __cdecl calling convention rather than being put into registers. 

INTERNAL_CALL is defined as false to cause correct behavior.) The address of the 

ADD_OVF_I4_helper is placed into the instruction stream in the buffer along with an x86 call 

instruction, and finally, the return value is pushed back onto the stack. 

Compilation and verification for this particular opcode are complete at this point. 

The JIT compiler actually has several layers of macros that are used during code emission. At the core is a 

set of primitive helper functions that are designed to be easily ported, which are augmented by processor 

specific macros. The simple and highly portable macros can be used while doing quick and dirty ports to 

new processors, and can then be improved over time. All of the macros discussed to this point are part of 

this layer that is portable across JIT implementations. 

The layered approach to compilation uses file- and directory-naming conventions to define processor-

specific elements. At the top level, the sscl20i/clr/src/fjit directory contains a file named fjitcore.h, which is 

the main file for the JIT compiler, and which defines the calling convention and also acts as the root of a 

processor-specific tree of include files. This file, in turn, includes fjit.h, which is a key header file that 

imports the opcodes defined by sscli20/clr/src/inc/openum.h and listed in opcode.def. This file also 
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describes the linkages between the JIT compiler, the execution engine, and the code manager; declares 

entry points for helper code; and defines the reduced set of data types and the stack encoding mechanism 

used by the type verification process. Understanding the contents of this header is critical to understanding 

the JIT compiler. 

In addition to fjit.h, the fjitdef.h header file contains machine-independent code emitter macros, which are 

themselves tied to the actual processor being used by a naming convention: the appropriate 

<processor>def.h and <processor>fjit.h files are switched at compile-time. For example, when building 

the JIT compiler for an x86 processor, the x86def.h and x86fjit.h files would be switched into the build. For 

the Power PC processor, the files to use would be ppcdef.h and ppcfjit.h. 

The <processor>def.h file is itself wrapped by another header, c<processor>def.h, which wraps the 

macros to make them available to C++ code. (Again, for x86, the file is cx86def.h, while for Power PC it is 

cppcdef.h.) This file is a low-level and machine-specific collection of macros that encapsulate details about 

the processor, such as opcodes, in addition to things like special formats. Porting this file represents the 

minimal amount of work that can be done to target a new processor. 

As mentioned in Chapter 1, version 2.0 of the SSCLI has not been updated to support the 

PowerPC. However, we have kept the code around to help those who would like to take 

on the challenge of getting a port back up and running again. 

It‘s also worth noting at this stage that the old Rotor JIT compiler for the PowerPC does 

not implement as many low-level macros as the x86 JIT compiler does, and its more 

generic nature causes it to generate code of lower quality.  

One additional file rounds out the scheme: the <processor>fjit.h file. In this file, macros can be redefined 

to get processor-specific performance gains. Returning to our example, although the add.ovf instruction 

doesn‘t use the processor-specific macro layer, the closely related add instruction (which performs 

addition without checking for overflow) does. In x86fjit.h, the emit_ADD_I4 macro is redefined to take 

advantage of x86 specific instructions: 

 

    #define emit_ADD_I4()       \ 

    enregisterTOS;      \ 

    x86_pop(X86_ECX);       \ 

    x86_barith(x86OpAdd, x86Big, x86_mod_reg(X86_EAX, X86_ECX));    \ 

    inRegTOS = true 

As you can see, this macro has intimate knowledge of the processor‘s instruction set and conventions. The 

x86_pop and x86_barith macros can be found in x86def.h, and are defined in terms of the generic 

cmdByte macro. 

The use of processor-specific helper functions also deserves discussion. Remember that the arguments in 

emit_ADD_OVF_I4 were readied for an INTERNAL_CALL; in the case of add.ovf, the call takes the 

form of a C function that can be found in fjitdef.h. The emit_callhelper macro eventually bottoms 

out into the x86_call_reg macro, which emits x86 microprocessor instructions to call the helper 

function: 

 

    int HELPER_CALL ADD_OVF_I4_helper(int i, int j) { 

      int i4 = j + i; 

      // if the signs of i and j are different, then we can never overflow 

      // if the signs of i and j are the same, then the result 

      // must have the same sign 

      if ((j ^ i) >= 0) { 

        // i and j have the same sign (the sign bit of j^i is not set) 

        // ensure that the result has the same sign 

        if ((i4 ^ j) < 0) { 

          THROW_FROM_HELPER_RET(CORINFO_OverflowException); 

        } 
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      } 

      return i4; 

    } 

Because the arguments for this function were pushed earlier in the CIL stream using opcodes whose 

compiled behavior ―matches‖ that of the helper call, the arguments are already in the right spot on the stack 

for the function invocation. As you can see, the function simply checks for the conditions that would cause 

an overflow, and either throws an exception or adds the two arguments together. 

For those who really enjoy gory details, the call to the helper function that is compiled 

using the THROW_FROM_HELPER_RET macro must actually invoke an interpreter that 

revisits the processor instruction stream, since it needs to reconstruct the structure of the 

stack to find exception handlers. To see this, look in the processor-specific directories in 

sscli20/clr/src/vm; the files beginning with the gms prefix contain the implementation. 

The way that verification errors are returned from the verifier is interesting. It is a clean and consistent way 

to back out of an uncomfortable situation and is worth a quick peek, which is shown in Example 5-7, and 

defined in clr/src/fjit/fjit.cpp. 

Example Error! No text of specified style in document.-8. How JIT verification exceptions are handled 

 

FJitResult FJit::jitCompileVerificationThrow() 

{ 

    outBuff = codeBuffer; 

    outPtr  = outBuff; 

    *(entryAddress) = outPtr; 

    inRegTOS = false; 

 

    // Emit prolog 

    unsigned int localWords = (localsFrameSize+sizeof(void*)-1)/ sizeof(void*); 

    emit_prolog(localWords); 

 

    mapInfo.prologSize = outPtr-outBuff; 

 

    // Beginning of function code 

    mapping->add(0,(unsigned)(outPtr - outBuff)); 

 

    // Jit a verification throw 

    emit_verification_throw(ver_failure_offset); 

 

    // End of the function code 

    mapping->add(1, (unsigned)(outPtr-outBuff)); 

 

    // Generate the epilog 

    if (!CALLER_CLEANS_STACK) 

    // Callee pops args for varargs functions 

      { emit_return(methodInfo->args.isVarArg() ? 0 : argsFrameSize, 

mapInfo.hasRetBuff ); } 

    else                   // If __cdecl calling convention is used the caller is 

responsible 

       emit_return(0, mapInfo.hasRetBuff);       // for clearing the arguments from 

the stack 

 

 

    // Fill in the intermediate IL offsets (in the body of the opcode) 

    mapping->fillIn(); 

 

    mapInfo.methodSize = outPtr-outBuff; 

    mapInfo.epilogSize = (outPtr - outBuff) - mapping->pcFromIL(1); 

 

    //Set total size of the function 
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    *(codeSize) = outPtr - outBuff; 

 

    return FJIT_VERIFICATIONFAILED; 

}  

This function creates a method body that will throw a verification exception when it is called. It is a clever 

use of the JIT tools that we‘ve seen already; when a verification error is detected, the compilation process 

continues, but the body of the method that is returned and executed does nothing more than throw an 

exception. 

Calling Conventions in Managed Code 

Once the CIL has been verified and compiled, the native code for the method can be safely executed. Since 

the CLI, like every modern execution environment, supports programming languages that use recursion, the 

stack is used to track execution state. Every method call has an activation record on this stack containing its 

arguments, return value, local variables, and other bookkeeping information such as a security object 

(which is used by the code access security engine). The structure of Rotor‘s activation records is shown for 

the Intel x86 in Figure 5-8. 

 

Figure Error! No text of specified style in document.-8. Elements of an SSCLI stack 

frame, for the x86 

As methods call other methods, the stack is maintained cooperatively using a variety of calling 

conventions. All calls begin with the setup of the callsite (the stack context associated with a method call 

by the caller). Parameters are always a part of the callsite, since they can clearly be pushed only by the 

caller because the method being called knows nothing of them. Past this, however, different calling 

conventions use different mechanisms; why they differ is often a matter of history, of small performance 

gains, or of codified personal tastes, and their differences can seem quite arbitrary. Nonetheless, they exist, 

and how they interoperate in the SSCLI is described in the following sections. 
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The JIT Calling Convention 

The standard calling convention used in code produced by the JIT compiler is referred to as the JIT calling 

convention. From the perspective of CIL, there are four possible ways to call code: the jump instruction 

(which is not verifiable, and so we won‘t cover it here) and three flavors of the call opcode: call, calli, 

and callvirt. Each of these has slightly different semantics, and each can additionally be modified to be 

a tailcall (which reuses the same activation record during recursive calls rather than profligately generating 

new records). The call instruction is nonvirtual, executing precisely the method targeted by the 

instruction, versus callvirt, which calls indirectly through a vtable. Both instructions take a token as an 

argument, the lookup of the method is the only difference—in the case of callvirt, the table of method 

pointers is selected at runtime instead of always being part of the component that is called in the case of 

call. For indirect calls, calli, a function pointer is loaded on the stack and control is dispatched to it. 

Note that once any of these have been compiled, all use the JIT calling convention. 

In the JIT calling convention, all arguments, as well as the return value, are passed on the stack, and 

nothing that is passed in is registered. (The CLI is an abstract stack machine, after all—there are no 

registers in it.) Arguments are initially pushed in a CLI-specified order, and if the call has a variable 

number of arguments, a varargs token is pushed before the arguments. After the arguments, the return 

address is pushed automatically. Finally, if the call is an instance method call, the object‘s this pointer 

will be the last argument pushed, and the first argument found, on the stack. If there is no this pointer, the 

return buffer (which is also optional) will be the first element. Remember, neither the this pointer nor the 

return buffer will always be present. 

x86 as a Native Calling Convention Example 

The JIT native calling convention is a variant of the fastcall calling convention typically used by C++ 

compilers.  

Users of the SSCLI version 1.0 will notice a large change in the calling convention 

generated by the JIT compiler. Version 1.0 generated an abstract calling convention 

before having the processor specific code generator generate the specialized call case. 

Version 2.0 has updated the calling convention to match the semantics of the production 

CLR.  

The JIT compiler produces code that specifically targets the local microprocessor and its native stack. 

There is no separate CIL stack implementation; the CIL stack is simply an abstraction. Because of this, the 

execution context for managed code coexists on the stack along with the execution context for unmanaged 

code that may have run as part of the CLI implementation or as calls to external services. In order for this 

to work smoothly, all code, whether JIT-compiled or natively compiled, needs to obey the same rules with 

respect to local calling conventions, nonlocal returns (such as exceptions) and use of ―dangerous‖ data 

types such as pointers. 

In the x86 JIT compiler, when a call, calli, or callvirt instruction is encountered, the arguments 

will have been pushed onto the stack by preceding CIL instructions, as discussed earlier. At this point, the 

compiler will hoist arguments in a left to right order, starting with the this pointer, a return buffer (if 

required) to hold the return result, then the user specified arguments. The calling convention specifies that 

the first two arguments that ―fit‖ in to the native width of the registers will be placed in to the ECX and EDX 

registers. All other arguments are placed on the native processor stack. 

ECX and EDX registers can only be used for arguments that have the same width as the registers. These 

generally include: managed and unmanaged pointers, object references, built in integer types that match the 

native width of the processor, enums and some value types are allowed. The processor stack is used for all 

other cases.  

The return value of a method also has many rules and conditions, and is handled as follows:  
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 Floating-point values are returned on the top of the hardware FP stack. 

 Integers up to 32 bits long are returned in EAX. 

 64-bit integers are passed with EAX holding the least significant 32 bits and EDX holding the 

most significant 32 bits. 

 All other cases require the use of a return buffer, through which the value is returned. 

When the return buffer is used, there is a guarantee that there will be a value there upon method return if no 

failures occurred. The callee is not allowed to use the return buffer for temporary space during execution to 

make sure this invariant is not broken. 

The following example may help make this clear, since it is a bit convoluted. The instance method: 

void MyFunc(int32 a, int64 b, int64 c, int32 d, int32 e) 

will be transformed as shown in Figure 5-9. The first two four byte quantities that are found, the this 

pointer, and the ―b‖ argument, are moved to the ECX and EDX registers, while all other arguments are 

placed on the processor stack. 

For x86 functions with a variable number of parameters, a VarArg token is passed along with the 

arguments to the function. The VarArg token is a special opaque ―handle to argument type data‖ that 

provides information about the types of the arguments that have been pushed. The rules described in the 

standard calling convention are followed for this type of call, however the VarArg token is pushed after 

all other arguments. 
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Figure Error! No text of specified style in document.-9. Transforming the CIL abstract 

stack to the Rotor’s x86 calling convention 

 

The location of activation records on the stack cannot be predicted in advance, but many of the important 

and oft-accessed elements of the record can be determined at compile-time. To take best advantage of this, 

a frame pointer is kept, and offsets into the frame are used—the security object for a frame lives at a 

standard offset, for example, and the location of object references, which is tracked for use by the garbage 

collector, is noted by the compiler and placed into a table. Exception tables, which are an optional part of 

the frame, are also treated this way. Besides parameter values, return values, and instance pointers, things 

like the security object and exception tables populate the activation frame for a method. The prolog of a call 

is where these entities are managed, and where the code to move the two hoisted register values onto the 

stack can be found. It also does other things, as can be seen in the x86-specific version of the prolog shown 

in Example 5-8. 
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Example Error! No text of specified style in document.-9. The x86 method prolog (Defined in 

clr/src/fjit/i386/x86fjit.h) 

 

#define x86_emit_prolog(locals)                                     \ 

    x86_push(X86_EBP);                                              \ 

    x86_mov_reg(x86DirTo, x86Big, x86_mod_reg(X86_EBP, X86_ESP));   \ 

    x86_push(X86_ESI);  /* callee saved, used by newobj and calli*/ \ 

    x86_barith(x86OpXor, x86Big, x86_mod_reg(X86_ESI, X86_ESI));    \ 

    x86_push(X86_ESI);  /* security obj == NULL */                  \ 

    x86_push(X86_ECX);  /* 1st enregistered arg */                  \ 

    x86_push(X86_EDX);  /* 2nd enregistered arg */                  \ 

    if (locals) {                                                   \ 

         x86_mov_reg_imm(x86Big, X86_ECX, locals);                  \ 

         int emitter_scratch_i4 = (unsigned int) outPtr;            \ 

         x86_push_imm(0);                                           \ 

         x86_loop();                                                \ 

         cmdByte(emitter_scratch_i4-((unsigned int) outPtr)-1);     \ 

    }    } 

This code saves the frame pointer on the stack, sets the new frame pointer, saves the ESI register (which is 

used to pass back new objects from the newobj or newarr opcodes and pass the function pointer for 

indirect calls in string copy operations), and then allocates a spot on the stack for the method‘s security 

object, which will be populated lazily, if needed. It also places the first two arguments of the method in to 

local registers as per the x86 calling convention described above, and if there are locals, it grows the stack 

to accommodate them, and then initializes their values to 0. 

The x86_emit_prolog macro is of course one of the processor-specific redefinitions of generic JIT 

macros that were previously discussed in the compilation section. In the generic version of the prolog, 

which can be found in fjitdef.h and is shown in Example 5-9, the simplest presentation of the bare bones of 

the calling convention can be seen. 

Example Error! No text of specified style in document.-10. The generic version of the method prolog 

(defined in clr/src/fjit/fjitdef.h) 

 

#define emit_prolog(locals)                     \ 

{                                               \ 

   setup_frame();                               \ 

   storeEnregisteredArguments();                \ 

   ON_X86_ONLY(if (locals))                     \ 

      grow(locals ON_PPC_ONLY(+1), true);       \ 

   if ( ALIGN_ARGS )                            \ 

      alignArguments();                         \ 

} 

The prolog sets up the frame, takes care of any callee-saved register, and grows the stack for locals as 

needed, initializing them to 0. Each of these actions is handled by other functions or macros, such as the 

x86-specific setup_frame shown in Example 5-10. 

Example Error! No text of specified style in document.-11. The x86 version of setup_frame is called by 

the generic version of emit_prolog (defined in clr/src/fjit/i386/x86def.h) 

 

#define x86_setup_frame()                                   \ 

{                                                           \ 

  cmdByte(expNum(0x55));           /* push ebp */           \ 

  cmdBlock2(                                    \ 

    cmdByte(expNum(0x8b)),     /* mov ebp,esp */        \ 

        cmdByte(expNum(0xec)) );                            \ 

  cmdByte(expNum(0x56));           /* push esi */           \ 

  cmdBlock2(                                    \ 

    cmdByte(expNum(0x33)),     /* xor esi,esi */        \ 

        cmdByte(expNum(0xf6)) );                            \ 
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  cmdByte(expNum(0x56));           /* push esi */           \ 

} 

The code that uses offsets in the activation record is isolated into what is called the code manager. In the 

SSCLI distribution, the code manager can be found in fjit_eetwain.cpp (which roughly stands for ―FJIT 

Execution Engine Technology Without An Important Name‖). The code manager knows intimate details 

about stack layout, and because of this, is used whenever the stack needs to be traversed or pried open. We 

will see it used in Chapter 8 and Chapter 9 in conjunction with stack walks, exception handling, and 

garbage collection. 

One of the functions of the code manager can be used as an example of offset-based access to the activation 

record, as shown in Example 5-11. 

Example Error! No text of specified style in document.-12. Relative access to stack activation records 

(defined in clr/src/vm/fjit_eetwain.cpp) 

 

OBJECTREF* Fjit_EETwain::GetAddrOfSecurityObject(CrawlFrame *pCF) 

{ 

    REGDISPLAY*   ctx           = pCF->GetRegisterSet(); 

    LPVOID        methodInfoPtr = pCF->GetJitManager()->GetGCInfo(pCF-

>GetMethodToken()); 

    unsigned      relOffset     = pCF->GetRelOffset(); 

 

    unsigned char* compressed = (unsigned char*) methodInfoPtr; 

    Fjit_GCInfo hdrInfo; 

    crackMethodInfoHdr(compressed,  (SLOT)(size_t)relOffset, &hdrInfo); 

 

    PVOID* pFrameBase = getInternalFP(GetRegdisplayFP(ctx)); 

    return GetAddrOfSecurityObjectInternal(pFrameBase); 

}  

Of course, the important line in this function is the last, which calls 

GetAddrOfSecurityObjectInternal, which is defined as: 

 

 inline OBJECTREF* GetAddrOfSecurityObjectInternal( PVOID * internalFP  ) 

 { 

   return (OBJECTREF*)(internalFP + offsetof(prolog_data, 

security_obj)/sizeof(void *) + 1); 

 }      

This short function uses the current register value of the frame pointer to find the base of the activation 

record. The prolog_data struct, defined in ifjitcompiler.h, is used to pull out the address of the security 

object itself. This struct varies from processor to processor, based on the calling convention. For example, 

the x86 version looks like this: 

 

 struct prolog_data { 

     unsigned enregisteredArg_2;     //EDX   

     unsigned enregisteredArg_1;     //ECX 

     unsigned security_obj; 

     unsigned callee_saved_esi; 

 }; 

Clearly the four elements that it contains rely heavily on specifics of the x86 compiler. Porting Rotor to 

other processors requires that equal attention be paid to the specific characterizations of each of them. 

Other Calling Conventions 

Another thing that will be seen during compilation is the use of stubs, which are pre-built helper functions 

that can be joined together using the StubLinker class to create pre- and post-processing for method 

calls. Stubs are often used for performance-critical purposes and have detailed knowledge of the 
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conventions used by a specific JIT compiler. Like the code manager, stubs are linked tightly to the 

compiler. To see the collection of stubs used in the SSCLI implementation, look in the 

sscli20/clr/src/vm/i386 directory. You will find templates for exception-handling stubs, security stubs, 

array accessors, and marshaling stubs (used by P/Invoke), as well as even more esoteric ones used for very 

implementation-specific purposes such as multicasting delegates. 

In non-jitted code such as helper functions and stubs, other calling conventions are often utilized, and 

because of this, you will not see a completely homogenous stack at runtime. All calls in jitted code still 

obey the JIT calling convention, but calls between non-jitted components can and do obey other 

conventions. The file method.hpp contains an enum that holds additional calling conventions supported by 

the SSCLI execution engine for managed code: 

 

 enum MethodClassification 

 { 

     mcIL        = 0, // IL 

     mcFCall     = 1, // FCall (also includes tlbimped ctor, Delegate ctor) 

     mcNDirect   = 2, // N/Direct 

     mcEEImpl    = 3, // special method; implementation provided by EE (like 

Delegate Invoke) 

     mcArray     = 4, // Array ECall 

     mcInstantiated = 5, // Instantiated generic methods, including descriptors 

                         // for both shared and unshared code (see 

InstantiatedMethodDesc) 

  

     mcDynamic       = 7, // for method desc with no metadata behind 

     mcCount, 

 }; 

We‘ve already seen how JIT calls use the stack, but what about the others here? The enum essentially 

describes where the code for the call is coming from—each type of call differs, either because interop 

dictates another calling convention or because the execution engine has a high degree of control over the 

callsite and can make execution more efficient. It is interesting that all of these use the same JIT calling 

convention described above, from the perspective of the JIT-compiled code; the stubs do their conversion 

internally. 

One of the important calling conventions in the SSCLI implementation (which appears in the enum above 

as mcECall for historical purposes) is referred to within the distribution as the FCall. It is a very efficient 

call to code that is internal to the execution engine and can be recognized in C# code as methods that are 

marked with the MethodImplOptions.InternalCall method attribute. FCalls are mapped onto 

C++ functions in the execution engine using a table that can be found in sscli/clr/src/vm/ecall.cpp. Each 

entry in this table is an ECFunc struct, as follows: 

struct ECFunc 

{ 

    UINT_PTR            m_dwFlags; 

    LPVOID              m_pImplementation; 

    PTR_MethodDesc      m_pMD;               // for reverse mapping 

    PTR_ECFunc          m_pNext;             // linked list for hash table 

    LPCUTF8             m_wszMethodName; 

    LPHARDCODEDMETASIG  m_wszMethodSig;      // Optional field. It is valid only if  

                                             // HasSignature() is set. 

}; 

The mapping is from m_wszMethodName to m_pImplementation. All functions being called are 

implemented within the execution engine itself; thus, the calls do not need to perform parameter marshaling 

or checks of other kinds. You will see references to ―ECalls‖ in the code base in places, such as the 

ECFunc table (and in the MethodClassification enum already shown). This name is obsolete, and 

all ECalls are now FCalls. The order of parameters to an FCall needs to match the JIT calling convention, 

and to ensure this, FCalls are implemented using the FCDECL and FCIMPL series of macros that can be 

found in fcall.h. The native code for an FCall needs to be written in a very rigorous way—it should protect 
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against causing GC and throw exceptions only from its top-level function using special macros. FCalls, 

while fast, are also expert-only territory and are very prone to bugs because of the many rules that must be 

followed while masquerading as managed code; the unmanaged code in an FCall implementation must use 

the same calling convention and stack management regimen as managed code. 

It may be tempting to extend Rotor using the FCall convention for performance-critical 

code or as an integration mechanism for already existing C++. This is almost certainly a 

bad idea. The trend in Microsoft‘s commercial CLI implementation is to move away from 

using this mechanism, both because implementing correct calls is difficult and because it 

increases the size of the core system library. 

If a call with type mcNDirect is going through the CLI P/Invoke mechanism, it can be recognized in C# 

by the DllImport method attribute. (N/Direct is an obsolete code name for what became the P/Invoke 

feature; readers who recognize the name from previous Microsoft products should pretend not to notice.) 

The code for the method is generated by NDirect::GetNDirectMethodStub; it is code that handles 

argument marshaling, as described in the discussion of P/Invoke in the ECMA Specification. Corinfo.h 

contains an enum for the ―external‖ calling conventions recognized by the P/Invoke stub. These flags affect 

the marshaling behavior of the stub, depending on the calling convention being matched. P/Invoke also 

does parameter marshalling. The stub that marshals the arguments first adjusts the state of the execution 

engine (because the execution engine needs to record whether execution is outside the scope of execution 

engine control on a given thread); it then calls the method that can reside in any native DLL on the system. 

The code for both mcEEImpl and mcArray type calls is generated directly: by the execution engine for 

delegate multicasters in the mcEEImpl case and by GenerateArrayOpStub for multidimensional 

array getters and setters in the mcArray case. The mcDynamic case is used for a fascinating version 2.0 

feature called Lightweight Code Generation. More information on the calling convention and the feature 

itself can be found in ―Emitting Components Dynamically‖. There are other fascinating uses of stubs in the 

SSCLI, including things such as profiling. The last one that we will examine is used by the remoting 

service, which provides application domain isolation. Using the EEClass for a given type, the remoting 

service produces what is called a transparent proxy, which is an object that looks exactly like another type 

but has a special implementation that forwards operations to a companion object of the ―real‖ type. Several 

interesting functions in remoting.cpp use the runtime type information structures we have already seen to 

synthesize the look alike proxy: see for example, CTPMethodTable::CreateTPOfClassForRP. 

The method calls on the transparent proxy are JIT-compiled like any other method and use the TPStub, 

seen in Example 5-12, to implement their behavior (and defined in clr/src/vm/i386/remotingx86.cpp). 

Example Error! No text of specified style in document.-13. A stub for cross application domain access to 

components 

 

Stub *CTPMethodTable::CreateTPStub() 

{ 

    if (s_pTPStub == NULL) 

    { 

        CPUSTUBLINKER sl; 

        CPUSTUBLINKER* pStubLinker = &sl; 

 

        CodeLabel *ConvMD = pStubLinker->NewCodeLabel(); 

        CodeLabel *UseCode = pStubLinker->NewCodeLabel(); 

        CodeLabel *OOContext = pStubLinker->NewCodeLabel(); 

 

        // before we setup a frame check if the method is being executed  

        // in the same context in which the server was created, if true, 

        // we do not set up a frame and instead jump directly to the code address. 

        EmitCallToStub(pStubLinker, OOContext); 

 

        // The contexts match. Jump to the real address and start executing... 

        EmitJumpToAddressCode(pStubLinker, ConvMD, UseCode); 
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        // label: OOContext 

        pStubLinker->EmitLabel(OOContext); 

 

        // CONTEXT MISMATCH CASE, call out to the real proxy to 

        // dispatch 

 

        // Setup the frame 

        EmitSetupFrameCode(pStubLinker); 

 

        // Finally, create the stub 

        s_pTPStub = pStubLinker->Link(); 

 

        g_dwTPStubAddr = (size_t)s_pTPStub->GetEntryPoint(); 

 

        // Set the address of Out Of Context case. 

        // This address is used by other stubs like interface 

        // invoke to jump straight to RealProxy::PrivateInvoke 

        // because they have already determined that contexts 

        // don't match. 

        g_dwOOContextAddr = (size_t)(s_pTPStub->GetEntryPoint() + 

                                    pStubLinker->GetLabelOffset(OOContext)); 

    } 

 

    // Initialize the stub manager which will aid the debugger in finding 

    // the actual address of a call made through the vtable 

    // Note: This function can throw, but we are guarded by a try..finally 

    CVirtualThunkMgr::InitVirtualThunkManager((const BYTE *) s_pTPStub-

>GetEntryPoint()); 

 

    RETURN(s_pTPStub); 

}  

What is interesting in this stub is that its creation is entirely automatic; the stub and its EEClass are 

created by interpreting metadata. A StubLinker is created, and again, knowledge of the calling 

convention is used in the various emit functions to create a customized, data-driven method body. 

Summary 

Assemblies are loaded on demand, using the techniques outlined in Chapter 4. As new components are 

called for by application domains in the execution engine, runtime specifications are built from their 

metadata for in-memory layout. This information includes specifications for static and per-instance data, as 

well as method-dispatching tables. The dispatch tables are constructed to initially contain thunks that will 

trigger code compilation, rather than the method code for class behaviors that will eventually populate 

them. By using thunks in this way, compilation is deferred until the last possible moment, reducing startup 

costs. 

The combination of on-demand loading and deferred compilation is called JIT compilation. Class loaders 

and the SSCLI JIT compiler work in conjunction with high-level language compilers to create component 

types. Source languages are parsed and converted into a combination of metadata and language-agnostic 

CIL opcodes rather than being converted directly into native microprocessor instructions, and this 

combination of metadata and CIL is transformed at runtime into in-memory layouts, native microprocessor 

instructions, and tables for the CLI‘s garbage collector and exception-handling facility. The facilities of the 

runtime that do layout and compilation are also available to programmers in the CLI‘s reflection facility. 

From the perspective of the CLI component model, the stage of a component‘s lifecycle during which it is 

loaded and compiled is a moment when layout and behavior are transformed from an abstract 

representation into concrete, directly executable forms. To ensure that these forms continue to be safe, the 

SSCLI JIT compiler intermixes type verification with compilation, using a unique one-pass algorithm. In 
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the SSCLI, the actual implementation of the verifier and compiler is also layered for maximum portability 

and simplicity. 

Having converted a component into native code, addresses, and offsets, it remains to be seen how this code 

can be run under the watchful eye of the execution engine without ―losing control,‖ which is the topic of 

Chapter 8. But first, we must look at how generics—parametric polymorphism—changes the story of types 

within the execution engine. 
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6. Generics 

The biggest change to the CLI standard (and, by extension, the SSCLI and the production .NET Framework 

implementations) came via an extension to the CLI type system known as parameterized types or 

parametric polymorphism, also known more popularly by its colloquial name, ―generics‖. Generics were a 

highly-requested feature after the initial release of the CLI and .NET 1.0 Framework, and were widely cited 

as one of the compelling reasons for adoption of the 2.0 Standard. 

The motivation for Generics came largely from developers‘ previous work with C++ templates. In a type-

parameterized class (such as a C++ template or CLI generic class), the component declaration contains a 

type parameter, whose exact definition is deferred until declaration, instantiation, and usage. When used, 

the type-parameterized type‘s code is checked against the parameterized type parameter, thereby providing 

additional compile-time type-safety and error detection. 

An example will perhaps serve better to demonstrate the intent of Generics: 

Example 6-1. An example of a Generic type being instantiated. 

 

class Foo<TArg> 

{ 

    public static void WriteArgs<TMethodArg>(TMethodArg methodTypeArgument) 

    { 

        Console.WriteLine("Type arg: {0}, Method arg: {1}", 

                          typeof(TArg), methodTypeArgument.GetType()); 

    } 

} 

 

Foo<string>.WriteArgs<int>(42); 

 

// When run, this outputs the following string to the Console:  

// Type arg: System.String, Method arg: System.Int32 

 

In this example, the class Foo is defined with a single type parameter, TArg, which, when used, will be 

replaced with a type given by the user at point of usage. In the sample above, that parameter is the type 

string, and any reference to TArg in the body of Foo will (for purposes of that usage of Foo) be 

compiled against the string type definition. 

The example code also demonstrates another feature of Generics, the ability to provide type parameters at a 

method level, such as the TMethodArg type parameter in the definition of the WriteArgs method. The 

ability to provide type arguments at both a component and a method level gives the CLI generics system a 

degree of flexibility that would not be present had type parameters only been possible at the type level. 

The advantages of parameterized types becomes a bit more apparent in a more complex example, below, in 

which the (admittedly incomplete and oversimplified) Stack class is parameterized to include the types 

allowed in the Stack, providing a guarantee at the compile-time level to ensure that an int pushed into 

the Stack cannot be erroneously thought to be a string when retrieved: 

Example 6-2. An example of a Generic type being instantiated. 

 

class Stack<T> 

{ 

    private T[] contents = new T[100]; 
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    private int top = 0; 

 

    public Stack() 

    { 

    } 

 

    public void Push(T elem) 

    { 

        contents[top] = elem; top++; 

    } 

 

    public T Pop() 

    { 

        return contents[top]; top--; 

    } 

} 

 

Stack<int> intStack = new Stack<int>(); 

intStack.Push(12); 

intStack.Push(24); 

string top = intStack.Pop(); // Error! Pop returns int, not string 

While Generics are certainly capable of much more than just strongly-typed collection classes, usage like 

the above was widely seen as the ―gateway drug‖ to more advanced use of this kind of parametric 

polymorphism, and as a result, heavily influenced the call for such support in the 2.0 version of the CLI 

standard. 

Readers unfamiliar with the C# 2.0 language, and the Generics features of C# 2.0 in particular, are highly 

encouraged to spend some time getting comfortable with the changes to the language and type system 

before proceeding further—seeing the implementation of Generics will be a complicated enough subject 

without adding the additional burden of learning the language features at the same time. The Microsoft 

MSDN documentation has a great introductory article (http://msdn2.microsoft.com/en-

us/library/ms379564(vs.80).aspx), and many .NET 2.0 books describe the details of Generics from the 

language and type system prospective. For a good background on the technical terminology and concepts 

behind Generics, readers are encouraged to spend some quality time with the ECMA CLI Partition II 

specification (http://msdn2.microsoft.com/en-au/netframework/Aa569283.aspx). 

Design Approach 

Before diving too deeply into the details of the SSCLI Generics implementation, however, it is useful to 

examine some of the design approaches used in alternative languages and platforms; in particular, given 

their similarities to C# and the CLI, it is helpful to spend a few moments examining the equivalent features 

in C++ and Java. 

In C++, one writes a template class containing one or more type parameters, along the lines of something 

like the following: 

Example 6-3. Another example of C++ templates. 

 

template <typename T> 

class Stack 

{ 

private: 

  T* contents; 

  int size; 

 

public: 

  Stack(); 

  Stack(const Stack& rhs); 

http://msdn2.microsoft.com/en-us/library/ms379564(vs.80).aspx)
http://msdn2.microsoft.com/en-us/library/ms379564(vs.80).aspx)
http://msdn2.microsoft.com/en-au/netframework/Aa569283.aspx
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  ~Stack(); 

  operator =(const Stack& rhs); 

 

  void Push(const T& elem); 

  const T& Pop(); 

}; 

 

// implementation details elided for brevity 

 

int main() 

{ 

  Stack<int> intStack; 

  intStack.Push(12); 

  intStack.Pop(24); 

 

  Stack<std::string> stringStack; 

  stringStack.Push("Ted"); 

  stringStack.Push("Joel"); 

} 

The syntactic similarities to C# Generics is not accidental—the C# syntax was chosen deliberately to be 

similar to the C++ facility in order to minimize the learning curve for C++ programmers new to the C# 

language and CLI platform. Note that C++ also permits template functions, in keeping with its backwards 

compatibility to C and C‘s top-level (global) function capabilities: 

Example 6-4. Another example of C++ templates. 

 

template <typename T> 

T min(T x, T y) 

{ 

 if (x > y) 

  return y; 

  

 return x; 

} 

 

cout << min(10, 42); 

cout << min(44.5, 55.9); 

 

// When run, this outputs the following string to the console:  

// 10 

// 44.5 

In both cases, when compiled, the C++ compiler ―expands‖ the definition of the template (class or 

function) as each unique type-parameterized use is seen. Thus, in the function example above, each use of 

min causes the C++ compiler to generate a new, unique definition of min, one taking T as an integer, the 

other taking T as a floating-point value. 

This ―expansion on usage‖ style has some compelling design capabilities (more fully explored in Andrei 

Alexandrescu‘s Modern C++ Design), but it suffers two significant drawbacks. The first is that of ―code 

bloat‖: as each new type-parameterized use of the template is discovered by the compiler, an entirely 

separate definition of the template must be generated, forcing multiple, potentially redundant, definitions of 

the template to be created. Given the relative growth of storage devices and working memory, this might be 

an acceptable tradeoff for the forseeable future. The second drawback, however, is the vastly more 

awkward one, from the perspective of the CLI standard (and those C++ programmers attempting to produce 

runtime-linked components like DLLs): because the template is a purely compile-time artifact—no 

template definition remains after compilation—all usage of that template must be seen before the compiler 

finishes code generation. In a component-based metadata-centric environment like the CLI, where the 

actual CPU code generation will be taking place at runtime—not compile-time—based on the runtime 

linking taking place, the actual usage of a parameterized type may not be seen until long after the compiler 
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has been put away. (In the C++ environment, this meant that developers had to forward-declare the usage 

of the template, so as to force the compiler to generate the type-expanded template code into the DLL or 

shared library, and hope they didn‘t miss one.) 

The Java implementation of Generics faced much of the same problems as the CLI implementation, in that 

the Java Virtual Machine is also an execution engine much like the CLI‘s EE is, and therefore would face 

the same forward-declaration problems that the CLI would face. Java also faced the rather ugly problem of 

a large and complex existing legacy code base, as Java had been ―out in the wild‖ for at least a half-decade 

prior to the first release of the CLI. 

In order to satisfy the needs of the runtime environment, Java‘s implementers chose to generate a runtime 

artifact out of the generic class, but then faced the thorny problem of what code to generate around the 

actual type parameter—in other words, what should the Java compiler do with references to ―T‖? The 

answer Java chose was to use type erasure—removing the actual type parameter (―T‖) from the generated 

code and, in its place, substitute a most-widely-acceptable type instead. In Java‘s case, this means that all 

references to ―T‖ are replaced by references to java.lang.Object, Java‘s fundamental base type and 

equivalent to the CLI‘s System.Object. This meant that only one definition of the parameterized type 

(Stack) needed to be generated by the compiler, but it also meant that all type-safety was lost once the 

compiler was finished and put away, meaning that tools like the Reflection API could (and would) bypass 

and ignore the type-safety the type parameterization was supposed to provide. 

The CLI implementation of parameterized types was ambitious: it aimed to introduce Generics as a first 

class citizen of the type system and the runtime. This meant full cross language interoperability through the 

Common Type System, exact knowledge of generic type instantiations at runtime, full late-bound 

Reflection support for analysis and invocation,  and expressive ―as expected‖ semantics baked in at the C# 

language level.  

A more thorough discussion comparing the Java, C++ and CLI parameterized type 

implementations and their respective advantages and disadvantages is beyond the subject 

of this book (but would probably make for a good undergraduate college thesis or 

research project).  

The implementation takes advantage of the dynamic nature of the runtime, performing just-in-time 

specialization techniques for efficient creation and use of runtime types. Parameter constraints 

(programmer specified type constraints of the generic type parameter. e.g. Foo<T> where T is constrained 

to be a sub-class of System.Object or some other type) and full verification are also supported, 

allowing the programmer to be as specific as needed, while remaining well within the comfort of compile 

time—and runtime—type safety. 

Code sharing (the sharing of Method implementations on Generic types and via Generic 

methods) was another serious motivation for having Generics baked in at the runtime 

level. The SSCLI 2.0 does not support the Code Sharing feature due to the simple FJIT 

implementation used in the SSCLI; however, the production .NET Framework CLR does 

leverage Code Sharing where possible, which significantly reduces code bloat. 

More information on Generics and Code Sharing can be found on Don Syme‘s webpage 

on Microsoft Research (http://research.microsoft.com/~dsyme/papers/generics.pdf) and 

Joel‘s blog (http://blogs.msdn.com/joelpob/archive/2004/11/17/259224.aspx). 

In what was probably the most successful use of the SSCLI/Rotor source base as a research platform for 

future CLI functionality, Rotor developers were able to get an early look at a strawman implementation of 

Generics via a Microsoft Research project called Gyro (http://research.microsoft.com/projects/clrgen), a 

―source patch‖ to the Rotor v1 source base that provided a working implementation of a full-reification 

Generics system on top of the CLI. This gave Microsoft developers a chance to see Generics in action and 

http://research.microsoft.com/~dsyme/papers/generics.pdf
http://blogs.msdn.com/joelpob/archive/2004/11/17/259224.aspx
http://research.microsoft.com/projects/clrgen
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make sound decisions about its specification and implementation from a position of experience, rather than 

supposition and inference. 

Implementation 

Making the CLI generics implementation a first class runtime and type system citizen meant the 

implementation had to touch a lot of areas inside the SSCLI codebase, necessitating changes to metadata, 

metadata tables, runtime layout, new runtime data structures, code verification, the JIT compiler, Remoting, 

the Debugger, Profiler API‘s and more. It‘s probably time to get another one of your favorite caffeinated 

beverages while we explore some of these changes in detail. Maybe even two. 

Generics Metadata 

Changes and additions to Metadata and IL were required in order for CLI languages to emit generic types 

that the runtime could understand. Some of the high level changes included adding new types to the CIL 

type system; additional syntax for declaration of polymorphic (generic) forms of classes, interfaces, structs 

and methods; and brand new CIL instructions, along with generalized versions of existing CIL instructions 

to deal with Generic types.  

CIL Changes 

The changes are best illustrated by walking through the CIL and metadata output for a simple C# example 

that uses Generics: 

 Example 6-5. An example of a Generic Stack. 

 

class Stack<T>  

{ 

    private T[] store; 

    private int size; 

    public Stack() 

    { 

        store=new T[10]; size=0; 

    } 

 

    public void Push(T x)  

    { 

        if (size>=store.Length) { 

            T[] tmp = new T[size*2]; 

            Array.Copy(store,tmp,size); 

            store = tmp; 

        } 

        store[size++] = x; 

    } 

 

    public T Pop() { 

        return store[--size]; 

    } 

} 

 

static void Main(string[] args) 

{ 

 Stack<int> stack = new Stack<int>(); 

 stack.Push(1); 

} 

 

Firing up ILDASM, we first take a look at some of the CIL syntax for the Generic Stack type:  

.class private auto ansi beforefieldinit Stack`1<T> 
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       extends [mscorlib]System.Object 

{ 

  .field private !T[] store 

  .field private int32 size 

  .method public hidebysig specialname rtspecialname  

          instance void  .ctor() cil managed 

  { 

    // Code size       30 (0x1e) 

    .maxstack  8 

    IL_0000:  ldarg.0 

    IL_0001:  call       instance void [mscorlib]System.Object::.ctor() 

    IL_0006:  nop 

    IL_0007:  nop 

    IL_0008:  ldarg.0 

    IL_0009:  ldc.i4.s   10 

    IL_000b:  newarr     !T 

    IL_0010:  stfld      !0[] class Stack`1<!T>::store 

    IL_0015:  ldarg.0 

    IL_0016:  ldc.i4.0 

    IL_0017:  stfld      int32 class Stack`1<!T>::size 

    IL_001c:  nop 

    IL_001d:  ret 

  } // end of method Stack`1::.ctor 

 

The first change in metadata is seen in the type name, where the generic Stack type shows as Stack`1. 

The `1 part is necessary to describe the ―arity‖ of the type (i.e. how many specified type parameters the 

type owns), and to remove any type name disambiguation from metadata readers and the runtime. A little 

further down you‘ll see the field declaration is of type ―T‖, which is generally the syntax for describing the 

type in CIL. In the constructor CIL code, the stfld CIL opcode takes a !0 parameter – this is the syntax 

for indexing the generic type parameters, meaning it references the 0
th

 (first, zero based index) generic 

parameter. 

The CIL for the Push and Pop methods use similar syntax for referencing the Type arguments. However if 

the method itself has a generic Parameter, then these parameters are indexed using two bangs, !!N, such 

that the generic method‘s first type parameter is referred to as !!0, the generic method‘s second type 

parameter is !!1, and so on.  

  .method private hidebysig static void  Main(string[] args) cil managed 

  { 

    .entrypoint 

    // Code size       16 (0x10) 

    .maxstack  2 

    .locals init (class Stack`1<int32> V_0) 

    IL_0000:  nop 

    IL_0001:  newobj     instance void class Stack`1<int32>::.ctor() 

    IL_0006:  stloc.0 

    IL_0007:  ldloc.0 

    IL_0008:  ldc.i4.1 

    IL_0009:  callvirt   instance void class Stack`1<int32>::Push(!0) 

    IL_000e:  nop 

    IL_000f:  ret 

  } // end of method Program::Main                 

Instantiations of generic types are fully declared in CIL, by specifying the type name and either a fully 

qualified type argument (this is called a ―closed generic type‖), or have the generic type ―left open‖ by 

specifying an in scope type parameter (this is called an ―open generic type‖). In this case, newobj has 

been passed a ―closed‖ type: Stack<int>. To further illustrate the difference between open and closed 

generic type declarations, let‘s look at the following example of instantiation with an open generic type 

definition:  
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public class Foo<T, U> 

{ } 

 

public class Bar<T> 

{  

    public Bar() 

    { 

        new Foo<T, int>(); 

    } 

} 

The Bar() constructor is creating a Foo`2 type, yet does not yet fully specify Foo‘s type arguments. 

The constructor decompiles down to the following IL: 

.class public auto ansi beforefieldinit Bar`1<T> 

       extends [mscorlib]System.Object 

{ 

  .method public hidebysig specialname rtspecialname 

          instance void  .ctor() cil managed 

  { 

    // Code size       16 (0x10) 

    .maxstack  8 

    IL_0000:  ldarg.0 

    IL_0001:  call       instance void [mscorlib]System.Object::.ctor() 

    IL_0006:  nop 

    IL_0007:  nop 

    IL_0008:  newobj     instance void class Foo`2<!T,int32>::.ctor() 

    IL_000d:  pop 

    IL_000e:  nop 

    IL_000f:  ret 

  } // end of method Bar`1::.ctor 

 

} // end of class Bar`1 

You can see that the newobj IL instruction is an open generic type definition. This means the generic still 

needs to be closed over ―!T‖ when the Bar`1 class is instantiated with its own generic type argument. 

Generics as a type system feature were designed to be ―as expected‖, meaning they don‘t 

restrict your movement as an object orientated programmer. They support polymorphic 

inheritance, polymorphic recursion, polymorphic virtual methods and generally don‘t 

have any type system side-effects, in contrast to systems that erase or coerce. A type you 

instantiate at runtime will also reflect back at you the same way you defined it, as all 

objects carry exact runtime type information. 

Generic Parameter Constraints 

At times, when defining generic classes, it can be useful to constrain or restrict the type arguments that are 

used to instantiate your class to a specific set of types, subclasses of types, even to the degree of restricting 

the kind of type (valuetype, reference type, and types that support default constructors) is able to be used.  

The constraint syntax in C# looks like the following:  

public class Foo<T> where T : struct 

{ }  

The ―where‖ keyword has been added to C# to support constraints on generic type parameters (on both 

class declarations, and method definitions). And the IL output looks like the following: 

 .class public auto ansi beforefieldinit  

    Foo`1<valuetype .ctor ([mscorlib]System.ValueType) T> 

       extends [mscorlib]System.Object  

The generic type definition grammar has been extended to support constraints. Here we see the ―valuetype‖ 

keyword used to specify that the parameter T can only be instantiated with a type that is a valuetype.  
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Details of what constraints are supported on which types are specified in Partition II of 

the C# and the CLI ECMA specifications. See http://msdn.microsoft.com/en-

us/netframework/aa569283.aspx to download the specifications in full.  

Constraint enforcement is performed at the runtime level when a generic type is loaded and instantiated.  

Metadata Table Additions 

A few new metadata tables were added to the runtime, and the semantics of existing tables were altered in 

order to support the full breadth of Generics. For the most part, existing tables were leveraged as much as 

possible, to keep the surface area of metadata tables (not to mention the necessary changes and testing to 

support those changes) as small as possible. Generic type definitions still live in the same metadata table as 

their non-generic counterparts, the TypeDef table, and generic methods also still reside in the MethodDef 

table. However, there isn‘t enough information in these metadata tables to be specific about ―closed‖ 

generic type instantiations. Instead, closed generic type instantiations are held in separate tables, the 

―TypeSpec‖ table for closed generic type definitions, and the ―MethodSpec‖ table for generic method 

instantiations.  

To make this clearer, let‘s first walk through an example of the metadata table layout for both a non-generic 

class and a non-generic method, and then compare this with their generic definition counterparts. Hopefully 

this will give you a feel for the changes made to metadata tables and CIL opcodes.   

public class Foo 

{  

  public void MyMethod() 

  {} 

} 

 

public class MainClass 

{ 

  public static void Main(string[] args) 

  { 

    new Foo().MyMethod(); 

  } 

}  

Using ildasm.exe to decompile the IL with mention of the actual metadata tokens, we use the ―/tokens‖ 

command line argument: 

.class /*02000002*/ public auto ansi beforefieldinit Foo 

       extends [mscorlib/*23000001*/]System.Object/*01000001*/ 

{ 

  // MyMethod() method definition 

  .method /*06000001*/ public hidebysig instance void 

          MyMethod() cil managed 

  { 

    // Code size       2 (0x2) 

    .maxstack  8 

    IL_0000:  nop 

    IL_0001:  ret 

  } // end of method Foo::MyMethod 

 

} // end of class Foo 

This all looks fairly standard: the Foo type definition lives in the TypeDef table (0x02) as the second row 

(0x02000002), and the MyMethod()method lives in the MethodDef table (0x06) as the first row 

(0x06000001). Looking at the implementation of the Main(string[] args) method we see the 

following: 

  // Main(string[] args) 

  .method /*06000003*/ public hidebysig static 

          void  Main(string[] args) cil managed 

http://msdn.microsoft.com/en-us/netframework/aa569283.aspx
http://msdn.microsoft.com/en-us/netframework/aa569283.aspx
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  { 

    .entrypoint 

    // Code size       13 (0xd) 

    .maxstack  8 

    IL_0000:  nop 

    IL_0001:  newobj     instance void Foo::.ctor() /* 06000002 */ 

    IL_0006:  call      instance void Foo::MyMethod() /* 06000001 */ 

    IL_000b:  nop 

    IL_000c:  ret 

  } // end of method MainClass::Main 

The newobj IL instruction instantiates the Foo object and calls the constructor, and the call instruction 

calls the Foo.MyMethod() method via the MethodDef metadata for MyMethod.  

Now if we look at the same example with Generics mixed in, we see a similar story for the layout of the 

generic definition, but a very different story on how these things are ―closed‖ over and called: 

public class Foo<T> where T : struct 

{  

  public void MyMethod<U>() 

  {} 

} 

 

public class MainClass 

{ 

  public static void Main(string[] args) 

  { 

    new Foo<int>().MyMethod<float>(); 

  } 

} 

Running this example through ildasm.exe /tokens we see similar output to the non-generic example:  

.class /*02000002*/ public auto ansi beforefieldinit  

       Foo`1<valuetype .ctor ([mscorlib/*23000001*/]System.ValueType/*01000001*/) T> 

       extends [mscorlib/*23000001*/]System.Object/*01000002*/ 

{ 

  .method /*06000001*/ public hidebysig instance void 

          MyMethod<U>() cil managed 

  { 

    // Code size       2 (0x2) 

    .maxstack  8 

    IL_0000:  nop 

    IL_0001:  ret 

  } // end of method Foo`1::MyMethod} 

The Foo`1 type still lives in the TypeDef table (0x02) and the generic method MyMethod<U> still 

resides in the MethodDef table (0x06). However, when we go to close and reference 

Foo<int>.MyMethod<float>() in MainMethod we see the difference:  

IL_0006:  call   instance void class Foo`1<int32>::MyMethod<float32>() /* 2B000001 

*/ 

Instead of the call instruction taking a MethodDef token like we saw in the non-generic example, it takes 

a MethodSpec metadata token instead. The MethodSpec (0x2B) table contains all the information 

necessary to ―close over‖ the generic method with a proper generic argument. It contains a pointer to the 

―MethodDef‖ or ―MethodRef‖ metadata tables that describe the method that we‘re closing over (in this 

example, it would have a MethodDef token to the MyMethod<U> method), and contains a pointer to the 

closed method signature definition – in this case it would point to the signature for MyMethod<int>. 

When the call instruction is JIT compiled, it will take the MethodSpec token, walk over to the 

MethodSpec table, find the relevant generic method via the MethodDef or MethodRef token, and then read 

the method signature in order to understand what types are needed to close over the generic method. A 
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similar process occurs when a TypeSpec metadata token is used instead of a TypeDef or TypeRef token, as 

the TypeSpec table contains similar information to close over the generic type instantiation.  

The example we‘ve walked through above illustrates a fairly simple design: a ‗spec‘ token is used in place 

of a ‗def‘ or ‗ref‘ token when a generic that needs to be fully described is referenced. As a result, CIL 

opcodes have also been extended to support ‗spec‘ tokens. 

There are a couple of other Generics specific tables that haven‘t been described in our example: the 

GenericParam (0x2A) table which stores the generic parameters used in generic type definitions and 

generic method definitions, and the GenericParamConstraint (0x2C) table, which records the constraints 

for each generic parameter. It‘s worth exploring these tables, and the rules around ‗spec‘ tokens, in depth 

through the Partition II Metadata specification. 

Runtime Layout and Compilation 

The runtime layout of Generic types in the SSCLI is similar to non-generic types, as the designers 

leveraged the existing runtime data structures in order to achieve the design goal of having all Generic 

types exactly known at runtime. This design goal allows subsystems like Reflection to tell the difference 

between a List<string> and a List<object> at runtime by looking at the runtime type associated 

with that object.  

We will consider the runtime layout of Generic types in the context of loading and executing our simple 

Stack<T> example. We will then follow this with a more complex example that digs deeper in to 

semantics of loading complex Generic types.  

Example 6-6. An example of a Generic Stack. 

class Stack<T>  

{ 

    public void Push(T x)  

    { 

  // ... 

    } 

} 

 

static void Main(string[] args) 

{ 

 Stack<int> stack = new Stack<int>(); 

 Stack.Push(1); 

} 

When the Main method of Example 6-6 gets loaded and run for the first time, the JIT compiler begins to 

compile the newobj CIL instruction which takes a Stack`1<int>.ctor() MemberRef metadata 

token (which invariably has a pointer to the TypeSpec for Stack`1<int>). The JIT asks the execution 

engine to resolve this token so that it‘s able understand what x86 code is required for this method. This 

process starts in MemberLoad::GetMethodDescFromMemberDefOrRefOrSpecThrowing 

which is found in sscli20/clr/src/vm/Memberload.cpp. 

MethodDesc * MemberLoader::GetMethodDescFromMemberDefOrRefOrSpecThrowing( 

    Module *pModule, 

    mdMemberRef MemberRef, 

    const SigTypeContext *pTypeContext, 

    BOOL strictMetadataChecks,   

    BOOL allowInstParam)              

This method resolves any MethodDef, MethodRef, or MethodSpec tokens to a MethodDesc. In our Stack 

example, we don‘t have any MethodSpec metadata tokens (as we don‘t have any Generic methods defined), 

but this method has the curious ability to resolve a MethodSpec token to a MethodRef token. We should 

take a look at that code before we move on: 

  if (TypeFromToken(MemberRef) == mdtMethodSpec) 

  { 
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      PCCOR_SIGNATURE pSig; 

      ULONG cSig; 

 

      SigPointer sp(pSig); 

 

      IfFailThrow(sp.GetData(&nGenericMethodArgs)); 

 

      genericMethodArgs = 

reinterpret_cast<TypeHandle*>(qbGenericMethodArgs.AllocThrows(cbAllocSize)); 

 

      for (DWORD i = 0; i < nGenericMethodArgs; i++) 

      { 

          genericMethodArgs[i] = sp.GetTypeHandleThrowing(pModule, pTypeContext); 

          _ASSERTE (!genericMethodArgs[i].IsNull()); 

          sp.SkipExactlyOne(); 

      } 

  } 

If the token is a MethodSpec token, we call the GetData method, passing in the specified Generic type 

argument, and get handed back a MethodRef or MethodDef token that specifies the Generic method we 

care about (remember, the MethodDesc metadata table contains an index in to the particular 

MethodDef/MethodRef table that contains our Generic method, and also contains a pointer to the blob heap 

which specifies the particular instantiation information). Once we have the MethodDef/MethodRef token, 

we need to grab the type handles for the generic arguments. We do this through the 

GetTypeHandleThrowing method. So now, we have the MethodDef/MethodRef that specifies the 

Generic method we want, along with all the instantiating type information to close over the method.  

Once we have our MethodRef/MethodDef token (and any type information required to close over the 

Generic method), we move on to trying to resolve this to a MethodDesc structure. The  

MemberLoad::GetDescFromMemberDefOrRefThrowing method found in 

sscli20/clr/src/vm/Memberload.cpp performs this job:  

void* MemberLoader::GetDescFromMemberDefOrRefThrowing(Module *pModule, 

             mdMemberRef MemberRef, 

             BOOL *pfIsMethod, 

             const SigTypeContext *pTypeContext, 

             BOOL strictMetadataChecks,  

             DWORD nGenericMethodArgs,    

             TypeHandle *genericMethodArgs, 

             BOOL allowInstParam, 

             ClassLoadLevel level) 

It takes a MethodRef token (along with any Generic instantiation information) and begins the process of 

loading the type on which the method lives: 

  // Now load the parent of the method ref 

  TypeHandle typeHnd; 

  if (TypeFromToken(parent) == mdtTypeSpec && level == CLASS_LOAD_APPROXPARENTS) 

  { 

      PCCOR_SIGNATURE sigInst; 

      typeHnd = ClassLoader::LoadApproxTypeThrowing(pModule, parent, &sigInst, 

pTypeContext); 

  } 

  else 

  { 

      typeHnd = ClassLoader::LoadTypeDefOrRefOrSpecThrowing(pModule, parent, 

pTypeContext,  

                                                            

ClassLoader::ThrowIfNotFound, 

                                                            (strictMetadataChecks) ? 

                                                               

ClassLoader::FailIfUninstDefOrRef : 
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ClassLoader::PermitUninstDefOrRef); 

  } 

  MethodTable *pMT = typeHnd.GetMethodTable(); 

The ClassLoader::LoadTypeDefOrRefOrSpecThrowing method trawls metadata and resolves 

TypeRef/TypeDef/TypeSpec tokens to runtime types via the class loader, and hands back a unique 

MethodTable that for the Generic case, represents a closed over Generic type. Once we have the 

MethodRef/MethodDef token (therefore the signature for the method), and the real live runtime type, we 

can call the FindMethod method on the EEClass of our closed Generic type to obtain the 

MethodDesc for the method: 

  // Lookup the method in the class. 

  MethodDesc *pMD = pMT->GetClass()->FindMethod(szMember, pSig, cSig, pModule, NULL, 

                                                EEClass::FM_Default, &sigSubst); 

  if (pMD == NULL) 

      ThrowMissingMethodException(pMT,szMember,pModule,pSig,cSig, pTypeContext); 

       

  // ... checks     

       

  // For generic code it will return an instantiating stub where needed.  If the 

method 

  // is a generic method then instantiate it with the given parameters. 

  // For non-generic code this will just return pMD 

  pMD = MethodDesc::FindOrCreateAssociatedMethodDesc(pMD, 

           pMT, 

           FALSE /* don't get unboxing entry point */, 

           (strictMetadataChecks ? nGenericMethodArgs : pMD-

>GetNumGenericMethodArgs()), 

           (strictMetadataChecks ? genericMethodArgs : pMD-

>LoadMethodInstantiation()), 

           allowInstParam, 

           FALSE, 

           TRUE, 

           level); 

 

  return pMD; 

So, to recap, we‘ve taken the MethodRef for Stack`1<int>.ctor, loaded the Stack`1<int> type, 

and found the .ctor on that instantiation via the EEClass (with a brief stop to understand how we 

resolve Generic method MethodSpec tokens as well). Next, the runtime needs to bubble back up to the top 

of the paragraph and continue compiling the ―newobj‖ instruction.  

Compilation Process 

The compilation and allocation process for the Stack`1<int>.ctor method is quite straightforward. 

Because we‘ve already loaded the MethodTable and other runtime data structures for the 

Stack`1<int> type, the JIT compiler is able to generate code for the constructor just like any other 

method.  

  .method public hidebysig specialname rtspecialname 

          instance void  .ctor() cil managed 

  { 

    // Code size       30 (0x1e) 

    .maxstack  8 

    IL_0000:  ldarg.0 

    IL_0001:  call       instance void [mscorlib]System.Object::.ctor() 

    IL_0006:  nop 

    IL_0007:  nop 

    IL_0008:  ldarg.0 

    IL_0009:  ldc.i4.s   10 

    IL_000b:  newarr     !T 

    IL_0010:  stfld      !0[] class Stack`1<!T>::store 
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    IL_0015:  ldarg.0 

    IL_0016:  ldc.i4.0 

    IL_0017:  stfld      int32 class Stack`1<!T>::size 

    IL_001c:  nop 

    IL_001d:  ret 

  }  

Whenever the JIT compiler comes across a metadata token that represents the Generic type (i.e. the !T), it 

simply resolves that token to the type handle that was used to close over the Generic type: in this case, the 

int type. Actual allocation of a Stack`1<int> object (done via a call to the JIT helper function 

JIT_NewFast) also uses the int type handle to figure out the type and size of the fields required to 

layout the object. That means that the object is specialized to the Generic type argument that is specified. 

The same process applies for JIT code generation for the Push and Pop methods. The JIT simply 

leverages the metadata tokens and runtime data structures to figure out how to specialize the code 

generation for the method over the specified Generic arguments. 

Complex Recursive Loading Example 

Given the flexible polymorphic programming style that Generics enables, there are clearly more interesting 

and complex cases that the runtime needs to deal with. For example, it‘s surprisingly easy to find scenarios 

where cyclic graphs of type dependencies appear, which could cause some grief to the runtime. By way of 

explanation, let‘s quickly review the loading and layout specifics for an example which contains cyclical 

references.  

struct S<T> 

{ 

        T t; 

} 

  

class A<T> 

{ 

        S<B<T>> foo; 

} 

  

class B<T> 

{ 

 S<A<T>> foo; 

} 

 

new A<string>();  

Invocation of the Loader takes place much the same as in the previous example, with the newobj 

A<string> instruction kicking off the process (from here on in, we‘ll use the C# type names instead of 

the metadata names to make the explanation a little more cosmetic). The loader looks at the field token for 

the S<B<T>> and realizes that S is a generic valuetype. As valuetypes are laid out inline of the heap 

object, resolution of S must take place immediately. To load S<B<string>>, we must first load up 

B<string>. As B contains the S valuetype, resolution also takes place immediately, so the loader fires up 

an S<A<string>> and bang – we have a cycle – we‘re trying to load A<string>, that‘s what we‘re 

resolving in the first place. 

Detection of these cycles occurs via a method called CheckInstantiationForRecursion, found in 

sscli20/clr/src/vm/Generics.cpp: 

Example 6-7. Generics::CheckInstantiationForRecursion.cpp 

 

BOOL Generics::CheckInstantiationForRecursion(const unsigned int nGenericClassArgs,  

                                              const TypeHandle pGenericArgs[]) 

{ 

    if (nGenericClassArgs == 0) 

        return TRUE; 
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      struct PerIterationData { 

        const TypeHandle * genArgs; 

        int index; 

        int numGenArgs; 

    }; 

     

    PerIterationData stack[MAX_GENERIC_INSTANTIATION_DEPTH]; 

    stack[0].genArgs = pGenericArgs; 

    stack[0].numGenArgs = nGenericClassArgs; 

    stack[0].index = 0; 

    int curDepth = 0; 

 

    // Walk over each instantiation, doing a depth-first search looking for any 

    // instantiation with a depth of over 100, in an attempt at flagging  

    // recursive type definitions.  We're doing this to help avoid a stack  

    // overflow in the loader.   

    // Avoid recursion here, to avoid a stack overflow.  Also, this code 

    // doesn't allocate memory. 

    while(curDepth >= 0) { 

        PerIterationData * cur = &stack[curDepth]; 

        if (cur->index == cur->numGenArgs) { 

            // Pop 

            curDepth--; 

            if (curDepth >= 0) 

                stack[curDepth].index++; 

            continue; 

        } 

        if (cur->genArgs[cur->index].HasInstantiation()) { 

            // Push 

            curDepth++; 

            if (curDepth >= MAX_GENERIC_INSTANTIATION_DEPTH) 

                return FALSE; 

            stack[curDepth].genArgs = cur->genArgs[cur->index].GetInstantiation(); 

            stack[curDepth].numGenArgs = cur->genArgs[cur-

>index].GetNumGenericArgs(); 

            stack[curDepth].index = 0; 

            continue; 

        } 

         

        // Continue to the next item 

        cur->index++; 

    } 

    return TRUE; 

}     

If the type doesn‘t contain any generic parameters then clearly it can‘t possibly have cycles, so the check 

returns false. Otherwise, a depth first search occurs looking for a cycle while being very careful to avoid an 

internal stack overflow. 

If a cycle is found, the loader splits up the loading of these types in to loading phases. Each phase advances 

the state of a type‘s runtime data structure (TypeDesc or MethodTable) from one level to a higher 

level. This design eliminates the cyclic recursion problem demonstrated by the above example, and thus 

avoids infinite recursion and deadlocks. 

Example 6-8. ClassLoadLevel enumeration in ClassLoadLevel.h 

 

enum ClassLoadLevel 

{ 

    CLASS_LOAD_BEGIN, 

    CLASS_LOAD_UNRESTOREDTYPEKEY, 

    CLASS_LOAD_UNRESTORED,   

    CLASS_LOAD_APPROXPARENTS, 

    CLASS_LOAD_EXACTPARENTS, 



Chapter 6: Generics  | 153 

    CLASS_DEPENDENCIES_LOADED, 

    CLASS_LOADED, 

 

    CLASS_LOAD_LEVEL_FINAL = CLASS_LOADED, 

}; 

The various runtime data structures associated with loading and resolving Generic types (TypeHandle, 

TypeDesc, and MethodTable) expose a GetLoadLevel method. 

Example 6-9. MethodTable::GetLoadLevel in MethodTable.h 

 

 

inline ClassLoadLevel GetLoadLevel() 

{ 

LEAF_CONTRACT; 

 

g_IBCLogger.LogMethodTableAccess(this); 

 

// Fast path for zapped images (don't look at writeable data) 

if (IsZapped()) 

{ 

    // If it was marked as not needing a restore, then it was fully loaded at ngen 

time 

    if (!MayNeedRestore()) 

        return CLASS_LOADED; 

 

    // Otherwise look at the restore bits 

    g_IBCLogger.LogMethodTableWriteableDataAccess(this); 

 

    if (GetWriteableData()->m_dwFlags & 

MethodTableWriteableData::enum_flag_UnrestoredTypeKey) 

        return CLASS_LOAD_UNRESTOREDTYPEKEY; 

 

    if (GetWriteableData()->m_dwFlags & 

MethodTableWriteableData::enum_flag_Unrestored) 

        return CLASS_LOAD_UNRESTORED; 

} 

 

g_IBCLogger.LogMethodTableWriteableDataAccess(this); 

 

if (HasApproxParent()) 

    return CLASS_LOAD_APPROXPARENTS; 

 

if (!(GetWriteableData()->m_dwFlags & 

MethodTableWriteableData::enum_flag_DependenciesLoaded)) 

    return CLASS_LOAD_EXACTPARENTS; 

 

if (GetWriteableData()->m_dwFlags & 

MethodTableWriteableData::enum_flag_IsNotFullyLoaded) 

    return CLASS_DEPENDENCIES_LOADED; 

 

return CLASS_LOADED; 

} 

Loading starts at CLASS_LOAD_BEGIN and ends with CLASS_LOADED, while being promoted to a 

couple of intermediate levels in between. There are rich and useful comments about individual load levels 

in the sscli20/clr/src/vm/classloadlevel.h source file. 

The multi-level load phases allow the loader to play cute tricks in order to break the recursive reference 

cycle. The loader will use a temporary Generic instantiation placeholder type called __Canon, in the 

places where a cycle may occur. In this instance, the S<B<string>> instance found in the A<string> 
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type will become S<__Canon>. The __Canon type is found in Object.cs and is part of the core runtime 

library:  

Example 6-10. __Canon placeholder type in Object.cs 

 

 

// Internal methodtable used to instantiate the "canonical" methodtable for  

// generic instantiations. The name "__Canon" will never been seen by users  

// but it will appear a lot in debugger stack traces involving generics so  

// it is kept deliberately short as to avoid being a nuisance. 

 

[Serializable()] 

[ClassInterface(ClassInterfaceType.AutoDual)] 

[System.Runtime.InteropServices.ComVisible(true)] 

internal class __Canon 

{ 

} 

 

Load phases for each reference in the cycle progress, and by the time the load phase for the A<string> 

type has moved to the CLASS_LOADED phase, the field will point to the fully instantiated 

S<B<string>> handle.  

Breadth of Changes 

The runtime changes required for Generics were far-reaching, touching everything from runtime data 

structures, to metadata, to the Base Class Libraries themselves. In this section, we‘ll explore one of the 

bigger type system changes its impact.  

Nullable types 

A common feature request for the production .NET framework was to allow the assigning of null to 

valuetypes. This would enable scenarios like mapping SQL database valuetype columns which can be 

―null‖ to the runtime type system (i.e. an Age column in a SQL table could be null, but mapping that Age 

column to the Integer type on the runtime would fail for the null case). There are several ways of 

implementing this feature at both the language and the runtime level, but Generics gave us a unique 

opportunity to simply create a container type that hosted a Generic valuetype, yet could be considered at 

the runtime level as being null. 

The Nullable<T> type was conceived: 

Example 6-11. Nullable<T> type found in Nullable.cs. 

 

 

public struct Nullable<T> where T : struct 

{ 

private bool hasValue;  

internal T value;  

 

public Nullable(T value) { 

    this.value = value; 

    this.hasValue = true; 

}         

 

public bool HasValue { 

    get { 

        return hasValue; 

        } 

    }  
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public T Value { 

    get { 

        if (!HasValue) { 

            ThrowHelper.ThrowInvalidOperationException( 

                ExceptionResource.InvalidOperation_NoValue); 

        } 

        return value; 

    } 

} 

The C# compiler has special syntactic sugar to describe a nullable type, the details of which can be found 

on MSDN (http://msdn2.microsoft.com/en-us/library/Aa479866.aspx). For now, we‘re just interested in a 

particularly interesting case of Nullable usage, which required special implementation to be added to the 

runtime. The case concerns the boxing and unboxing of Nullable types, consider the following:  

Example 6-12. Boxed Nullable semantics without special runtime case. 

 

 

int? x = null; 

Console.WriteLine(x == null);  // True 

object o = x; 

Console.WriteLine(o == null);  // ???? 

When casting the Nullable object ―x‖ to object, the runtime boxes the struct on the heap as an object and 

hands it back a reference pointer to it. If there were no rules or semantics surrounding this code, the o == 

null case would return false, as there is a valid pointer pointing to an object on the heap. It‘s unlikely that 

this is what programmers expect – they expect the ―o‖ object to be null.  

The same applies when trying to unbox a Nullable type: 

 Example 6-13. Unboxed nullable semantics without special runtime case. 

 

 

int x = 123; 

object o = x; 

int y = (int?)o;  // Error, must write (int?)(int)o 

In order to get semantics that programmers expect, modifications to the runtime were made in order to deal 

with this as a special case. There are two special case semantics to think about: first, when a Nullable<T> is 

boxed, it‘s unwrapped, yielding either a null reference, or a reference to a boxed T, and second, when 

unboxing a T, a choice can be made between returning a T, or a Nullable<T> (for the unboxing of a null 

case, a Nullable<T> with a null value is returned). 

In order to implement the programmer expected semantics, a number of changes were made to the runtime, 

touching JIT semantics for the box, unbox, unbox.any and isinst instructions, boxing/unboxing 

semantics in the execution engine, changes to verification rules, and even some changes to the Reflection 

APIs.  

Let‘s take a look around some of the changes that were made.  

Compilation of the box instruction for a Nullable<T> was changed to adapt to the special case boxing 

semantic of Nullables. Code like the following 

 

int x = 123; 

object o = x; 

will eventually hit the compileCEE_BOX method which hands off to the compileHelperCEE_BOX 

method as normal: 

Example 6-14. compileHelperCEE_BOX method in fjit.cpp. 

 

 

http://msdn2.microsoft.com/en-us/library/Aa479866.aspx
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FJitResult FJit::compileHelperCEE_BOX(unsigned int token) 

{ 

    // Get the stack type of the class 

    CorInfoType eeType = jitInfo->asCorInfoType(targetClass); 

    OpType targetType = createOpType( eeType, targetClass ); 

    targetType.toFPNormalizedType(); 

 

    CORINFO_CLASS_HANDLE tokenType; 

    TokenToHandle(token, tokenType, CORINFO_TOKENKIND_Ldtoken, false); 

 

    // Check whether the token refers to a value type 

    DWORD attribs = jitInfo->getClassAttribs(targetClass, methodInfo->ftn); 

    if (attribs & CORINFO_FLG_VALUECLASS) { 

        // Verify that the token matches the of the item on the stack 

        VERIFICATION_CHECK( targetType.enum_() == topOpE() && topOpE() != 

typeValClass || 

                            topOpE() == typeValClass && topOp().cls() == 

targetClass); 

        // Floats were promoted, put them back before continuing. 

        if (eeType == CORINFO_TYPE_FLOAT) { 

            emit_conv_RtoR4(); 

        } 

        else if (eeType == CORINFO_TYPE_DOUBLE) { 

            emit_conv_RtoR8(); 

        } 

 

        unsigned vcSize = typeSizeInBytes(jitInfo, targetClass); 

        void* helper_ftn = jitInfo->getHelperFtn(jitInfo-

>getBoxHelper(targetClass)); 

        _ASSERTE(helper_ftn); 

        emit_BOXVAL(targetClass, vcSize, helper_ftn); 

    } 

    else { 

        // BOX can be used on things that are not value classes, in which 

        // case we get a NOP.  However the verifier's view of the type on the 

        // stack changes (in generic code a 'T' becomes a 'boxed T') 

        VERIFICATION_CHECK( topOp().isRef() && topOp().cls() == targetClass); 

        emit_il_nop(); 

    } 

    // Remove the value from the stack 

    POP_STACK(1); 

    // Create the object type for the stack 

    pushOp(OpType(typeRef, jitInfo->getTypeForBox(targetClass))); 

    return FJIT_OK; 

} 

In the valuetype case, the JIT will ask for the pointer to the correct JIT helper function through the method 

getBoxHelper:  

 Example 6-15. CEEInfo::getBoxHelper method in fjit.cpp. 

 

 

CorInfoHelpFunc CEEInfo::getBoxHelper(CORINFO_CLASS_HANDLE clsHnd) 

{ 

    WRAPPER_CONTRACT; 

 

    TypeHandle VMClsHnd(clsHnd); 

    if (Nullable::IsNullableType(VMClsHnd)) 

        return CORINFO_HELP_BOX_NULLABLE; 

     

    return CORINFO_HELP_BOX; 

}     
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It turns out that both CORINFO_HELP_BOX_NULLABLE and CORINFO_HELP_BOX point to the same 

JIT helper function called JIT_Box (this isn‘t the case for the unboxing operation, as a special method is 

used). JIT_Box eventually calls on Fast_Box to do the dirty work of boxing the type, and this method 

has a special check to see if the more work is required to unbox a Nullable<T> type:  

Example 6-16. MethodTable::FastBox method in MethodTable.cpp. 

 

OBJECTREF MethodTable::FastBox(void** data) 

{ 

 // ... 

    if (Nullable::IsNullableType(TypeHandle(this))) 

        return Nullable::Box(*data, this); 

 // ... 

} 

The Box method on the Nullable type does most of the heavy lifting:  

Example 6-17. Nullable::Box method in Object.cpp. 

 

OBJECTREF Nullable::Box(void* srcPtr, MethodTable* nullableMT) 

{ 

    Nullable* src = (Nullable*) srcPtr; 

 

    _ASSERTE(IsNullableType(nullableMT)); 

        // We better have a concrete instantiation, or our field offset asserts are 

not useful 

    _ASSERTE(!nullableMT->ContainsGenericVariables()); 

 

    if (!*src->HasValueAddr(nullableMT)) 

        return NULL; 

 

    OBJECTREF obj = 0; 

    GCPROTECT_BEGININTERIOR (src); 

    MethodTable* argMT = nullableMT->GetInstantiation()[0].GetMethodTable(); 

    obj = argMT->Allocate(); 

    CopyValueClass(obj->UnBox(), src->ValueAddr(nullableMT), argMT, obj-

>GetAppDomain()); 

    GCPROTECT_END (); 

 

    return obj; 

}  

This code checks for existence of the value field on the Nullable<T> valuetype instance, and passes that 

field pointer (via the ValueAddr method) to the CopyValueClass method. CopyValueClass then 

memcpy‘s the Nullable value instance in to a new heap object and returns it. This effectively means it is 

unwrapping the actual value from the Nullable<T> instance and boxing that, rather than boxing the 

entire Nullable<T> instance. 

Summary 

SSCLI‘s implementation of generics is a well-established programming language feature which delivers 

parametric polymorphism with the added benefits of safety, expressivity, clarity and efficiency. This 

chapter, we took a brief tour through the CLI‘s implementation of parametric polymorophism, a.k.a. 

―Generics‖, which provides a type safe way to deliver true runtime Generic types that are wholly supported 

as a first class citizen of the runtime. We walked through metadata table extensions that are used to support 

Generic types and members, class loader semantics to resolve Generic metadata tokens to their true runtime 

instantiation, and the JIT compilation process. We also explored the changes required to support Nullable 

types, a great addition to the type system that was only enabled through the use of Generics.  
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It‘s worthwhile exploring some of the other runtime subsystems and see how they have been impacted by 

the Generics feature in your own time. Check out the changes to the Verifier, Reflection, code generation 

systems like Reflection.Emit, and some of the nastier Loader semantics. And if that isn‘t enough, make 

sure you read Don Syme and Andrew Kennedy‘s paper on the Design and Implementation of Generics for 

the .NET Common Language Runtime:  http://research.microsoft.com/~dsyme/papers/generics.pdf. 

In the meantime, it‘s time to move on towards some additional type-related discussion, that of the new 

facilities in the CLI Specification around runtime-generation of types, also known as Lightweight Code 

Generation. 

http://research.microsoft.com/~dsyme/papers/generics.pdf


Chapter 7: Runtime Type Definition and Exploration  | 159 

7. Runtime Type Definition and 

Exploration 

One of the powerful side effects of self-describing code and full-fidelity metadata is the ability to reflect or 

introspect on that code and metadata, known in some circles as Reflection. The CLI provides facilities to 

examine metadata of this kind through the System.Reflection namespace. We‘ve looked peeked at 

the type system (in Chapter 3) and analyzed the bits and bytes that live in assemblies (in Chapter 4), so now 

it‘s time to take a brief tour around some of the System.Reflection namespace, and see how it 

interacts with the runtime, type system, runtime data structures, and metadata.  

Reflection API 

The System.Reflection API is a service provided by the CLI to enable loading, inspection, and 

invocation of code and types found in assemblies. The Reflection service retrieves this information by 

examining both metadata and runtime data structures, and exposes the information through a series of 

managed APIs. These APIs can be used to manipulate instances of loaded types, inspect metadata about 

types and their members (exposing things like type and member names), and invoke code, all at runtime. 

As could well be imagined, it performs these duties through heavy integration with the loader, type system, 

and runtime data structures.  

The Reflection API is broken down into three basic services: assembly and type loading, inspection of 

metadata and runtime data structures that contain information about assemblies, types and members, and 

binding and invocation of code. We‘ll examine each of these concepts in turn. 

Loading Code 

In Chapter 4, we examined how the runtime performs loading and binding of assemblies on the startup of 

the CLI by slurping up an assemblies PE file, laying it and its metadata out in memory, and executing the 

main method through the ExecuteMainMethod method of ClassLoader. The late-bound (a term 

used to describe the execution of type loading, inspecting or invocation related activities at runtime) 

assembly loading API is exposed through the System.Reflection.Assembly type, located in 

sscli20/clr/src/bcl/system/reflection/Assembly.cs. 

+Load()

+LoadFile()

+LoadFrom()

+LoadModule()

+LoadWithPartialName()

+ReflectionOnlyLoadFrom()

+...()

Assembly

 

Figure 7-1. System.Reflection.Assembly class with example Load API’s 
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Figure 7-1 illustrates a few static method entry points that support assembly loading on the Assembly 

class. The rules around binding and loading an assembly are different with each assembly loading API. 

Taking first a deep dive into the Assembly.Load managed method shows how it leverages the Fusion 

binder and runtime class loader to load and instantiate an assembly at runtime. 

   

Example 7-1. The Assembly.Load method 

        

    public static Assembly Load(String assemblyString) 

    { 

        StackCrawlMark stackMark = StackCrawlMark.LookForMyCaller; 

        return InternalLoad(assemblyString, null, ref stackMark, false); 

    }     

 

 

    internal static Assembly InternalLoad(String assemblyString, 

                                          Evidence assemblySecurity, 

                                          ref StackCrawlMark stackMark, 

                                          bool forIntrospection) 

    { 

        AssemblyName an = new AssemblyName(); 

        Assembly assembly = null; 

 

        an.Name = assemblyString; 

        int hr = an.nInit(out assembly, forIntrospection, true); 

         

        if (hr == System.__HResults.FUSION_E_INVALID_NAME) { 

            return assembly; 

        } 

        else 

            return InternalLoad(an, assemblySecurity, ref stackMark, 

forIntrospection); 

    } 

 

The Assembly.Load method calls the InternalLoad method passing in the string based name (either 

a partial or fully qualified name) of the assembly that the user wishes to load, along with a Boolean that 

specifies if the type should be loaded for ―Introspection only‖ (more on this later). The InternalLoad 

method‘s job is to resolve the string-based assembly name argument to an instance of the AssemblyName 

type. This action is performed through the Fusion subsystem, via the unmanaged runtime method called 

AssemblyNameNative::Init found in sscli20/clr/src/vm/Assemblyname.cpp.  

Several places throughout this chapter refer to a component called ―Fusion‖, which is not 

a part of the SSCLI code base, but is instead a part of the Windows operating system. 

Fusion is an extension to the operating system loader, providing side-by-side capabilities, 

among other things, and in the SSCLI must be provided via the PAL infrastructure. It is 

also mentioned and lightly discussed in Chapter 4. 

The Init method performs some housekeeping, but defers the job of parsing the assembly name string to 

the AssemblySpec::InitializeSpec method. 

 

Example 7-2. The AssemblySpec::InitializeSpec method 

   

HRESULT AssemblySpec::InitializeSpec(StackingAllocator* alloc, ASSEMBLYNAMEREF* 

pName,  

                                    BOOL fParsed /*=FALSE*/,  

                                    BOOL fIntrospectionOnly /*=FALSE*/) 
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  { 

      // Simple name 

      if ((*pName)->GetSimpleName() != NULL) { 

          WCHAR* pString; 

          int    iString; 

          RefInterpretGetStringValuesDangerousForGC((STRINGREF)  

              (*pName)->GetSimpleName(), &pString, &iString); 

          DWORD lgth = WszWideCharToMultiByte(CP_UTF8, 0, pString, iString,  

                                              NULL, 0, NULL, NULL); 

          if (lgth + 1 < lgth) 

              ThrowHR(E_INVALIDARG); 

          LPSTR lpName = (LPSTR) alloc->Alloc(lgth + 1); 

          WszWideCharToMultiByte(CP_UTF8, 0, pString, iString, 

                                 lpName, lgth+1, NULL, NULL); 

          lpName[lgth] = '\0'; 

          m_pAssemblyName = lpName; 

      } 

 

      if (fParsed) { 

          HRESULT hr = ParseName(); 

          if ((hr == FUSION_E_INVALID_NAME) || (!IsValidAssemblyName())) { 

              return FUSION_E_INVALID_NAME; 

          } 

          else 

              IfFailThrow(hr); 

      } 

      else { 

          // Flags 

          m_dwFlags = (*pName)->GetFlags(); 

       

          // Version 

          VERSIONREF version = (VERSIONREF) (*pName)->GetVersion(); 

          if(version == NULL) { 

              m_context.usMajorVersion = (USHORT)-1; 

              m_context.usMinorVersion = (USHORT)-1; 

              m_context.usBuildNumber = (USHORT)-1; 

              m_context.usRevisionNumber = (USHORT)-1; 

          } 

          else { 

              m_context.usMajorVersion = version->GetMajor(); 

              m_context.usMinorVersion = version->GetMinor(); 

              m_context.usBuildNumber = version->GetBuild(); 

              m_context.usRevisionNumber = version->GetRevision(); 

          } 

 

          m_context.szLocale = 0; 

 

          if ((*pName)->GetCultureInfo() != NULL)  

          { 

              struct _gc { 

                  OBJECTREF   cultureinfo; 

                  STRINGREF   pString; 

              } gc; 

 

              gc.cultureinfo = (*pName)->GetCultureInfo(); 

              gc.pString = NULL; 

               

              GCPROTECT_BEGIN(gc); 

 

              MethodDescCallSite getName(METHOD__CULTURE_INFO__GET_NAME,  

                                         &gc.cultureinfo); 

               

              ARG_SLOT args[] = { 
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                  ObjToArgSlot(gc.cultureinfo) 

              }; 

              gc.pString = getName.Call_RetSTRINGREF(args); 

              if (gc.pString != NULL) { 

                  WCHAR* pString; 

                  int    iString; 

                  RefInterpretGetStringValuesDangerousForGC(gc.pString, &pString,  

                                                            &iString); 

                  DWORD lgth = WszWideCharToMultiByte(CP_UTF8, 0, pString, iString,  

                                                      NULL, 0, NULL, NULL); 

                  LPSTR lpLocale = (LPSTR) alloc->Alloc(lgth + 1); 

                  WszWideCharToMultiByte(CP_UTF8, 0, pString, iString, 

                                         lpLocale, lgth+1, NULL, NULL); 

                  lpLocale[lgth] = '\0'; 

                  m_context.szLocale = lpLocale; 

              } 

              GCPROTECT_END(); 

          } 

 

          // Strong name 

 

          if ((*pName)->GetPublicKeyToken() != NULL) { 

              m_dwFlags &= ~afPublicKey; 

              PBYTE  pArray = NULL; 

              pArray = (*pName)->GetPublicKeyToken()-

>GetDirectPointerToNonObjectElements(); 

              m_cbPublicKeyOrToken = (*pName)->GetPublicKeyToken()-

>GetNumComponents(); 

              m_pbPublicKeyOrToken = (PBYTE) alloc->Alloc(m_cbPublicKeyOrToken); 

              memcpy(m_pbPublicKeyOrToken, pArray, m_cbPublicKeyOrToken); 

          } 

          else if ((*pName)->GetPublicKey() != NULL) { 

              m_dwFlags |= afPublicKey; 

              PBYTE  pArray = NULL; 

              pArray = (*pName)->GetPublicKey()-

>GetDirectPointerToNonObjectElements(); 

              m_cbPublicKeyOrToken = (*pName)->GetPublicKey()->GetNumComponents(); 

              m_pbPublicKeyOrToken = (PBYTE) alloc->Alloc(m_cbPublicKeyOrToken); 

              memcpy(m_pbPublicKeyOrToken, pArray, m_cbPublicKeyOrToken); 

          } 

      } 

 

      // Hash for control  

      if ((*pName)->GetHashForControl() != NULL) 

          SetHashForControl((*pName)->GetHashForControl()->GetDataPtr(),  

                            (*pName)->GetHashForControl()->GetNumComponents(),  

                            (*pName)->GetHashAlgorithmForControl()); 

 

      // Normalize this boolean as it tends to be used for comparisons 

      m_fIntrospectionOnly = !!fIntrospectionOnly; 

 

      return S_OK; 

  } 

The code in Example 7-2 demonstrates the parser in action. It simply walks the specified string extracting 

the name, version number, and public key token, packages that up and hands it back. It follows specific 

parsing rules that are specified in the ECMA CLI specification, and rejects a name if it fails a particular 

naming rule.  

Once the assembly name is parsed, the job of loading the assembly falls to the 

System.Reflection.Assembly.InternalLoad overload which takes an AssemblyName 

structure. This method in turn hands off the heavy lifting to the AssemblyNative::Load method 

found in sscli20/clr/src/vm/Assemblynative.cpp, which in turn performs some housekeeping before handing 
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off to methods found in the AssemblySpec class to continue loading the assembly in to the current 

appdomain. The LoadDomainAssemblyHelper method found on AssemblySpec is particularly 

interesting:  

Example 7-4. The AssemblySpec::LoadDomainAssemblyHelper method 

   

  DomainAssembly *LoadDomainAssemblyHelper(AssemblySpec *pSpec, AppDomain *pDomain, 

                        PEAssembly *pFile, FileLoadLevel targetLevel,  

                                           OBJECTREF* pEvidence, 

                        OBJECTREF *pExtraEvidence,  

                                           BOOL fDelayPolicyResolution) 

  { 

    DomainAssembly* pRetVal = NULL; 

    EX_TRY 

    { 

        pRetVal = pDomain->LoadDomainAssembly(pSpec, pFile, targetLevel, pEvidence, 

                                              pExtraEvidence, 

fDelayPolicyResolution); 

    } 

    EX_HOOK 

    { 

        Exception* pEx=GET_EXCEPTION(); 

        if (!pEx->IsTransient()) 

        { 

            if (!EEFileLoadException::CheckType(pEx)) 

            { 

                StackSString name; 

                pSpec->GetFileOrDisplayName(0, name); 

                pEx=new EEFileLoadException(name, pEx->GetHR(), NULL, pEx); 

                pDomain->AddExceptionToCache(pSpec, pEx); 

                PAL_CPP_THROW(Exception *, pEx); 

            } 

            else 

                pDomain->AddExceptionToCache(pSpec, pEx); 

        } 

    } 

    EX_END_HOOK; 

 

    return pRetVal; 

  } 

This method in turn calls the DomainAssembly::LoadDomainAssembly method, which may sound 

familiar—a quick glance back to Chapter 4 reveals, in fact, that this is eventually called from the clix.exe 

bootstrapping process in order to launch an executable assembly. LoadDomainAssembly does the 

heavy lifting of loading the assembly in to an appdomain and resolving the assemblies dependencies using 

the default binding context (typically the Fusion binding context).  

The System.Reflection.Assembly.LoadFile method provides different semantics for binding 

and loading an assembly into the current appdomain: instead of relying on Fusion to find and bind to an 

assembly through the assembly‘s fully-qualified name, LoadFile will bypass Fusion entirely and load 

directly to the file system.  

Example 7-5. The AssemblyNative::LoadFile method 

 

  FCIMPL2(Object*, AssemblyNative::LoadFile, StringObject* pathUNSAFE,  

          Object* securityUNSAFE) 

  { 

      if(CorHost2::IsLoadFromBlocked()) 

          FCThrowEx(kFileLoadException, FUSION_E_LOADFROM_BLOCKED,0,0,0); 

       

      if (pathUNSAFE == NULL) 

          COMPlusThrow(kArgumentNullException, L"ArgumentNull_Path"); 
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      StackSString path; 

      gc.strPath->GetSString(path); 

 

      SafeComHolder<IAssembly> pFusionAssembly; 

      SafeComHolder<IAssembly> pNativeFusionAssembly; 

      SafeComHolder<IFusionBindLog> pFusionLog; 

 

      PEAssemblyHolder pFile(PEAssembly::Open(pFusionAssembly,  

                             pNativeFusionAssembly, NULL, FALSE, FALSE)); 

 

      BOOL fDelayPolicyResolution = FALSE; 

      Assembly *pAssembly = GetPostPolicyAssembly(pFile, &gc.refSecurity, FALSE, 

TRUE, 

                                                 &fDelayPolicyResolution); 

 

      if (pAssembly) 

          gc.refRetVal = (ASSEMBLYREF) pAssembly->GetExposedObject(); 

      } 

      return OBJECTREFToObject(gc.refRetVal); 

  } 

Example 7-5 shows the native internal method AssemblyNative::LoadFile, called from the 

managed equivalent. It cracks open the PE file of the assembly that lives on disk, and passes that off to the  

GetPostPolicyAssembly method, which in turn performs some security housekeeping before 

handing off control to the AppDomain::LoadAssembly method (shown in Example 7-6), which in 

turn owns responsibility for doing the actual loading of the assembly. 

Example 7-6. GetPolicyAssembly method code 

  

 // ... 

    RETURN GetAppDomain()->LoadAssembly(NULL, pFile, FILE_LOADED, 

                                    fSetAsExtraEvidence ? NULL : pSecurity, 

                                    fSetAsExtraEvidence ? pSecurity : NULL, 

                                    *pfDelayPolicyResolution); 

 

The System.Reflection.Assembly.ReflectionOnlyLoad method uses a similar code path to 

the Load method to load assemblies, however the assemblies are loaded in to the ReflectionOnly load 

context. The curious reader will likely notice a plethora of ―ForIntrospection‖ flags littered 

throughout the signatures of methods that are used to bind and load assemblies – these are used to 

determine if an assembly should be loaded into the ReflectionOnly context, or whether they should be 

loaded in to the default loader context.  

Loading types from assemblies is done in a similar fashion. The Assembly.GetType method takes a 

string based name, normally case-sensitive, though flags can be passed to allow the binding to occur in a 

case-insensitive fashion. GetType eventually maps down to a native runtime method called 

TypeName::GetTypeWorker which finds the relevant assembly on which to perform the type name 

binding, then hands the assembly reference and type name to the 

TypeName::GetTypeHaveAssembly method found in sscli20/clr/src/vm/Typeparse.cpp. 

Example 7-8. GetTypeHaveAssembly method  

  

 TypeHandle TypeName::GetTypeHaveAssembly(Assembly* pAssembly,  

                               BOOL bThrowIfNotFound, BOOL bIgnoreCase, BOOL 

bRecurse) 

  { 

      TypeHandle th = TypeHandle(); 

      SArray<SString*> &names = GetNames(); 

      Module* pManifestModule = pAssembly->GetManifestModule(); 
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      NameHandle typeName(pManifestModule, mdtBaseType); 

       

      // Set up the name handle 

      if(bIgnoreCase) 

          typeName.SetCaseInsensitive(); 

 

      EX_TRY 

      { 

          for (COUNT_T i = 0; i < names.GetCount(); i ++) 

          { 

              LPCWSTR wname = names[i]->GetUnicode(); 

              MAKE_UTF8PTR_FROMWIDE(name, wname); 

              typeName.SetName(name);        

              th = pAssembly->GetLoader()->LoadTypeHandleThrowing(&typeName); 

          } 

 

          if (th.IsNull() && bRecurse) 

          { 

              IMDInternalImport* pManifestImport = pManifestModule->GetMDImport(); 

              HENUMInternalHolder phEnum(pManifestImport); 

              phEnum.EnumInit(mdtFile, mdTokenNil); 

              mdToken mdFile; 

           

              while (pManifestImport->EnumNext(&phEnum, &mdFile))  

              { 

                  if (pManifestModule->LookupFile(mdFile)) 

                      continue; 

                   

                  pManifestModule->LoadModule(GetAppDomain(), mdFile, FALSE); 

 

                  th = GetTypeHaveAssembly(pAssembly, bThrowIfNotFound,  

                                           bIgnoreCase, FALSE); 

                   

                  if (!th.IsNull()) 

                      break;             

              } 

          } 

      } 

      EX_CATCH 

      { 

          if (bThrowIfNotFound) 

              EX_RETHROW; 

       

          Exception *ex = GET_EXCEPTION(); 

       

          // Let non-File-not-found exceptions propagate 

          if (EEFileLoadException::GetFileLoadKind(ex->GetHR()) != 

kFileNotFoundException) 

              EX_RETHROW; 

      } 

      EX_END_CATCH(RethrowTerminalExceptions); 

 

      return th; 

  } 

This method first sets the string based type name to be all lower case (if the user asked for a case-

insensitive type name binding), then asks the class loader to try and load the type specified by the name 

from within the specified assembly. If the class loader is successful, the TypeHandle of the loaded type 

is returned; otherwise, null is returned, it continues searching for the type, this time by loading and iterating 

over each Module contained in the specified assembly, and looking for the requested type in that module. 
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If found, the native TypeHandle is returned and wrapped in the managed API equivalent: 

System.Type.  

Given that the ultimate return value of a managed type load request is a TypeHandle (wrapped in a 

System.Type object), it stands to reason that the TypeHandle is the core element behind 

System.Type. Given that System.Type is the heart and soul of the Reflection API in the CLI, it‘s 

easy to see that TypeHandle—and its notion of runtime identity—stands as a key concept to 

understanding Reflection and, by extension, a core part of the CLI type system. 

Runtime Identity 

Identity is the heart of the Reflection system: types, methods, fields, and other runtime code constructs 

must be able to uniquely identify themselves—and allow programmers to make use of this identity for a 

variety of purposes. For example, programmers will often leverage the member equivalence APIs in 

Reflection in order to make decisions at runtime on which code to execute. The classic scenario is using 

type equivalence to check if an object is of a particular type before casting and dispatching:   

Example 7-8. An example of using type equivalence to make decisions  

  

protected void Page_Load(object sender, EventArgs e) 

{ 

  if (sender.GetType() == typeof(Foo)) 

  { 

    (sender as Foo).FooMethod(); 

  } 

  else if (sender.GetType() == typeof(Bar)) 

  { 

    (sender as Bar).BarMethod(); 

  } 

} 

 

/* This is also often written as the more idiomatic C# equivalent... 

 

protected void Page_Load(object sender, EventArgs e) 

{ 

  if (sender is Foo) 

  { 

    (sender as Foo).FooMethod(); 

  } 

  else if (sender is Bar) 

  { 

    (sender as Bar).BarMethod(); 

  } 

} 

*/ 

Example 7-8 makes use of the GetType method declared on System.Object to find the 

System.Type of a passed-in parameter object (sender) to determine its type, using equivalence tests 

(via the == operator) against known types whose System.Type is found via the typeof operator. The 

typeof(Foo) expression maps down to the following IL:  

Example 7-9. An example of using type equivalence to make decisions  

 

  IL_000d:  ldtoken    IL.Foo 

  IL_0012:  call       class [mscorlib]System.Type 

[mscorlib]System.Type::GetTypeFromHandle(valuetype 

[mscorlib]System.RuntimeTypeHandle) 
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The ldtoken IL opcode takes a metadata token and resolves it to a managed RuntimeTypeHandle, 

which is a small lightweight structure that encapsulates the strongest sense of type identity in the CLI. This 

gets handed to the Type.GetTypeFromHandle which resolves the handle to a System.Type. A 

quick comparison ceq IL opcode follows, to compare the two System.Type instances to see if they are 

equivalent.  

(We leave it to the curious reader to examine the IL differences, if any, between that and the more C# 

idiomatic version in the comment in Example 7-8.) 

The RuntimeTypeHandle structure (found in sscli20/clr/src/bcl/system/Runtimehandles.cs) contains a 

pointer back to an unmanaged TypeHandle reference, which. is used to resolve the 

RuntimeTypeHandle back to a System.Type instance, as well as for extremely quick type 

equivalence tests:  

Example 7-10. RuntimeTypeHandle code in Runtimehandles.cs  

 

  // this is the TypeHandle/MethodTable for the type 

  private IntPtr m_ptr; 

 

  public override bool Equals(object obj) 

  { 

      if(!(obj is RuntimeTypeHandle)) 

          return false; 

 

      RuntimeTypeHandle handle =(RuntimeTypeHandle)obj; 

      return handle.m_ptr == m_ptr; 

  } 

 

  public bool Equals(RuntimeTypeHandle handle) 

  { 

      return handle.m_ptr == m_ptr; 

  } 

Ultimately, the runtime‘s TypeHandle and MethodTable instances for types and members are the 

strongest sense of runtime identity (i.e. there only exists one of these things at runtime for each type and 

member). A managed RuntimeTypeHandle instance provides the lightweight wrapper over those 

runtime data structures. 

Inspection of Types and Members 

Understanding and inspecting the metadata of assemblies, modules, types and their members at runtime 

forms the core of the Reflection API. The Reflection API‘s were designed to leave no stone unturned—

nearly everything defined by the CLI as part of the type system or stored in an assembly finds a home 

somewhere in the Reflection API and/or type structure.  

The Reflection subsystem serves two purposes, both of which cooperate to provide important information 

about types to both the programmers that use the CLI, as well as to the runtime itself: first, the data 

structures created and used by the runtime once a type and its members are loaded, used, for example, 

during JIT compilation and memory management, and second, the metadata about those types and 

members packaged in an assembly that both programmers and the runtime itself will periodically want 

access to, used, for example, in remote method invocation scenarios (such as .NET Remoting) or in object-

XML serialization.  

The Reflection API splits the different types of members the SSCLI supports into various types related to 

one another through inheritance and composition. Figure 7-2 illustrates these conceptually:  
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-DeclaringType

-ReflectedType

-Token

-Module

-Handle

MemberInfo

FieldInfo

ConstructorInfo

TypeEventInfoMethodBasePropertyInfo

MethodInfo

  

 

 

 

  

 

Figure 7-2. Reflection API hierarchy overview 

 

The System.Reflection.MemberInfo class serves as the base class for most Reflection APIs that 

serve to inspect members of types: properties, methods, fields, events, and other types. Notably excluded 

here are the types System.Reflection.Assembly and System.Reflection.Module; on 

further thought, this makes sense, since neither assemblies nor modules are members of types—in point of 

fact, the containment relationship is exactly the opposite. System.Type provides facilities to inspect 

metadata and runtime data structures about a loaded type; previous examples (such as Example 7-8, above, 

or Example 7-11, below) demonstrate some of the ways by which a programmer can obtain an instance of a 

System.Type. The various members that the CLI supports are special cased with their own Reflection 

types: EventInfo for events, FieldInfo for fields and so on. PropertyInfo is particularly 

interesting; while it encapsulates the concept of properties defined for a particular type (such as is exposed 

in the C# and Visual Basic languages), in actuality properties live only in the metadata world, backed by 

two synthesized methods for accessing and modifying the also-synthesized backing store (field) used by the 

property (when synthesized, that is). When a type with properties is loaded, the property metadata 

information is thrown away, and the methods that represent the ―Get‖ and ―Set‖ for the property are all that 

are left. It is the canonical example of how Reflection serves two masters: metadata and the runtime. 

Let‘s take a look at how to obtain an instance of the MethodInfo for a method: 

 

Example 7-11. Getting a MethodInfo 

 

  using System; 

  using System.Reflection; 

 

  class Foo 

  {  

  public void MethodBar() { } 

  } 

 

  class Program 

  { 

      static void Main(string[] args) 

      { 

          MethodInfo info = typeof(Foo).GetMethod("MethodBar"); 
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      } 

  } 

Having obtained the type object for the ―Foo‖ type (via the typeof operator again), getting hold of the 

MethodInfo object for the ―MethodBar‖ method means calling the GetMethod method on the Type 

object, passing in the string based representation of the desired method (―MethodBar‖). Drilling down to 

the System.Type.GetMethod implementation reveals that it defers processing to an abstract helper 

method called GetMethodImpl. This gets overridden by the System.RuntimeType runtime 

implementation: 

Example 7-12. GetMethodImpl implementation from sscli20/clr/bcl/system/Rttype.cs 

 

  protected override MethodInfo GetMethodImpl( 

      String name, BindingFlags bindingAttr, Binder binder, CallingConventions 

callConv,  

      Type[] types, ParameterModifier[] modifiers)  

  {        

      MethodInfo[] candidates = GetMethodCandidates(name, bindingAttr, callConv, 

types, false); 

 

      if (candidates.Length == 0)  

          return null; 

 

      if (types == null || types.Length == 0)  

      {  

          if (candidates.Length == 1) 

          { 

              return candidates[0]; 

          } 

          else if (types == null)  

          {  

              for (int j = 1; j < candidates.Length; j++) 

              { 

                  MethodInfo methodInfo = candidates[j]; 

                  if (!System.DefaultBinder.CompareMethodSigAndName(methodInfo, 

candidates[0])) 

                  { 

                      throw new AmbiguousMatchException( 

                          Environment.GetResourceString("RFLCT.Ambiguous")); 

                  } 

              } 

 

              // All the methods have the exact same name and sig so return the most 

derived one. 

              return System.DefaultBinder.FindMostDerivedNewSlotMeth(candidates, 

                  candidates.Length) as MethodInfo; 

          } 

      }    

 

      if (binder == null)  

          binder = DefaultBinder;             

 

      return binder.SelectMethod(bindingAttr, candidates, types, modifiers) as 

MethodInfo;                   

  }   

Two things are at work here: finding all the methods that possibly represent the method we‘re trying to 

observe, and if we find more than one method (we might have overloads of the ―MethodBar‖ method), we 

delegate to a binder to select the appropriate method from the list. If the binder is unable to make a match 

(which is possible, if we haven‘t been specific about which overload we care about) then it throws an 

exception to let the user know there are ambiguous matches.  
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Digging a little deeper to see how a MethodInfo is created reveals some interesting details about the 

nature of the data structures used inside the runtime to provide all of this information. But in order to 

understand this process, we must first take a look at the MemberInfoCache data structure, which 

provides the gateway to new and cached instantiations of all MemberInfos. 

The Reflection MemberInfo Cache 

The call to the GetMethodCandidates method in the above code snippet is the first time seen thus far 

where the Reflection MemberInfoCache is used. The MemberInfoCache was designed to cache the 

results of inspection calls for any MemberInfo. This means any subsequent calls to lookup, bind and 

inspect a member can be retrieved from the cache, instead of repopulating from runtime data structures and 

metadata from disk, an obvious optimization.  

The MemberInfoCache<T> generic data structure, found in sscli20/clr/src/bcl/system/Rttype.cs, is a 

lazy cache implemented with a multi-reader/single-writer lock, allowing multiple readers to retrieve 

MemberInfos from the cache when asked without excessive blocking. Having multiple readers is 

important for two main reasons: to enable good throughput for multi-threaded scenarios, and because there 

is only one instance of the cache for all appdomains. Given that most access to the cache will be read 

requests anyway, optimizing for multiple readers seems almost necessary. 

All calls to lookup and bind to MemberInfos using the GetXX methods (i.e. GetMethod, 

GetProperty, GetProperties, etc) usually call a method like GetMethodCandidates, which in 

turn invariably asks the cache data structure for the candidates that match against the specified string name 

as per the default binding rules: 

    List<MethodInfo> candidates = new List<MethodInfo>(); 

    CerArrayList<RuntimeMethodInfo> cache = Cache.GetMethodList(listType, name);  

The GetMethodList method eventually drills down to a call to 

RuntimeTypeCache.GetMemberCache<T> which checks to see if an existing cache is alive or not: 

Example 7-13. GetMemberCache<T> method from sscli20/clr/bcl/system/Rttype.cs 

 

    private MemberInfoCache<T> GetMemberCache<T>(ref MemberInfoCache<T> m_cache)  

    where T : MemberInfo 

    { 

        MemberInfoCache<T> existingCache = m_cache; 

 

        if (existingCache == null) 

        { 

            MemberInfoCache<T> newCache = new MemberInfoCache<T>(this); 

            existingCache = Interlocked.CompareExchange(ref m_cache, newCache, 

null); 

            if (existingCache == null) 

                existingCache = newCache; 

        } 

 

        return existingCache; 

    } 

The GetMemberCache<T> constructor takes a reference variable, obtained from the runtime type 

handle, which means that cache instances of the MemberInfoCache are per-type. Of some interest is the 

fact that this code all lives in the managed part of the runtime, meaning the cache implementation all lives 

on the garbage-collected heap, and is thus tracked and collected by the garbage collector when the cache is 

no longer live.  

Looking back to Example 7-10, the request for the ―MethodBar‖ MethodInfo instance will, when first 

executed, find that the MemberInfoCache will not exist, so the MemberInfoCache<T> type 

constructor will create it and hand it back to the Foo type‘s runtime type handle. After cache creation, the 
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GetMethodList method will then populate the newly created cache via the GetMemberList method 

that lives on the MemberInfoCache type.   

Example 7-14. GetMemberList method from sscli20/clr/bcl/system/Rttype.cs 

  

    internal CerArrayList<T> GetMemberList(MemberListType listType, string name,  

                                           CacheType cacheType) 

    { 

        CerArrayList<T> list = null; 

 

        switch(listType) 

        { 

            case MemberListType.CaseSensitive: 

                if (m_csMemberInfos == null) 

                { 

                    return Populate(name, listType, cacheType); 

                } 

                else 

                { 

                    list = m_csMemberInfos[name]; 

 

                    if (list == null) 

                        return Populate(name, listType, cacheType); 

 

                    return list; 

                } 

 

            case MemberListType.All: 

                if (m_cacheComplete) 

                    return m_root; 

                     

                return Populate(null, listType, cacheType); 

 

            default: 

                if (m_cisMemberInfos == null) 

                { 

                    return Populate(name, listType, cacheType); 

                } 

                else 

                { 

                    list = m_cisMemberInfos[name]; 

 

                    if (list == null) 

                        return Populate(name, listType, cacheType); 

 

                    return list; 

                } 

        } 

    } 

Example 7-14 shows the code that gets executed to populate the newly created cache. It takes a 

MemberListType enumeration argument that specifies if the list should be created by comparing with 

case sensitivity or not, the string name of the member we care about (in our example, ―MethodBar‖), and 

another enumeration argument called CacheType which specifies the kind of member required (method, 

property, interface, event and so on). After switching on the various options, this code eventually defers to 

the RuntimeTypeCache.Populate method to set up a Filter (essentially a lightweight data 

structure that performs the string matching on the metadata member names) and defers again to the relevant 

―PopulateXX‖ method for the required member (in this case, the 

RuntimeTypeCache.PopulateMethods method). This method performs all the heavy lifting:  

Example 7-15. PopulateMethods() from sscli20/clr/bcl/system/Rttype.cs 
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    private unsafe List<RuntimeMethodInfo> PopulateMethods(Filter filter) 

    { 

      // ... 

      RuntimeTypeHandle declaringTypeHandle = ReflectedTypeHandle; 

 

      while(declaringTypeHandle.IsGenericVariable()) 

          declaringTypeHandle =  

              declaringTypeHandle.GetRuntimeType().BaseType.GetTypeHandleInternal(); 

 

      bool* overrides = stackalloc bool[declaringTypeHandle.GetNumVtableSlots()]; 

      bool isValueType = declaringTypeHandle.GetRuntimeType().IsValueType; 

 

      while(!declaringTypeHandle.IsNullHandle()) 

      { 

          bool mayNeedInstantiatingStub = declaringTypeHandle.HasInstantiation() &&  

              !declaringTypeHandle.IsGenericTypeDefinition(); 

 

          int vtableSlots = declaringTypeHandle.GetNumVtableSlots(); 

          MethodDescChunkHandle chunkHandle = 

declaringTypeHandle.GetMethodDescChunk(); 

 

          while(!chunkHandle.IsNullHandle()) 

          { 

              int methodCount = chunkHandle.GetMethodCount(); 

 

              for (int i = 0; i < methodCount; i++) 

              { 

                  RuntimeMethodHandle methodHandle = chunkHandle.GetMethodAt(i); 

 

                  if (!filter.Match(methodHandle.GetUtf8Name())) 

                      continue; 

 

                  #region Loop through all methods on the current type 

                  ASSERT.CONSISTENCY_CHECK(!methodHandle.IsNullHandle());                                  

 

                  MethodAttributes methodAttributes = methodHandle.GetAttributes(); 

                  MethodAttributes methodAccess = methodAttributes & 

                                                  MethodAttributes.MemberAccessMask; 

 

                  #region Continue if this is a constructor 

                  ASSERT.CONSISTENCY_CHECK( 

                      LOGIC.IMPLIES((methodHandle.GetAttributes() & 

                                     MethodAttributes.RTSpecialName) != 0,  

                      methodHandle.GetName().Equals(".ctor") ||  

                      methodHandle.GetName().Equals(".cctor") ||  

                      methodHandle.GetName().Equals("IL_STUB") ));  

 

                  if ((methodAttributes & MethodAttributes.RTSpecialName) != 0 || 

                      methodHandle.IsILStub()) 

                      continue; 

                  #endregion 

 

                  #region Continue if this is a private declared on a base type 

                  bool isVirtual = false; 

                  int methodSlot = 0; 

                  if ((methodAttributes & MethodAttributes.Virtual) != 0) 

                  { 

                      // only virtual if actually in the vtableslot range, but 

GetSlot will 

                      // assert if an EnC method, which can't be virtual, so narrow 

down first 

                      // before calling GetSlot 
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                      methodSlot = methodHandle.GetSlot(); 

                      isVirtual = (methodSlot < vtableSlots); 

                  } 

                  bool isPrivate = methodAccess == MethodAttributes.Private; 

                  bool isPrivateVirtual = isVirtual & isPrivate; 

                  bool isInherited = declaringTypeHandle.Value != 

ReflectedTypeHandle.Value; 

                  if (isInherited && isPrivate && !isPrivateVirtual) 

                      continue; 

                  #endregion 

 

                  #region Continue if this is a virtual and is already overridden 

                  if (isVirtual) 

                  { 

                      ASSERT.CONSISTENCY_CHECK( 

                          (methodAttributes & MethodAttributes.Abstract) != 0 || 

                          (methodAttributes & MethodAttributes.Virtual) != 0 || 

                          methodHandle.GetDeclaringType().Value != 

declaringTypeHandle.Value); 

 

                      if (overrides[methodSlot] == true) 

                          continue; 

 

                      overrides[methodSlot] = true; 

                  } 

                  else if (isValueType) 

                  { 

                      if ((methodAttributes &  

                          (MethodAttributes.Virtual | MethodAttributes.Abstract)) != 

0) 

                          continue; 

                  } 

                  else 

                  { 

                      ASSERT.CONSISTENCY_CHECK((methodAttributes & 

(MethodAttributes.Virtual |  

                          MethodAttributes.Abstract)) == 0); 

                  } 

                  #endregion 

 

                  #region Calculate Binding Flags 

                  bool isPublic = methodAccess == MethodAttributes.Public; 

                  bool isStatic = (methodAttributes & MethodAttributes.Static) != 0; 

                  BindingFlags bindingFlags =  

                      RuntimeType.FilterPreCalculate(isPublic, isInherited, 

isStatic); 

                  #endregion                                               

 

                  // if it is an instantiated type get the InstantiatedMethodDesc if 

needed 

                  if (mayNeedInstantiatingStub)  

                      methodHandle = 

                          

methodHandle.GetInstantiatingStubIfNeeded(declaringTypeHandle); 

 

                  RuntimeMethodInfo runtimeMethodInfo = new RuntimeMethodInfo( 

                      methodHandle, declaringTypeHandle, m_runtimeTypeCache,  

                      methodAttributes, bindingFlags); 

 

                  list.Add(runtimeMethodInfo); 

                  #endregion 

              } 

 



Chapter 7: Runtime Type Definition and Exploration  | 174 

              chunkHandle = chunkHandle.GetNextMethodDescChunk(); 

          } 

 

          declaringTypeHandle = declaringTypeHandle.GetBaseTypeHandle(); 

        } 

        return list; 

    } 

A number of things are happening here. First, it obtains the declaring type handle (the DeclaringType 

property on a MemberInfo contains a pointer to the type that declares the member – the declaring type 

may not be the same as the type that the user called the GetMethod method from, due to inheritance). 

Second, it grabs a MethodDeskChuckHandle (explored in Chapter 5) from the declaring type‘s handle 

and walks that structure creating RuntimeMethodHandles through the unmanaged runtime method 

MethodDescChunkHandle::GetMethodAt found in sscli20/clr/src/vm/Runtimehandles.cpp. A call 

to GetUtf8Name from the runtime method handle, and control returns to the unmanaged runtime‘s world, 

drilling down to a method called MethodDesc::GetName: 

Example 7-16. MethodDesc::GetName from sscli20/clr/src/vm/Method.cpp 

 

    LPCUTF8 MethodDesc::GetName() 

    { 

        g_IBCLogger.LogMethodDescAccess(this); 

 

        if (GetMethodTable()->IsArray()) 

        { 

            // Array classes don't have metadata tokens 

            return ((DPTR(ArrayMethodDesc))PTR_HOST_TO_TADDR(this))-

>GetMethodName(); 

        } 

        else if (IsNoMetadata()) 

        { 

            // Array classes don't have metadata tokens 

            return ((DPTR(DynamicMethodDesc))PTR_HOST_TO_TADDR(this))-

>GetMethodName(); 

        } 

        else 

        { 

            // Get the metadata string name for this method 

            LPCUTF8 result = NULL; 

 

            // This probes only if we have a thread, in which case it is OK to throw 

the SO. 

            BEGIN_SO_INTOLERANT_CODE_NO_THROW_CHECK_THREAD(COMPlusThrowSO()); 

 

            result = GetMDImport()->GetNameOfMethodDef(GetMemberDef()); 

 

            END_SO_INTOLERANT_CODE; 

 

            return(result); 

        } 

    } 

We‘re finally down the very bottom of the runtime guts, where a call to GetMDImport is made to retrieve 

the wrapper around the runtimes metadata reader API. This interface (called IMDInternalImport and 

defined in sscli20/clr/src/inc/Metadata.h) forms the heart and soul of metadata reading and writing for the 

runtime. It‘s worth exploring this interface, as it contains the gory details of how metadata is laid out in an 

assembly, and how it is read in to runtime data structures. For now, we only care about the call to the 

method IMDInternalImport::GetNameOfMethodDef which reads a given method definitions 

name from metadata and returns it. 
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Once we have the metadata name for a given method handle, the Filter data structure matches it against 

the user specified string (in our case, the ―MethodBar‖ string name) and if a match is found, a bunch of 

extra inspection is performed on that method to create and layout the attributes of the particular method (i.e. 

we need to know if the method is virtual, abstract, public or private, inherited, and so on). Once the runtime 

has inspected the attributes of the method, it finally creates the  RuntimeMethodInfo and adds it to the 

result list for return.  

After walking the methods on the type, inspecting their names and attributes through the metadata reader 

writer interface, and matching against the user specified string, the code can now start to populate the cache 

and return the RuntimeMethodInfo pointer from the cache. This happens back up the call stack at the 

RuntimeTypeCache.Populate method:  

Example 7-17. Partial implementation of fromRuntimeTypeCache.Populate 

 

    switch (cacheType) 

    { 

        case CacheType.Method: 

            list = PopulateMethods(filter) as List<T>; 

            break; 

        // ... 

    } 

 

    CerArrayList<T> cerList = new CerArrayList<T>(list); 

 

    Insert(ref cerList, name, listType); 

 

    return cerList; 

The call to RuntimeTypeCache.Insert contains the gory details of locking the cache, and inserting 

elements in to the cache container. (Programmers who are heavy consumer of Reflection based APIs might 

find it worthwhile to look at the implementation of the Insert method to understand the performance 

implications of calling the inspection APIs; the code can be found in sscli20/clr/src/bcl/system/Rttype.cs.) 

After insertion, the list is returned, then continues to be filtered by the GetMethodCandidates call 

seen back in Example 7-12. The final candidate is chosen (in our example, we can only find one match for 

the ―MethodBar‖ method) and returned to the user as the return result from the Type.GetMethod call. 

It‘s been a fairly hefty amount of code thus far, but the process is now more clear: when asking for 

MemberInfo instances, control begins by asking the type for its MemberInfoCache, then using that cache 

instance to either return an existing cached member, or if not found, to defer to the relevant Populate 

method. Populate walks the type and its member‘s metadata, looking for matches to return and populate the 

cache, essentially going from cache to metadata and back again. 

This process is essentially identical for all the different member types, with only a few slight semantic 

changes (depending on the runtime‘s rules for how those members are bound). It is left as an exercise to the 

curious reader to compare how methods are found and bound to other member types, as an effort to 

understand the various runtime semantics around each.  

 

Invocation of Code at Runtime 

Reflection, of course, provides more than just the ability to discover the various code constructs on types at 

runtime—it also provides the ability to use those constructs after having found them. Methods can be 

invoked, properties set and retrieved, fields changed, and so on, through a process known colloquially as 

late-bound code invocation or sometimes late binding. 

Late binding is a phrase derived from its logical contrast, early binding, which is the 

process by which the vast majority of method invocation takes place. Early binding is, 

quite simply, the mechanism where during compile-time (which is obviously much 
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earlier than runtime, hence the naming conventions), a compiler or other language tool 

emits code to directly invoke the method desired, usually by name. Typically, this 

decision results in faster runtime execution, since the verification process required to 

ensure the call is successful (correct number and types of parameters, for example) can be 

performed during compilation, rather than at runtime. 

Having said that, however, the decision to use late binding often has little to do with 

performance characteristics—late binding serves a powerful and useful purpose, as 

generations of Visual Basic programmers (where late binding was the default invocation 

process for years) can attest. Late binding provides a degree of flexibility in design, for 

example, in macro languages or ―scripting‖ languages like Python or Ruby, as well as 

frameworks and libraries such as user interface object binding or object-relational 

mapping layers. 

The runtime supports late-bound code invocation in a variety of different ways, from first class delegates 

through to various Reflection APIs available, and even via runtime code generation, discussed later (in the 

section ―Emitting Components Dynamically‖ and ―Lightweight Code Generation‖). For now, the next 

logical step is to take a deep dive on how the Reflection APIs offer a late-bound way to invoke code, and 

how that‘s mapped out under the hood.  

The various MemberInfo subclasses, each of which represent code-based members (methods, properties, 

constructors etc), support code invocation through the Invoke method. A new spin on an old example 

shows the Invoke method in action: 

Example 7-18. Calling the MethodInfo.Invoke API 

 

    class Foo 

    { 

        public static void MethodBar()  

        { 

            Console.WriteLine("Hello, World!"); 

        } 

    } 

 

    class Program 

    { 

        static void Main(string[] args) 

        { 

            object obj = new Foo(); 

            MethodInfo info = obj.GetType().GetMethod("MethodBar"); 

             

            // call the MethodBar method late-bound 

            object result = info.Invoke(null, null); 

        } 

    } 

Having first obtained a MethodInfo object that represents the ―MethodBar‖ method through the 

GetMethod API, we can invoke this method through the MethodInfo.Invoke method, passing in the 

object instance on which to invoke this method (null in this case because ―MethodBar‖ is static) and an 

array of objects representing the parameters to the method (again null because ―MethodBar‖ doesn‘t have 

any arguments).  

Invocation of the ―MethodBar‖ method starts in managed code in the RuntimeMethodInfo.Invoke 

method found in the sscli20/clr/src/bcl/system/reflection/XxxInfos.cs file (where ―Xxx‖ is replaced by the 

particular MethodInfo subclass, of course). This method performs a series of checks to make sure the call is 

setup properly (i.e. it checks that there is sufficient arguments to satisfy the signature of the method, calls 

the security subsystem to make sure the call to the method is permissible according to the CAS security 

model, and verifies the types of the arguments to make sure they can be coerced to the parameters‘ 

argument types). After the checks are complete, it next grabs the MethodHandle and calls the 
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InvokeMethodFast method, which represents an internal runtime call to the unmanaged method 

RuntimeMethodHandle::InvokeMethodFast. Once inside the unmanaged part of the runtime, 

control passes to a helper method, InvokeImpl (found in sscli20/clr/src/vm/Reflectioninvocation.cpp), 

which performs even more verification checks. The signature of the method is interesting: 

Example 7-19. Signature of the InvokeImpl helper method in Reflectioninvocation.cpp 

 

       OBJECTREF InvokeImpl(MethodDesc *pMeth,  

                            OBJECTREF targetUNSAFE,  

                            PTRARRAYREF argsUNSAFE,  

                            SignatureNative* pSig,  

                            DWORD attr,  

                            TypeHandle ownerType)  

It takes a MethodDesc (recall, from Chapter 5, that a MethodDesc is a runtime data structure that 

describes a method—its name, signature, EEClass pointer, and so on—and also takes a pointer to the object 

on which to invoke the method.  

Armed with this preface, look at the InvokeImpl implementation: 

Example 7-20. Implementation of InvokeImpl method 

 

    struct _gc { 

        OBJECTREF       target; 

        PTRARRAYREF     args; 

        OBJECTREF       targetException; 

    } gc; 

    gc.target = (OBJECTREF)targetUNSAFE; 

    gc.args = (PTRARRAYREF)argsUNSAFE; 

    gc.targetException = NULL; 

 

    // Build the arguments on the stack 

    UINT nNumSlots = pSig->NumVirtualFixedArgs(IsMdStatic(attr)); 

 

    // Make sure we have enough room on the stack for this. 

    INTERIOR_STACK_PROBE_FOR(GetThread(),  

        (nNumSlots*sizeof(ARG_SLOT) / OS_PAGE_SIZE) + 

HOLDER_CODE_NORMAL_STACK_LIMIT); 

 

    ARG_SLOT *pNewArgs = (ARG_SLOT*) _alloca( nNumSlots*sizeof(ARG_SLOT) ); 

    ARG_SLOT *pTmpPtr = pNewArgs; 

 

    // if we have the magic Value Class return, we need to allocate that class 

    // and place a pointer to it on the stack. 

    OBJECTREF objRet = NULL; 

    GCPROTECT_BEGIN(objRet); 

 

    TypeHandle retTH = pSig->GetReturnTypeHandle(); 

    CorElementType retType = retTH.GetInternalCorElementType(); 

    if (retType == ELEMENT_TYPE_VALUETYPE) { 

        objRet = retTH.GetMethodTable()->Allocate(); 

    } 

    else  { 

        _ASSERTE(!pSig->IsRetBuffArg()); 

    } 

 

    BOOL bIsTargetValueClass = pMeth->GetClass()->IsValueClass(); 

 

    // Copy "this" pointer 

    if (!IsMdStatic(attr)) { 

        if (!bIsTargetValueClass) 

            *pTmpPtr = ObjToArgSlot(gc.target); 
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        else { 

            if (pMeth->IsUnboxingStub()) 

                *pTmpPtr = ObjToArgSlot(gc.target); 

            else { 

                    // Create a true boxed Nullable<T> and use that as the 'this' 

pointer. 

                    // since what is passed in is just a boxed T 

                MethodTable* pMT = pMeth->GetMethodTable(); 

                if (Nullable::IsNullableType(pMT)) { 

                    OBJECTREF bufferObj = pMT->Allocate(); 

                    void* buffer = bufferObj->GetData(); 

                    Nullable::UnBox(buffer, gc.target, pMT); 

                    *pTmpPtr = PtrToArgSlot(buffer); 

                } 

            else 

                *pTmpPtr = PtrToArgSlot(gc.target->UnBox()); 

        } 

        } 

        pTmpPtr++; 

    } 

 

    ARG_SLOT *retBuffPtr = NULL; 

    // Take care of any return arguments 

    if (pSig->IsRetBuffArg()) { 

        retBuffPtr = pTmpPtr++; 

    }     

 

    // count whether there is any struct that will need stack allocation.  

    // They need to be protected 

    // We do a first pass to determine stack allocation and then we loop again  

    // to copy the args with a frame in place 

    int stackStructCount = 0; 

    void *pEnum; 

    pSig->Reset(&pEnum); 

    for (int i = 0 ; i < (int)pSig->NumFixedArgs(); i++) { 

        TypeHandle th = pSig->NextArgExpanded(&pEnum); 

        UINT cbSize = MetaSig::GetElemSize(th); 

 

        bool needsStackCopy = (cbSize > sizeof(ARG_SLOT)); 

        TypeHandle nullableType = NullableTypeOfByref(th); 

        if (!nullableType.IsNull()) { 

            th = nullableType; 

            needsStackCopy = true; 

        } 

 

        if(needsStackCopy) { 

            MethodTable *pMT = th.GetMethodTable(); 

            if (pMT && pMT->ContainsPointers()) 

                stackStructCount++; 

        } 

    } 

     

    // copy args 

    pSig->Reset(&pEnum); 

    for (int i = 0 ; i < (int)pSig->NumFixedArgs(); i++) { 

 

      // ... code to copy the arguments to a safe place 

 

    } 

    

    // Call the method 

    if (pSig->IsRetBuffArg()) { 

        _ASSERTE(objRet); 



Chapter 7: Runtime Type Definition and Exploration  | 179 

        COMPILER_ASSUME_MSG(retBuffPtr != NULL, "retBuffPtr should not be NULL"); 

        // The return buffer is a true boxed nullable, which we convert later on 

        *retBuffPtr = PtrToArgSlot(objRet->GetData()); 

    } 

 

    ret = method.CallWithValueTypes_RetArgSlot(pNewArgs); 

 

 

    // It is still illegal to do a GC here.  The return type might have/contain GC 

pointers. 

    if (retType == ELEMENT_TYPE_VALUETYPE)  

    { 

        // wrap and handle the valuetype case 

        // ... 

         

        objRet = Nullable::NormalizeBox(objRet); 

    } 

    else  

    { 

        objRet =  InvokeUtil::CreateObject(retTH, ret); 

    } 

     

    ByRefToNullable::CopyBackToArgs(byRefToNullables, &gc.args); 

    *((OBJECTREF*)&rv) = objRet; 

 

    return rv;  

It‘s a fairly hefty body of code, but taken in pieces, it‘s pretty comprehensible. 

A number of things take place in here: allocating the required amount of memory to support the call site 

setup, grabbing copies of the arguments as well as ―this‖ pointers if required, and wrapping them in data 

structure called an ARG_SLOT which represents a block of memory that can contain pointer and basic 

types. Once that‘s done, it instantiates a MethodDescCallSite data structure (found in 

sscli20/clr/src/vm/Method.hpp). The constructor code for MethodDescCallSite is particularly 

interesting, as it sets up what will eventually be the true pointer to the code we end up calling way down the 

call chain – either a pointer to the pre-JIT stub, or a pointer to the virtual table slot that contains the method 

implementation. 

   

MethodDescCallSite 
It‘s worthwhile making a quick note of this data structure, as it contains a very important feature: 

the pointer to the code eventually called. Browsing the class code in clr/src/vm/method.hpp reveals 

the private field m_pbCallTarget, which is setup during construction of the 

MethodDescCallSite through FindCallTarget method, which in turn calls upon another 

method, MethodTable::GetTargetFromMethodDescAndServer. The job of this rather 

verbosely-named method is to determine where the code lives in memory for a given 

MethodDesc. If the given method hasn‘t been JIT compiled yet, it returns a pointer to the 

prestub helper function for JIT compilation upon first call; otherwise it returns the true pointer to 

the code in memory. In an interesting twist, this method also deals with the Remoting case, 

returning a pointer to the runtime‘s Remoting layer to perform the remote method call if required. 

 

After the MethodDescCallSite setup completes, a few more type checks are necessary—for example, 

a Nullable<T> check, to support Nullable types and the semantics associated with them—and then 

control hands off to the MethodDescCallSite macro CallWithValueTypes_RetArgSlot 

found in Method.hpp. The macro looks a little weird for anyone not well versed in C++ macrology details, 

but fear not—we‘ll walk through it slowly:  
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Example 7-21. CallWithValueTypes_RetArgSlot Macro definition 

 

    #define MDCALLDEF(wrappedmethod, worker, permitvaluetypes, ext, rettype, eltype)     

    rettype wrappedmethod##ext (const ARG_SLOT* pArguments)                      

    {                                                                            

        ARG_SLOT retval;                                                         

        retval = worker (pArguments DEBUG_ARG(permitvaluetypes));                

        return *(rettype *)ArgSlotEndianessFixup(&retval, sizeof(rettype));      

    } 

The macro sets up an ARG_SLOT to wrap any return values from the method being called, then invokes the 

CallTargetWorker method (the variable ―worker‖ is simply a function pointer to the 

CallTargetWorker method).  

Example 7-22. CallTargetWorker code from Method.hpp 

 

     ARG_SLOT FORCEINLINE CallTargetWorker(const ARG_SLOT* pArguments 

                                          DEBUG_ARG(BOOL fPermitValueTypes)) 

    { 

        WRAPPER_CONTRACT; 

        return m_pMD->CallTargetWorker(m_pbCallTarget, &m_methodSig, pArguments,  

                                      m_fCriticalCall DEBUG_ARG(fPermitValueTypes)); 

    } 

Notice the call to the method MethodDesc::CallTargetWorker;  the first argument, 

m_pbCallTarget is a local variable obtained from the MethodDescCallSite structure containing 

the pointer in memory to the code eventually executed. We also pass in the method signature details and a 

pointer to the method arguments. The MethodDesc::CallTargetWorker call then simply bounces 

off to MethodDesc::CallDescr, which does a series of checks, setups, memory allocations and so on, 

all to get ready for the call out to the managed method, starting with setting up a FramedMethodFrame 

(frames are examined in Chapter 10; for now simply assume that it represents all the stuff needed to 

describe the lowest level processor architecture details for a method invocation) for the call site: 

    // Create a fake FramedMethodFrame on the stack. 

    DWORD dwAllocaSize = 0; 

    if (!ClrSafeInt<DWORD>::addition(FramedMethodFrame::GetRawNegSpaceSize(), 

        sizeof(FramedMethodFrame), dwAllocaSize) || 

        !ClrSafeInt<DWORD>::addition(dwAllocaSize, nActualStackBytes, dwAllocaSize)) 

{ 

        _ASSERTE(!"Integer overflow calculating number of bytes needed on stack."); 

        COMPlusThrow(kInvalidProgramException); 

    }    rettype wrappedmethod##ext (const ARG_SLOT* pArguments)                      

                                                                            

We then convert out ARG_SLOTs to the pointers they wrap and copy and align all our method arguments to  

the pDest pointer in to our FramedMethodFrame. 

Example 7-23. Setting up and copying method arguments 

 

    if (!fIsStatic) 

    { 

        *((LPVOID*) argit.GetThisAddr()) = ArgSlotToPtr(pArguments[arg++]); 

    } 

   

    // ... 

     

    switch (stackSize) 

    { 

        case 1: 

        case 2: 

        case 4: 
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            *((INT32*)pDest) = (INT32)pArguments[arg]; 

            break; 

 

        case 8: 

            // the deregistered arguments are only 4-byte aligned 

            CopyMemory((INT32*)pDest, (INT32*)(&pArguments[arg]), 2 * 

sizeof(INT32)); 

            break; 

        default: 

            // The ARG_SLOT contains a pointer to the value-type 

            if (MetaSig::IsArgPassedByRef(stackSize)) 

            { 

                *(PVOID*)pDest = ArgSlotToPtr(pArguments[arg]); 

            } 

            else 

            if (stackSize>sizeof(ARG_SLOT)) 

            { 

                CopyMemory(pDest, ArgSlotToPtr(pArguments[arg]), stackSize); 

            } 

            else 

            { 

                CopyMemory(pDest, (LPVOID) (&pArguments[arg]), stackSize); 

            } 

            break; 

    } 

And then finally, we call out to a method called CallDescrWorkerWithHandler: 

    INT64 retval = 0; 

 

    retval = CallDescrWorkerWithHandler(pFrameBase + sizeof(FramedMethodFrame) 

                             + nActualStackBytes 

                            , 

                             nActualStackBytes / STACK_ELEM_SIZE, 

                             (ArgumentRegisters*)(pFrameBase + 

FramedMethodFrame::GetOffsetOfArgumentRegisters()), 

                             dwRegTypeMap, 

                             pvRetBuff, 

                             cbRetBuff, 

                             fpReturnSize, 

                             (LPVOID)pTarget, 

                             fCriticalCall);   

The CallDescrWorkerWithHandler method (found in sscli20/clr/src/vm/Class.cpp) sets up and 

bounces to CallDescrWorker which performs a few more security checks and some threading magic:  

Example 7-24. Implementation of CallDescrWorker 

 

    extern "C" ARG_SLOT __stdcall CallDescrWorker( 

                    LPVOID                      pSrcEnd, 

                    UINT32                      numStackSlots, 

                    const ArgumentRegisters *   pArgumentRegisters, 

                    UINT64                      dwRegTypeMap, 

                    LPVOID                      pRetBuff, 

                    UINT64                      cbRetBuff, 

                    UINT32                      fpRetSize, 

                    LPVOID                      pTarget) 

    { 

        ARG_SLOT retValue; 

 

        // Save a copy of dangerousObjRefs in table. 

        Thread* curThread; 

        DWORD_PTR ObjRefTable[OBJREF_TABSIZE]; 
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        curThread = GetThread(); 

        _ASSERTE(curThread != NULL); 

 

        C_ASSERT(sizeof(curThread->dangerousObjRefs) == sizeof(ObjRefTable)); 

        memcpy(ObjRefTable, curThread->dangerousObjRefs, sizeof(ObjRefTable)); 

 

        _ASSERTE(curThread->PreemptiveGCDisabled());   

                // Jitted code expects to be in cooperative mode 

 

        // If current thread owns spinlock or unbreakalble lock, it can not call 

managed code. 

        _ASSERTE(!curThread->HasUnbreakableLock() && 

                 (curThread->m_StateNC & Thread::TSNC_OwnsSpinLock) == 0); 

 

        retValue = (ARG_SLOT) CallDescrWorkerInternal ( 

                        pSrcEnd, 

                        numStackSlots, 

                        pArgumentRegisters, 

                        dwRegTypeMap, 

                        pRetBuff, 

                        cbRetBuff, 

                        fpRetSize, 

                        pTarget); 

 

        // Restore dangerousObjRefs when we return back to EE after call 

        memcpy(curThread->dangerousObjRefs, ObjRefTable, sizeof(ObjRefTable)); 

 

        TRIGGERSGC(); 

 

        return retValue; 

    } 

For those who might find themselves lost in translation, it is worthwhile pointing out that the pTarget 

parameter in CallDescrWorker is called with the m_pbCallTarget variable from the 

MethodDescCallSite. After a few more checks, CallDescrWorker gets ready for a call to an 

assembly language method called CallDescrWorkerInternal which is found in 

sscli20/clr/src/vm/i386/Asmhelpers.asm. This is where the magic of the method invocation is performed:  

Example 7-25. Implementation of CallDescWorkerInternal/CallDescrWorker 

 

    CallDescrWorkerInternal PROC stdcall public, 

                           pSrcEnd: DWORD, 

                           numStackSlots: DWORD, 

                           pArgumentRegisters: DWORD, 

                           fpRetSize: DWORD,   

                           pTarget: DWORD 

 

          LOCAL   doubleRet:QWORD              

 

          mov     eax, pSrcEnd                 

          mov     ecx, numStackSlots 

          test    ecx, ecx 

          jz      donestack 

          sub     eax, 4 

          push    dword ptr [eax] 

          dec     ecx 

          jz      donestack 

          sub     eax, 4 

          push    dword ptr [eax] 

          dec     ecx 

          jz      donestack 

  stackloop: 
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          sub     eax, 4 

          push    dword ptr [eax] 

          dec     ecx 

          jnz     stackloop 

  donestack: 

 

          ; now we must push each field of the ArgumentRegister structure 

          mov     eax, pArgumentRegisters 

          mov     edx, dword ptr [eax] 

          mov     ecx, dword ptr [eax+4] 

 

          call    pTarget 

  ifdef _DEBUG 

          nop     ; This is a tag that we use in an assert.  Fcalls expect to 

                  ; be called from Jitted code or from certain blessed call sites 

like 

                  ; this one.  (See HelperMethodFrame::InsureInit) 

  endif 

 

          ; Save FP return value 

          mov     ecx, fpRetSize 

          cmp     ecx, 4 

          je      ReturnsFloat 

          cmp     ecx, 8 

          je      ReturnsDouble 

          jmp     Epilog 

 

  ReturnsFloat: 

          fstp    dword ptr doubleRet      

          mov     eax, dword ptr doubleRet; load it into EAX 

          jmp     Epilog 

 

  ReturnsDouble: 

          fstp    qword ptr doubleRet      

          mov     eax, dword ptr doubleRet; load it into EDX:EAX 

          mov     edx, dword ptr doubleRet+4 

 

  Epilog: 

         RET 

  CallDescrWorkerInternal endp 

CallDescrWorkerInternal starts by plucking off any arguments that may be setup in the pSrcEnd 

pointer (remember, this argument is actually a FramedMethodFrame structure, which contains the 

method arguments copied over from Example 7-23). Once an argument is plucked from pSrcEnd, we 

push them on to the processors stack, which sets up the call site for our call to the late-bound method 

contained in pTarget: 

          call    pTarget 

Remember, on first invocation, pTarger will be a pointer to the JIT stub and on subsequent invocations it 

will contain the pointer to the real code for the method. 

Wow. All that code to simply execute a ―call‖ instruction. If anything, it‘s an important lesson about the 

performance of late-bound invocation of code: it takes a great deal of binding, setup, checking, coercion 

and more checking to call a late-bound method in an environment that was built to assume early binding 

and offers guarantees based on that assumption. 

Emitting Components Dynamically 

In an interesting twist, not only does the CLI provide the facilities to examine all this structure and 

metadata at runtime via the System.Reflection namespace, it also provides the ability to emit 
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entirely both runtime-synthesized types, and lightweight GC reclaimable methods (called Lightweight 

Methods) via the System.Reflection.Emit namespace. This means, quite literally, that it becomes 

possible to build these types ―on the fly,‖ as it were. We will touch on generating types on-the-fly using the 

Reflection.Emit API, then examine the Lightweight Code Generation (LCG) feature and its impact on 

calling convention and runtime data structures.  

Reflection.Emit API 

What follows here is a simple Reflection.Emit program, which dynamically produces, the ―Hello 

World‖ sample that every programming textbook defines. (Note that we don‘t reuse the Echo sample 

because to emit even something as simple as Echo would occupy several pages of pure code.) 

using System; 

using System.Reflection; 

using System.Reflection.Emit; 

 

 

class App 

{ 

  static void Main() 

  { 

    AssemblyName an = new AssemblyName(); 

    an.Name = "HelloReflectionEmit"; 

 

    AppDomain ad = AppDomain.CurrentDomain; 

    AssemblyBuilder ab = ad.DefineDynamicAssembly(an, AssemblyBuilderAccess.Run); 

 

    ModuleBuilder mb = ab.DefineDynamicModule(an.Name); 

 

    // Define "public class Hello.Emitted" 

    // 

    TypeBuilder tb = mb.DefineType("Hello.Emitted", TypeAttributes.Public | 

                                                    TypeAttributes.Class); 

 

    // Define "public static int Main(string[] args)" 

    // 

    MethodBuilder mthb = tb.DefineMethod("Main", 

                                         MethodAttributes.Public | 

                                         MethodAttributes.Static, 

                                         typeof(int), 

                                         new Type[] { typeof(string[]) }); 

 

    ILGenerator ilg = mthb.GetILGenerator(); 

 

    // Define a call to System.Console.WriteLine, passing "Hello World" 

    // 

    ilg.Emit(OpCodes.Ldstr, "Hello, World!"); 

    ilg.Emit(OpCodes.Call, typeof(Console).GetMethod("WriteLine", new 

Type[]{typeof(string[])})); 

    ilg.Emit(OpCodes.Ldc_I4_0); 

    ilg.Emit(OpCodes.Ret); 

 

    Type t = tb.CreateType(); 

 

    ab.SetEntryPoint(mthb, PEFileKinds.ConsoleApplication); 

 

    Console.WriteLine("Finished—executing Hello"); 

 

    ad.ExecuteAssembly("Hello.exe"); 

  } 

} 

Emitting a dynamic assembly requires only seven steps: 
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1. Often (although we don’t do so here), a new application domain will be created, to allow the host to 

unload the domain and its dynamically-defined assembly when desired. 

2. From that application domain, create an AssemblyBuilder by calling 

DefineDynamicAssembly, passing in the AssemblyName for the dynamic assembly and the 

access restrictions—can this assembly be saved, run, or both? 

3. Define each module (usually 1:1) for the assembly. 

4. Generate the desired types (in this case, the type “Emitted” in the namespace “Hello”). Note that the 

type’s attributes are described using TypeAttributes in the second parameter to the 

DefineType call. 

5. Define methods using MethodBuilder (and fields using FieldBuilder, and events using 

EventBuilder, and so on), again making sure to pass in the desired attributes and, as necessary, the 

signature of the element being defined—in this case, the signature of the Main method needs to take 

an array of strings (typeof(string[])), and returns an int. 

6. For methods, emit the CIL opcodes directly to the method body using the ILGenerator class 

(which is a simple wrapper over Metadata bits). 

7. Call CreateType to finish, and the type is ready—in our case, we set the entrypoint for the 

assembly, then ask our application domain to execute it. 

The results are pretty much as would be expected—the assembly is defined and executed, printing ―Hello, 

World‖ to the console. Note that Hello.exe exists only in memory—to save it would require creating the 

AssemblyBuilder with the AssemblyBuilderAccess.Save attribute and saving the type using 

Save on the AssemblyBuilder. 

It is important to note here that the Reflection.Emit structures closely mirror those of the underlying 

structures they generate—assemblies contain one or move modules, which in turn contain types, which in 

turn contain fields, methods, properties, events, and so on. In fact, the metadata token itself is available 

from these APIs—you can get the MethodToken from a MethodBuilder by calling GetToken-

adding the line 

 

    Console.WriteLine("{0:X}", mthb.GetToken().Token); 

right after the CreateType call prints out 0x06000001. (As verification, save the emitted assembly to 

disk and run ildasm against it—Main is, in fact, 0x06000001.) 

The implementation 

To provide this functionality, the Reflection types, and especially the Invoke methods found on 

them, have to have extensive knowledge of EEClass, MethodTable, and other internal structures. 

Finding that link is something of an interesting dive through the Rotor-Base-Class-Library-to-VM chain. 

While we won‘t trace the entire set of methods, we‘ll touch on a few of the interesting ones. 

Working in top-down fashion, we start with the call to AppDomain.DefineDynamicAssembly. 

From the source, stored in the file clr\src\bcl\system\appdomain.cs, we see that this is a wrapper around 

another call: 

 

    public AssemblyBuilder DefineDynamicAssembly( 

        AssemblyName            name, 

        AssemblyBuilderAccess   access) 

    { 

        StackCrawlMark stackMark = StackCrawlMark.LookForMyCaller; 

        return InternalDefineDynamicAssembly(name, access, null, 

                                             null, null, null, null, / 

                                             ref stackMark); 

    } 
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This internal method, in turn, sets the key pair on the assembly (if provided), demands a security 

permission (if security evidence was provided), and then makes a call to another internal method, 

nCreateDynamicAssembly, whose declaration is also found in appdomain.cs: 

 

    [MethodImplAttribute(MethodImplOptions.InternalCall)] 

    private extern AssemblyBuilder nCreateDynamicAssembly(AssemblyName name, 

                           Evidence identity, 

                           ref StackCrawlMark stackMark, 

                           PermissionSet requiredPermissions, 

                           PermissionSet optionalPermissions, 

                           PermissionSet refusedPermissions, 

                           AssemblyBuilderAccess access); 

But, as can plainly be seen, no implementation is found—instead, the MethodImplAttribute 

indicates that this is an internal call, meaning this is the point of entry into the execution engine code itself. 

However, the SSCLI doesn‘t have a method named nCreateDynamicAssembly anywhere within it—

so where, precisely, will you jump off to? 

Defined in clr/src/vm/ecall.cpp is a set of tables that map methods marked as internal calls to their actual 

function entry points; sure enough, in one of these tables, an entry named nCreateDynamicAssembly 

is found: 

FCFuncStart(gAppDomainFuncs) 

 // ... 

    FCFuncElement("nCreateDynamicAssembly", AppDomainNative::CreateDynamicAssembly) 

 // ... 

FCFuncEnd() 

This is the trampoline, then, that takes calls bound to the name nCreateDynamicAssembly and 

substitutes the entry point for the CreateDynamicAssembly method of the C++ class 

AppDomainNative. Tracking this further, then, takes you to clr/src/vm/appdomainnative.cpp, in which 

CreateDynamicAssembly rips through the arguments handed to it, finds the VM-level pointer for the 

given application domain, creates a new Assembly structure, and adds it to the application domain. 

A number of interesting functions are defined in ecall.cpp; one is the trampolined call that occurs when 

TypeBuilder is asked to create a new type. This in turn routes to: 

 

FCFuncStart(gCOMClassWriter) 

   // ... 

   FCFuncElement("InternalDefineClass", COMDynamicWrite::CWCreateClass  

 // ... 

FCFuncEnd()     

which is in turn defined in clr/src/vm/comdynamic.cpp. (Again, don‘t let the ―COM‖ prefixes here throw 

you—remember, Rotor was derived from the original CLR sources, which were developed under the 

presumption that .NET would be the next generation of COM.) This method calls against a 

RefClassWriter class (defined in clr/src/vm/reflectclasswriter.h), which in turn is a wrapper around 

our old friends IMetaDataEmit and IMetaDataImport, the interfaces to the metadata subsystem in 

Rotor. These take the generated CIL for the type, store it into the CLI metadata formats, which are suitable 

for consumption by the very mechanisms we‘ve just discussed, the class loader and JIT compiler. 

 

Lightweight Code Generation 

Lightweight Code Generation (LCG) is a new feature in SSCLI 2.0 that provides enhanced runtime code 

generation facilities for emitting static methods at runtime. It is aimed at compilers for languages that 

require runtimes (e.g. scripting languages such as JScript) and other scenarios where runtime code 

generation is required for performance (e.g. Serialization, Regular Expressions, XSLT, code specialization 
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and more). LCG improves on existing Reflection.Emit in several ways: less overhead (no need to 

generate new assemblies, modules and types at runtime just to contain code stubs); ability to live on an 

existing assembly or type given appropriate (high) security permissions and the ability to skip JIT-time 

visibility checks given appropriate (high) security permissions. 

To make it simpler for existing Reflection.Emit users to switch over to this new facility, LCG 

extends the existing ILGenerator object model with the DynamicILGenerator class. For clients 

who already have their own IL and code generation facilities, LCG also provides a low-level API which 

works in terms of tokens and scopes. This allows more sophisticated clients to continue to perform their 

own IL generation, while still taking advantage of LCG‘s lower overhead, better resource utilization and 

additional capabilities compared to classic Reflection.Emit. 

What follows here is a simple Lightweight Code Generation program that emits the classic ―write Hello 

World to the console‖ example:  

using System; 

using System.Reflection; 

using System.Reflection.Emit; 

 

public class LCGHelloWorld 

{ 

  public static void Main(string[] args) 

  { 

    DynamicMethod dm = new DynamicMethod("HelloWorld", typeof(void),  

          new Type[] {}, typeof(LCGHelloWorld), false); 

    ILGenerator il = dm.GetILGenerator(); 

 

    il.Emit(OpCodes.Ldstr, "hello, world"); 

    il.Emit(OpCodes.Call, typeof(Console).GetMethod("WriteLine", 

          new Type[] { typeof(string) })); 

    il.Emit(OpCodes.Ret); 

 

    dm.Invoke(null, null); 

  } 

} 

Observant readers will notice the LCG API is very similar to the Reflection.Emit example above.  

The implementation 

LCG methods have no metadata on disk; instead, a representation of metadata is created in-memory and 

resolved by the runtime, simulating a method which is laid out on disk in an assembly. In order to achieve 

this, the implementation is split up in to two main parts: the managed API to create the method and 

generate the in-memory CIL, and the unmanaged runtime goop to resolve the in-memory metadata 

equivalent so that the JIT compiler and Execution Engine can proceed as if the LCG method were any other 

managed method in the runtime. To illustrate the design and understand the managed and unmanaged 

runtime interactions, let‘s walk through the interesting parts of the Hello World example. 

LCG methods start with a call to GetILGenerator, found in 

clr\src\bcl\system\reflection\emit\Dynamicmethod.cs. 

  public ILGenerator GetILGenerator(int streamSize)  

  { 

      if (m_ilGenerator == null) 

      { 

          byte[] methodSignature = SignatureHelper.GetMethodSigHelper( 

                null, CallingConvention, ReturnType, null, null,  

        m_parameterTypes, null, null).GetSignature(true); 

          m_ilGenerator = new DynamicILGenerator(this, methodSignature, streamSize); 

      } 

    return m_ilGenerator; 

  } 

 



Chapter 7: Runtime Type Definition and Exploration  | 188 

  public bool InitLocals { 

    get {return m_fInitLocals;} 

    set {m_fInitLocals = value;} 

  }     

A byte array instance is created by calling the SignatureHelper.GetMethodSigHelper method, 

which creates an in-memory representation of the method signatures metadata. This is the first place we see 

an in-memory abstraction of metadata.  

The DynamicILGenerator class is the LCG equivalent of generating CIL. It contains two important 

fields that are used throughout the IL generation process:  

  internal class DynamicILGenerator : ILGenerator  

  { 

    internal DynamicScope m_scope; 

     

    // m_ILStream is inherited from ILGenerator 

    internal byte[] m_ILStream; 

 

    // ... 

  } 

The m_ILStream byte array field is used to build up an in-memory representation of the CIL opcode  

stream for the LCG method. All calls to the DynamicILGenerator.Emit method do a simple lookup 

of the instruction and generate the binary equivalent into this byte array. Traditionally, most CIL 

instructions take a metadata token in order to perform an action on that metadata pointer. To make the LCG 

and Reflection.Emit APIs more pleasant, the Emit method allows you to pass in the Reflection 

based representation of the metadata token: runtime handles, or even the actual object itself. Consider the 

example of emitting a ―ldstr‖ instruction through the Emit method:  

           il.Emit(OpCodes.Ldstr, "hello, world"); 

The ―ldstr‖ opcode is paired with a string object. In traditional CIL, this string would be a metadata token 

pointing to the string literal‘s location in the assembly. For the LCG case, there are no traditional metadata 

tables to store the string, so in this case, it must be held somewhere in memory. 

The DynamicScope class (referenced through the m_scope variable in DynamicILGEnerator) is a 

container class that abstracts metadata away by keeping track of real objects and runtime handles. Every 

time an object (in this case, the ―hello, world‖ string object) or runtime handle (e.g. the ―call‖ takes a 

RuntimeTypeHandle for the Console.WriteLine static method) is passed to the 

DynamicILGEnerator.Emit method, the DynamicScope class captures the scope of that request, 

and passes back a generic metadata token to be used in the CIL byte stream. 

  internal class DynamicScope  

  {    

    internal ArrayList m_tokens; 

       

    internal unsafe DynamicScope()  

    { 

        m_tokens = new ArrayList(); 

        m_tokens.Add(null); 

    } 

 

      internal string GetString(int token) { return this[token] as string; } 

 

          public int GetTokenFor(RuntimeMethodHandle method, RuntimeTypeHandle 

typeContext)  

    { return m_tokens.Add(new GenericMethodInfo(method, typeContext))  

      | (int)MetadataTokenType.MethodDef; } 

          public int GetTokenFor(DynamicMethod method) 

    { return m_tokens.Add(method) | (int)MetadataTokenType.MethodDef; } 

          public int GetTokenFor(RuntimeFieldHandle field) 

    { return m_tokens.Add(field) | (int)MetadataTokenType.FieldDef; } 
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          public int GetTokenFor(RuntimeTypeHandle type)  

    { return m_tokens.Add(type) | (int)MetadataTokenType.TypeDef; } 

          public int GetTokenFor(string literal)  

    { return m_tokens.Add(literal) | (int)MetadataTokenType.String; } 

          public int GetTokenFor(byte[] signature)  

    { return m_tokens.Add(signature) | (int)MetadataTokenType.Signature; } 

 

    // ... 

DynamicScope has a simple ArrayList as the container for the tokens (it also has an index property, 

essentially making this an associative array more than just a traditional array), and a GetTokenFor 

method for each respective object or runtime handle. The GetTokenFor method simply adds the object 

or handle to the ArrayList and returns the abstract metadata token. This largely completes the managed 

representation of the API.  

At the runtime level, a number of abstractions were created in order to ―trick‖ the runtime in to believing its 

business as usual for LCG method invocation. The DynamicMethodDesc class is used to represent the 

MethodDesc for the LCG method. It inherits from StoredSigMethodDesc, a class designed to 

abstract away and represent the method signature metadata. The DynamicMethodTable class is used as 

a special case MethodTable for LCG methods.  

Invocation of an LCG method (through the managed Invoke method) follows the same Reflection- based 

invocation code path, up until we hit the JIT compiler code. The code found in clr\src\vm\jitinterface.cpp 

has many special cases for LCG methods, where metadata tokens need to be resolved to the respective 

runtime handles. In these cases, the JIT passes the abstract metadata token to a metadata resolver interface, 

called LCGMethodResolver:  

Example 7-25. LCGMethodResolver header file (DynamicMethod.h) 

 

  class LCGMethodResolver : public DynamicResolver  

  { 

      friend class DynamicMethodDesc; 

      friend class EEJitManager; 

 

  public: 

      LCGMethodResolver() {} 

      void Destroy(BOOL fRecycle); 

 

      void FreeCompileTimeState(); 

      void GetJitContext(DWORD *securityControlFlags, TypeHandle *typeOwner); 

      ChunkAllocator* GetJitMetaHeap(); 

 

      BYTE* GetCodeInfo(unsigned *pCodeSize, unsigned short *pStackSize, 

CorInfoOptions *pOptions, unsigned short *pEHSize); 

      PCCOR_SIGNATURE GetLocalSig(DWORD *pSigSize); 

      StringObject* GetStringLiteral(mdToken token); 

      void* ResolveToken(mdToken token); 

      unsigned ResolveParentToken(mdToken token); 

      PCCOR_SIGNATURE ResolveSignature(mdToken token); 

      PCCOR_SIGNATURE ResolveSignatureForVarArg(mdToken token); 

      void GetEHInfo(unsigned EHnumber, CORINFO_EH_CLAUSE* clause); 

      BOOL IsValidToken(mdToken token); 

      void* GetInstantiationInfo(mdToken token); 

       

      MethodDesc* GetDynamicMethod() { LEAF_CONTRACT; return m_pDynamicMethod; } 

  }; 

Let‘s take a look at the JIT code to compile the ―ldstr‖ CIL instruction to make this process a little clearer:  

Example 7-26. compileCEE_LDSTR method in fjit.cpp 

 

  FJitResult FJit::compileCEE_LDSTR() 
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  { 

      unsigned int            token; 

      InfoAccessType          iat; 

 

      CORINFO_MODULE_HANDLE   tokenScope = methodInfo->scope; 

      void* literalHnd = NULL; 

 

      iat = jitInfo->constructStringLiteral(tokenScope,token, &literalHnd); 

 

      emit_WIN32(emit_LDC_I4(literalHnd)) emit_WIN64(emit_LDC_I8(literalHnd)) ; 

      emit_LDIND_PTR(false); 

      // Get the type handle for strings 

      CORINFO_CLASS_HANDLE s_StringClass = jitInfo->getBuiltinClass(CLASSID_STRING); 

          VALIDITY_CHECK( s_StringClass != NULL ); 

      pushOp(OpType(typeRef, s_StringClass )); 

      return FJIT_OK; 

  } 

The JIT asks the EE-JIT interface to construct the string literal through the call to the 

constructStringLiteral method found in jitinterface.cpp: 

InfoAccessType __stdcall CEEInfo::constructStringLiteral(CORINFO_MODULE_HANDLE 

scopeHnd, 

                                                         mdToken metaTok, 

                                                         void **ppInfo) 

  { 

      CONTRACTL { 

          SO_TOLERANT; 

          THROWS; 

          GC_TRIGGERS; 

      } CONTRACTL_END; 

 

      InfoAccessType result = IAT_PVALUE; 

 

      JIT_TO_EE_TRANSITION(); 

 

      if (IsDynamicScope(scopeHnd)) 

      { 

          result = CEEDynamicCodeInfo::constructStringLiteral(scopeHnd, metaTok, 

ppInfo); 

      } 

      else 

      { 

      // ... 

      } 

 

      EE_TO_JIT_TRANSITION(); 

 

      return result; 

  } 

A check is made to see if the passed in scope is a DynamicScope , and if so, makes another call through 

to CEEDynamicCodeInfo::constructStringLiteral: 

  InfoAccessType CEEDynamicCodeInfo::constructStringLiteral( 

      CORINFO_MODULE_HANDLE moduleHnd, 

      mdToken metaTok, 

      void **ppInfo) 

  { 

      *ppInfo = NULL; 

 

      DynamicResolver* pResolver = GetDynamicResolver(moduleHnd); 

 

      OBJECTHANDLE string = NULL; 
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      STRINGREF       strRef = ObjectToSTRINGREF(pResolver-

>GetStringLiteral(metaTok)); 

 

      GCPROTECT_BEGIN(strRef); 

 

      if (strRef != NULL) 

      { 

          MethodDesc* pMD = pResolver->GetDynamicMethod(); 

          string = (OBJECTHANDLE)pMD->GetModule()->GetAssembly()-> 

                        Parent()->GetOrInternString(&strRef); 

      } 

 

      *ppInfo = (LPVOID)string; 

      return IAT_PVALUE; 

  }      

Finally, the DynamicResolver class (which is really just an instance of 

LCGDynamicMethodResolver), makes an unmanaged to managed transition to ask the managed 

DynamicResolver object to resolve the metadata token to a string object:  

  StringObject* LCGMethodResolver::GetStringLiteral(mdToken token) 

  { 

      STRINGREF retStr = NULL; 

 

      MethodDescCallSite getStringLiteral(METHOD__RESOLVER__GET_STRING_LITERAL, 

m_managedResolver); 

 

      OBJECTREF resolver = ObjectFromHandle(m_managedResolver); 

      VALIDATEOBJECTREF(resolver); // gc root must be up the stack 

 

      ARG_SLOT args[] = { 

          ObjToArgSlot(resolver), 

          token, 

      }; 

      retStr = getStringLiteral.Call_RetSTRINGREF(args); 

      return STRINGREFToObject(retStr); 

  }     

This unmanaged to managed call takes place to the GetStringLiteral method on the 

DynamicResolver class:  

  private DynamicScope m_scope; 

 

  // ... 

 

  internal override String GetStringLiteral(int token)  

  {  

     return m_scope.GetString(token); 

  } 

This method simply asks the DynamicScope object for the string object representing the ―abstract‖ JIT 

metadata token and returns a string object back to the JIT to resume compilation. Mission complete. 

Finalization 

Because LCG methods are mostly implemented in managed code, they are reclaimable by the Garbage 

Collector, making them extremely memory efficient over their Reflection.Emit cousin. When an 

LCG delegate and DynamicMethod object references no longer exist, the GC can target the object for 

collection. The memory reclamation process is done in two stages: firstly, the managed objects used by the 

LCG method must be collected and destroyed, and secondly, the unmanaged memory in the runtime freed. 

Because the unmanaged memory contains pointers to the managed objects, we must be certain that the 

managed memory is completely destroyed. Generally, we‘d expect that finalization of the LCG objects 

should guarantee that these objects no longer exist, and thus from the finalizer method, we could prepare 
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the unmanaged objects to be freed. Unfortunately, there‘s an unusual scenario which could break this 

invariant: a user could hold a weak reference to these objects, allowing the objects to survive finalization. 

To guarantee that the LCG managed objects have been completely finalized, and thus invoke the freeing of 

unmanaged memory, there‘s a cute hack to do a ―post finalization‖ unmanaged memory cleanup. The 

DynamicScope finalizer shows this hack in action:  

 

  ~DynamicResolver() { 

      DynamicMethod method = m_method; 

 

      if (method == null) 

          return; 

 

      if (method.m_method.IsNullHandle()) 

          return; 

 

      DestroyScout scout = null; 

      try { 

          scout = new DestroyScout(); 

      } catch { 

          // We go over all DynamicMethodDesc during AppDomain shutdown and make 

sure 

          // that everything associated with them is released. So it is ok to skip 

reregistration 

          // for finalization during appdomain shutdown 

          if (!Environment.HasShutdownStarted &&  

              !AppDomain.CurrentDomain.IsFinalizingForUnload()) 

          { 

              // Try again later. 

              GC.ReRegisterForFinalize(this); 

          } 

          return; 

      } 

 

      // We can never ever have two active destroy scouts for the same method.  

    // We need to initialize the scout outside the try/reregister block to  

    // avoid possibility of reregistration for finalization with active scout. 

      scout.m_method = method.m_method; 

  } 

 

  private class DestroyScout 

  { 

      internal RuntimeMethodHandle m_method; 

 

      ~DestroyScout() 

       { 

          if (m_method.IsNullHandle()) 

              return; 

 

          // It is not safe to destroy the method if the managed resolver is alive. 

          if (m_method.GetResolver() != null) 

          { 

              if (!Environment.HasShutdownStarted && 

                  !AppDomain.CurrentDomain.IsFinalizingForUnload()) 

              { 

                  // Somebody might have been holding a reference on us via weak 

handle. 

                  // We will keep trying. It will be hopefully released eventually. 

                  GC.ReRegisterForFinalize(this); 

              } 

              return; 

          } 
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          m_method.Destroy(); 

      } 

  }    

A temporary DestroyScout object is created in the local scope of the DynamicResolver‘s finalizer 

method. This scout object will survive the finalization of the DynamicResolver object and will be 

tagged for collection by the GC only if the DynamicResolver object was destroyed. Thus, it‘s 

guaranteed that by the time the DestroyScout object is being finalized, all managed objects related to 

the LCG method will be destroyed. A call to RuntimeMethodHandle.Destroy is made, and the 

unmanaged memory is cleaned up. 

Summary 

Reflection on code is a rich and powerful side-effect of running code on a virtual machine. The CLI enables 

reflection of assemblies, types and code via a rich API that taps both metadata on disk and the runtimes 

data structures. The process starts with a string or a token identifier, and ends with an instance of a derived 

MemberInfo object. And during that process, the runtime enhances the performance of this process 

through the use of MemberInfo caching.  

Late-bound code generation and invocation is also another powerful CLI feature. Here we can inspect a 

MethodInfo and invoke the method it represents safely. Extending this late-bound invocation concept to 

the generation of code at runtime completes the picture of true dynamism in code. The CLI features 

Reflection.Emit and DynamicMethod (Lightweight Code Generation), both of which are powerful 

ways to generate types and code, adhering to a large surface area of the CLI Metadata specification, and 

leveraging IL as its code descriptor. 
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8. Regulating the Execution Engine 

We‘ve now seen how the CLI transforms high-level type descriptions into processor-specific code. This 

chapter examines what happens once this code has begun to run and what the execution engine needs to do 

to remain in control. Without a foolproof way to retain control, all of the unpacking, re-jiggering, checking, 

compiling, and linking of types that has been described to this point would be for nought. The runtime 

boundaries that are erected by the execution engine are one of its most desirable features, since they enable 

components to cooperate while remaining safely isolated. 

Rotor piggybacks on two operating system abstractions, threads and exceptions, to control the execution 

state for a given process. Threads and exceptions are both related to the execution stack: a thread is home to 

the memory that makes up an execution stack, while exceptions create structure for that memory using a 

convention that helps protect its integrity at runtime. 

Threads 

Most programmers think of threads as a way to separate well-defined tasks into independent chunks of 

code, usually in conjunction with matching synchronization constructs. This usage is supported by the CLI, 

of course; chunks of code can run ―on‖ threads whose schedules are dictated by the operating system‘s 

threading implementation and by intertask dependencies. But threads in the CLI have another equally 

important role: they are the primary data structure for maintaining execution engine information about 

executing code. Besides representing concurrent execution and synchronization, the thread structures 

within the CLI provide a way to associate the microprocessor‘s execution stack with related runtime data. 

This runtime data is a trove of bookkeeping information, which includes security annotations, garbage-

collection markers, program variables, and many other things. 

Inside the execution engine, threads are implemented on top of PAL threads, which abstract away system-

specific threading details. (Threads are one of the least standardized system services. Because of this, the 

PAL‘s implementation is both difficult and important.) In the discussion that follows, we will draw a 

distinction between PAL threads and managed threads. A managed thread is an instance of the Thread 

type, while a PAL thread is a preemptively scheduled execution unit that exists within an address space and 

can have private state associated with it. Managed threads wrap PAL threads; they are high-level types 

within the CLI that encapsulate lower-level semantics. Managed threads always have a corresponding PAL 

thread, but PAL threads do not need to have a corresponding managed thread. 

The ability of PAL threads to maintain private per-thread state is important, because the execution engine 

tracks ―interesting‖ threads (defined, rather myopically, as threads that have executed managed code) by 

associating an instance of Thread with the underlying PAL thread using this per-thread state. From the 

perspective of the managed code, the Thread type has a field named m_ThreadHandle, which contains 

a HANDLE to its PAL thread that it uses to control and schedule execution on this thread. Since there is no 

PAL call to enable navigating from a thread handle to a managed thread, the execution engine maintains a 

ThreadStore that can be used to enumerate managed threads from both managed and unmanaged code. 

To facilitate interoperability between unmanaged and managed code, managed threads mix the execution 

state of managed and unmanaged code on a single stack. PAL threads that become associated with 

managed code are used by the execution engine to maintain exception handlers, scheduling priorities, and a 

set of structures that the underlying platform uses to save context whenever it preempts the thread‘s 

execution. (The thread context holds important details, such as the values held in machine registers and the 

state of the current execution stack.) 
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There are many places in which unmanaged code calls managed code, and vice versa, as illustrated by 

Figure 8-1. Three scenarios, in particular, are common: 

 Much of the execution engine is written in unmanaged code, and JIT helper functions and large parts 

of the base class libraries frequently call or are called by JIT-compiled code. 

 Managed components can be instantiated and called by native applications that wish to host the CLI. 

 Previously unknown threads can enter the runtime from the “outside.” 

 

 
 

Figure 8-10. Many threads of control can coexist within a managed process 

Managed threads must be prepared to behave gracefully in the face of manipulation in any of these 

scenarios. Since components are free to call external routines using ECMA‘s platform invocation 

(P/Invoke) mechanism and pass component references to these external routines, component callbacks may 

be asynchronously invoked from outside the execution engine. Likewise, applications are free to host 

instances of the execution engine within their own processes, instantiating and calling component instances 

from their own threads, which also results in external invocation. Because of these possibilities and because 

the SSCLI implementation mixes execution state of both managed and PAL threads, the concurrency model 

is quite complex. 

Transitions between managed and unmanaged code can be created in many different ways, and it is 

important to understand every one of them since the execution engine must account for each to maintain 

control and integrity. Significant transitions are not limited to boundaries with external code; even within 

managed code, isolation needs to be maintained as application domain boundaries or remoting contexts are 

crossed, as security permissions change, or as exceptions are thrown. 

Setting Up a Managed Thread 

The easiest transition to understand is the initial transition from unmanaged to managed code, when a PAL 

thread prepares to run managed code. The linkage between the PAL thread and the managed thread is 

accomplished in SetupThread, defined in clr/src/vm/threads.cpp; the code in Example 8-1 is edited 

from threads.cpp and shows this process. 

Example 8-1. Threads are associated with an underlying PAL thread (simplified from 

clr/src/vm/threads.cpp) 

 

Thread* SetupThread(BOOL fInternal) 

{ 

    Thread* pThread; 

    if ((pThread = GetThread()) != NULL) 
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        return pThread; 

 

    if (ThreadStore::s_pThreadStore->m_PendingThreadCount != 0) 

    { 

        DWORD  ourOSThreadId = ::GetCurrentThreadId(); 

        IHostTask *curHostTask = NULL; 

        IHostTaskManager *hostTaskManager = CorHost2::GetHostTaskManager(); 

        if (hostTaskManager) { 

            BEGIN_SO_TOLERANT_CODE_CALLING_HOST(GetThread()); 

            hostTaskManager->GetCurrentTask(&curHostTask); 

            END_SO_TOLERANT_CODE_CALLING_HOST; 

        } 

 

 while ((pThread = ThreadStore::s_pThreadStore->GetAllThreadList(pThread, 

Thread::TS_Unstarted | Thread::TS_FailStarted, Thread::TS_Unstarted)) != NULL) 

 { 

        if (curHostTask) 

     { 

         if (curHostTask == pThread->GetHostTask()) 

         { 

             break; 

         } 

     } 

     else if (pThread->GetOSThreadId() == ourOSThreadId) 

     { 

         break; 

     } 

     

        if (pThread) 

        { 

            BOOL fStatus = pThread->HasStarted(); 

            ensurePreemptive.SuppressRelease(); 

            return fStatus ? pThread : NULL; 

        } 

    } 

 

    // First time we've seen this thread in the runtime: 

    pThread = new Thread(); 

 

    if (!pThread->InitThread(fInternal) || 

        !pThread->PrepareApartmentAndContext()) 

        ThrowOutOfMemory(); 

 

    // reset any unstarted bits on the thread object 

    FastInterlockAnd((ULONG *) &pThread->m_State, ~Thread::TS_Unstarted); 

    FastInterlockOr((ULONG *) &pThread->m_State, Thread::TS_LegalToJoin); 

 

    ThreadStore::AddThread(pThread); 

 

    pThread->SetupThreadForHost(); 

 

    threadHolder.SuppressRelease(); 

 

    _ASSERTE(!pThread->IsBackground()); // doesn't matter, but worth checking 

    pThread->SetBackground(TRUE); 

 

    return pThread; 

}} 

There are two checks made to ensure that the thread being set up does not already have a corresponding 

instance of Thread. First, a call to GetThread is made via a function pointer established in 

InitThreadManager; GetThread looks for a cached Thread instance in the TLS for the calling 

PAL thread. If an instance is found, the calling thread is already known to the execution engine. 
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If there is no cached thread instance, SetupThread ensures that the call is not coming from a different 

thread than the thread being initialized. To check this, the ThreadStore (which is exactly what it sounds 

like—a container for all known Threads) is queried for a matching identifier. If one is found, 

SetupThread can return, since the thread is known to the execution engine. If the PAL thread is truly 

unknown to the execution engine, a new Thread object is created, installed on its TLS, and marked as 

started. The call to Thread::HasStarted completes the initialization of the Thread instance. 

In addition to acting as a home for managed execution bookkeeping info associated with the underlying 

PAL thread, the new Thread instance will be added by the execution engine to the ThreadStore‘s list 

of all the threads ever seen. This bookkeeping information is used during thread suspension, during 

shutdown, and for thread enumeration. Of these threads, those that wander into the execution engine 

without being known to it become background threads, which cannot keep the execution engine alive by 

themselves. Foreground threads have the opposite effect and will keep the CLI execution engine alive as 

long as they are running. (The thread that calls the main .entrypoint for a managed program, for 

example, is a foreground thread.) The foreground/background state of a Thread is exposed through its 

API and can be changed from managed code. 

Traversing the Execution Engine Stack 

Once a Thread instance has been associated with an underlying PAL thread, managed code can be 

executed on it. One sequence that will kick off the execution of managed code can be found in 

MethodDesc::CallTargetWorker, which we discussed in Chapter 5 (and which can be found in 

sscli/clr/src/vm/method.cpp). The implementation of CallTargetWorker relies on the fact that two 

important tracking structures will be on the stack before JIT-compiled code is executed: an exception 

handler that will wrap the managed code (which we will see in great detail later in the ―Handling 

Exceptions‖ section of this chapter), and a chain of execution engine frames (―frames,‖ for short—see the 

sidebar ―Frames, Frames, Frames‖) that will be used to annotate portions of the stack with runtime 

information produced by the execution engine. 

Execution engine frames do not exist in the regions of the stack that are generated by the JIT compiler, 

since the execution engine already has intimate knowledge about how this code will use the stack and can 

read the resulting stack data directly, without using frames as markers. But the multiple calling 

conventions, exception paths, and other nasty details that must be understood when interpreting stack 

layouts for code not produced by the JIT compiler, or for JIT helper code, are what make frames a 

necessary part of the SSCLI execution strategy. The intricacies of tracing the stack, as well as the tight 

requirements placed on stack layout by security, result in a runtime service called the code manager, which 

knows how to join the managed and unmanaged portions of a stack together into a single coherent view. 

 

Frames, Frames, Frames 
Unfortunately, the word ―frame‖ is used within the execution engine in three ways, each of which 

is different. The most familiar to programmers is the notion of a stack frame, which is a region of 

stack memory that is allocated for a single procedure call, used to hold parameter values, local 

variables, a return value, and anything else needed by the calling convention in effect. To reduce 

ambiguity, we will refer to this as an activation record in this book, which is a commonly used 

alternate term. 

The second use of ―frame‖ is in the context of exception handling. An exception handler frame is 

a region of the stack that is covered by a particular structured exception handler. Exception 

handler frames are begun by the use of the try keyword in C# or C++, and conclude at the point 

following the last corresponding exception handler. Here, we will always refer to this kind of 

frame in a fully qualified way. 
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The third kind of frame is unique to the SSCLI execution engine. Execution engine frames are 

bookkeeping structures that are stored on the stack by the execution engine for the purpose of 

marking significant boundaries. These frames are discussed extensively in the accompanying text, 

and because of this, we will refer to them as nothing more than frames. 

 

The existence of execution engine frames and the code manager highlight an important aspect of the SSCLI 

implementation: its stacks contain much more than method invocation state. In fact, the stack for each 

thread forms a complete record of currently executing code and is an ideal place to put control information 

needed by the execution engine, since it manages the execution of that code. The execution engine uses the 

information in the stack to: 

 Track and update stack-stored object references for garbage collection 

 Hold state for security checks 

 Recognize transitions, such as cross-domain or managed-to-unmanaged calls 

 Find the correct handler and unwind the stack during an exception 

 Generate human-readable call traces for debugger and exception support 

 Keep track of exception resources 

When needed, this information is accessed via stackwalking, which, as the name implies, is the process of 

traversing interesting spots in the stack‘s call chain to extract current execution state. 

Annotating the Stack with Frames 

Frame instances are used polymorphically by the code manager, which relies on virtual method dispatching 

to produce specialized behaviors. A linked list of execution engine frames is associated with every 

Thread object, all of which are instances of the Frame class or one of its subclasses, and all of which can 

be found in sscli20/clr/src/vm/frames.h. The C++ classes are provided to let the code within the execution 

engine manipulate existing frames, but frame construction is often done by assembler stubs, from JIT 

helpers, or by other implementation-specific tricks within the execution engine. Because of this, the class 

declarations in frames.h are tightly coupled with the architecture-specific stub generation code, which 

makes it important to keep these stubs in sync when changing the frame code in any way. In particular, 

programmers should avoid attempting to use constructors or destructors on these objects without first 

examining any related stubs, since many of the frames are not meant to be instantiated in this way (and 

most constructors are private for this reason). 

Frames are often linked to exception handling; there is a frame type for every situation in which protection 

or special action is needed when crossing a boundary in the context of an exception. Interop calls, context-

crossing calls, and internal calls into the execution engine all generate special frames. Any crossing from 

unmanaged or managed compiled code back into the execution engine is also marked by a frame of some 

sort. Figure 8-2 contains some of the more interesting types of frames that are used in the SSCLI. 

Figure 8-2 displays some of the following types of frames: 
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Figure 8-11. A partial view of the frame type hierarchy in the SSCLI 

DebuggerClassInitMarkFrame 

This frame is used as the very first frame in a given thread‘s linked list. 

GCFrame 

This frame is used to alert the garbage collector to object references that should be tracked within 

unmanaged execution engine code. 

ContextTransitionFrame 

This frame marks a transition across an application domain or a context. 

TransitionFrame 

This frame represents the transition from JIT-compiled code into either an execution engine function or 

a framed method. 

ExceptionFilterFrame 

This frame wraps a call to the Exception filter. 

FaultingExceptionFrame 

This frame has taken a PAL exception during the execution of JIT-compiled code. 

FuncEvalFrame 

The debugger ―borrows‖ the stack to do evaluation, and the point at which the stack is borrowed is 

marked by this frame. 

HelperMethodFrame 

This frame is used to include JIT helper functions and FCalls in the stackwalk. 

FramedMethodFrame 

This frame is an abstract superclass for all kinds of method calls that will use a Frame. 

NDirectMethodFrame 

This frame marks a transition into native code via the P/Invoke mechanism. 
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NDirectMethodFrameEx 

A P/Invoke transition, with additional cleanup. 

DebuggerSecurityCodeMarkFrame 

This frame is used during security stackwalks and acts as a holder for the security object of an 

activation record on the stack. 

UnmanagedToManagedFrame 

This frame is used to mark a transition into managed code from unmanaged code. 

UnmanagedToManagedCallFrame 

This frame is used to mark a transition from unmanaged code to a managed method, which registers 

the method arguments with the garbage collector. 

UMThkCallFrame 

This frame is used to mark a transition into managed code from unmanaged code via a UMThunk, 

which is a delegate that encapsulates an unmanaged target function. 

As you can see, frames come in many flavors, not all of which correspond to method calls in a one-to-one 

way. The SSCLI stack is a complex mixture of execution engine frames, exception-handling frames, and 

activation records. 

Categorizing Frames 

To help make sense of this mixture, we will divide execution engine frames into two categories: data 

annotations and transition markers. Data annotations are used by the execution engine to track data items of 

interest in the stack, while transition markers help the execution engine track context. 

Annotating data 

As an example of a frame that is purely an annotation, consider GCFrame. The only purpose of a 

GCFrame is to protect one or more object references from being garbage collected while they are 

manipulated by execution engine code. The execution engine uses GCFrame instances to guarantee stable 

pointers while allocating objects or doing any other operation that could trigger a GC. 

As we will see in the next chapter, garbage collectors spend their life moving objects 

around in memory and updating references so that they correctly reflect the move. If the 

garbage collector doesn‘t know that a reference exists, or if the object is in flux, it can‘t 

update its tracking information correctly. This is why ―protection‖ is needed for variables 

that hold references that are unstable in some way. Without protection, garbage collection 

holes can result, which often causes serious problems. 

The use of GCFrame within the SSCLI code may not be entirely obvious; this operation is hidden under 

the GCPROTECT_BEGIN macro, which is defined as follows in frames.h: 

 

#define GCPROTECT_BEGIN(ObjRefStruct)           do {                    \ 

                FrameWithCookie<GCFrame> __gcframe((OBJECTREF*)&(ObjRefStruct),  \ 

                        sizeof(ObjRefStruct)/sizeof(OBJECTREF),         \ 

                        FALSE);                                         \ 

                /* work around unreachable code warning */              \ 

                if (true) { DEBUG_ASSURE_NO_RETURN_BEGIN 

Calls to GCPROTECT_BEGIN must be bracketed by a corresponding GCPROTECT_END, which pops the 

GCFrame back off of the stack. There are other related macros for special cases, such as protecting interior 

object references or arrays. All of these are used extensively in the source code for the execution engine, 

and all use instances of GCFrame to get their jobs done. The following method of the Thread class 
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(which can be found in sscli20/clr/src/vm/threads.cpp) uses a GCFrame to inform the garbage collector 

that its CultureObj variable is volatile: 

 

 void Thread::SetCultureId(LCID lcid, BOOL bUICulture) 

 { 

     OBJECTREF CultureObj = NULL; 

     GCPROTECT_BEGIN(CultureObj) 

     { 

         // Convert the LCID into a CultureInfo. 

         GetCultureInfoForLCID(lcid, &CultureObj); 

  

         // Set the newly created culture as the thread's culture. 

         SetCulture(&CultureObj, bUICulture); 

     } 

     GCPROTECT_END(); 

 } 

Like GCFrames, debugger frames also annotate data located on the stack. For example, an instance of 

DebuggerClassInitMarkFrame is the root for the chain of frames formed by executing the main 

entry point for an application. (An instance of this was laid down in the stack during the trace through clix 

to AppDomain::ExecuteMainMethod in Chapter 4.) 

Marking transitions 

Other frames correspond one-to-one with method or function calls. The entire family of frames derived 

from the TransitionFrame class, for example, is used to capture and store state about the stubs 

inserted into method bodies by the JIT compilation process. 

Recall from Chapter 5 that a component that has not yet been JIT-compiled has a method table that is 

entirely fleshed out with thunks. The worker code in these thunks knows how to use prefabricated sections 

of code, called stubs, which can be strung together to do pre- and post-processing for method calls. As part 

of its analysis, the compilation process recognizes situations that can be satisfied by the use of these 

prefabricated templates (such as unboxing) and produces customized snippets of code tailored to fit both its 

method signature and the semantic demands of the situation. 

What does this have to do with frames? Since multiple stubs are often mixed into a single method (to inject 

security checks or to create proxy code for remoting, for example), transition frames  are important 

indicators to the execution engine. Each individually crafted stub in the chain pushes a frame onto the 

thread‘s chain of frames when it is run, and these frames mark the stubs‘ passage. The frames also act as a 

place to store state to be restored on return, which will be used when unwinding exceptions, or that will be 

needed when the stack is walked for purposes such as debugging or remoting. 

Several other frames mark transitions for other purposes. As mentioned earlier, P/Invoke is a way of 

making calls from managed code into unmanaged code automatically, based on programmer-provided 

descriptions of unmanaged functions. (This facility was called NDirect originally, and you will see this 

word widely used in SSCLI comments and function names. Think of P/Invoke and NDirect as synonyms.) 

In order for this mechanism to successfully bridge the managed call to the unmanaged call, the calling 

convention used by the JIT compiler must be matched to the calling convention of the external function, 

and the managed arguments and return value (if present) must be converted into their unmanaged 

counterparts. This is done using marshaling frames. 

To illustrate what descriptions look like, Example 8-2 shows a P/Invoke declaration that matches an 

external __cdecl function named foo (found in mylibrary.dll) to the static C# method 

ExternalFooImplementation of the WrapperClass type. 

Example 8-2. P/Invoke uses a programmer-provided description to do marshaling 

 

public class WrapperClass { 

 

   [DllImport("mylibrary.dll", 
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                EntryPoint="foo", 

                CallingConvention=CallingConvention.Cdecl)] 

   public static extern int ExternalFooImplementation(int hWnd, String text, 

                     String caption, uint type); 

} 

The execution engine uses a special kind of MethodDesc, called a NDirectMethodDesc, to represent 

P/Invoke methods of types (in this case, the ExternalFooImplementation method). This 

NDirectMethodDesc locates the address of the external function foo (loading a shared library, if 

necessary), and creates a stub on the fly that will call this function, as well as reorder arguments on the 

stack and/or do data type conversion if necessary. The implementation also caches stubs once they are 

built, although you can examine this level of detail on your own. The marshaling process is an intricate and 

delicate piece of engineering that has been revisited many times to improve performance; for curious 

readers, the code is interesting, but not easy, to browse. 

Stackwalking 

A stackwalk will typically traverse both managed and unmanaged regions of the stack. The managed 

regions (somewhat perversely referred to as ―frameless frames‖) consist of a series of activation records for 

managed code. There is no reason to add the extra overhead of frames to these regions of the stack, since 

the execution engine knows all about the structure of JIT-produced code. The engine can walk these 

regions directly, decoding them as necessary by using thread context and code manager information. 

In unmanaged regions, a stackwalk must be performed by using Frame objects, which are embedded 

directly in the stack as navigational aids. To walk the frame chain, either the 

Thread::StackWalkFramesEx method call or the StackWalkFunctions macro is used within 

the execution engine. StackWalkFramesEx takes a callback function as a parameter and invokes this 

function on every frame in the chain that matches its filtering criteria. For each frame, the callback receives 

a pointer to a CrawlFrame, which is a simple wrapper that exposes the GetFrame function, which in 

turn returns the underlying Frame pointer if one exists. The wrapper also exposes GetFunction, which 

returns a MethodDesc if the frame represents a method call. StackWalkFunctions is a simpler 

variant of StackWalkFramesEx, which walks only ―true‖ function calls. (It is used, for example, to 

generate the stack trace shown whenever an Exception is created.) 

Figure 8-3 shows how a region of the stack that contains both managed and unmanaged activation records 

can be walked, combining Frame objects with execution engine knowledge of the activation record 

structure of JIT-compiled methods. 

 
 

Figure 8-12. Stackwalking uses a combination of Frames and the execution engine’s 

knowledge of the JIT calling convention 
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Walking the stack is an inherently thread-based activity. Since any given callback is very intimately tied to 

the state of the thread, stackwalking can be done only on the current thread or on a thread that is suspended. 

Not surprisingly, StackWalkFramesEx is a method of the Thread class, which can be found in 

clr/src/vm/stackwalk.cpp. Example 8-3 contains a shortened version of this method. 

Example 8-3. Stackwalking using StackWalkFramesEx (simplified from clr/src/vm/stackwalk.cpp) 

 

StackWalkAction Thread::StackWalkFramesEx( 

                    PREGDISPLAY pRD,        // virtual register set at crawl start 

                    PSTACKWALKFRAMESCALLBACK pCallback, 

                    VOID *pData, 

                    unsigned flags, 

                    Frame *pStartFrame 

                ) 

{ 

   

    CrawlFrame              cf; 

    StackWalkAction         retVal               = SWA_FAILED; 

  

    if (pStartFrame) 

    { 

        cf.pFrame = pStartFrame; 

    } 

    else 

    { 

        cf.pFrame = this->GetFrame(); 

    } 

    cf.isFirst = true; 

    cf.isInterrupted = false; 

    cf.hasFaulted = false; 

    cf.isIPadjusted = false; 

    cf.isNativeMarker = false; 

 

    cf.JitManagerInstance = pEEJM; 

    cf.codeMgrInstance = NULL; 

    cf.isFrameless = (pEEJM != NULL); 

    if (cf.isFrameless) 

    { 

        cf.codeMgrInstance = pEEJM->GetCodeManager(); 

    } 

    cf.pAppDomain = GetDomain(INDEBUG(flags & PROFILER_DO_STACK_SNAPSHOT)); 

 

The CrawlFrame class is used to hide the distinctions between managed frames and unmanaged frames, 

and is used as a cursor for this iterator function. The first task is to initialize this cursor; the iterator starts 

either at an intermediate frame passed in as a parameter or at the innermost active frame on the Thread. 

The CrawlFrame also tracks the current application domain, as well as exception and hardware status. 

(pRD is a pointer to a register display, which indirectly holds the captured values of selected 

microprocessor registers.) 

The CrawlFrame also contains references to both the JIT manager and the code manager, since these 

services will often be needed during a stackwalk. We will now examine the code that is used with 

―frameless‖ CrawlFrames, which are the parts of the managed stack that are directly accessed by the 

execution engine. Since the code being walked is JIT-compiled, this part of StackWalkFramesEx uses 

the JIT manager to extract information: 

 

for (;;) 

{  

 

 if (cf.isFrameless) 

 { 
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     //----------------------------------------------------------------- 

     // This must be a JITed/managed native method. There is no explicit 

     // frame. 

     //----------------------------------------------------------------- 

  

  

  

     pEEJM->JitCodeToMethodInfo((BYTE*)GetControlPC(cf.pRD),  

                                &(cf.pFunc),  

                                &(cf.methodToken), 

                                (DWORD*)&(cf.relOffset),  

                                fJitManagerScanFlags); 

  

     EECodeInfo codeInfo(cf.methodToken, pEEJM, cf.pFunc); 

     LPVOID methodInfo = pEEJM->GetGCInfo(cf.methodToken); 

  

     GSCookie * pGSCookie = (GSCookie*)cf.codeMgrInstance->GetGSCookieAddr( 

                                                             cf.pRD, 

                                                             methodInfo, 

                                                             &codeInfo, 

                                                             cf.relOffset, 

                                                             &cf.codeManState); 

     if (pGSCookie) 

         cf.SetCurGSCookie(pGSCookie); 

 

While the CrawlFrame is iterating through a segment of managed code, the execution engine uses the JIT 

manager to turn the address of the code into a method token and an offset. The token is then used to extract 

information about the JIT-compiled code and place it into the CrawlFrame, where it can be used by the 

callback function. After setting up the CrawlFrame, the callback function is called with the 

CrawlFrame as an argument, as well as its multipurpose data argument pData, through which frame-

specific data can be returned. When the callback returns, it has the option of terminating the stackwalk, 

which has the effect of unwinding the stack. 

We will skip rest of this long function for now. It continues with special-case handling and exception-

handling details that we will see later in this chapter. 

Stackwalking Example: Enforcing Code Access Security 

The SSCLI‘s Code Access Security (CAS) implementation is a good example of a control mechanism that 

uses stackwalking. As we saw in Chapter 4, it is aimed at providing a component-oriented style of security. 

It relies on the execution engine to assert and enforce policy in the face of evidence and permissions, based 

on component demands and behavior. 

No single component is responsible for identifying whether a particular permission check succeeds or fails. 

Instead, all of the components cooperate in such a way that each contributes what it knows (its own 

evidence and annotations) to the broader context, from which the all-encompassing security engine can 

draw conclusions. The execution stack provides a wonderful mechanism for both collecting this data and 

enforcing its use, since context is nested on the stack as components call each other, and the stack is what 

these components rely on for communication. By intervening in method call processing, the security engine 

can ensure that a component has permission to do the things that it is attempting to do. And a stackwalk, of 

course, is the mechanism that the security engine will use during this intervention to check permission 

grants against permissions that are being demanded. 

Permission demands propagate up the stack. When a method call demands a particular type of permission, 

the security engine must affirm that every component on the stack (prior to the point of the permission 

demand) has appropriate permissions. If any component does not, the permission demand fails and an 

exception is thrown to signify this failure. Each frame of the stack can modify the effective set of 

permissions by calling Assert, Deny, or PermitOnly before making calls, and there are also calls to 
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Revert changes made earlier. Taken together, this mechanism results in aggregate behavior that is 

constrained by the least privileged component that is participating in a given stack region. 

The initial set of permission grants for a stack comes from the application domain that is current when the 

stack is created, which allows programmers to control security at application domain granularity, which can 

be very useful. At every frame in the stack where execution shifts from one application domain to another 

(called a ContextTransition frame), the effective permissions change. 

A component‘s own permission grants, which were loaded as part of the component-loading process 

described in Chapter 4, are added to the aggregate context as needed. The activation record for every JIT-

compiled method call on the stack contains a spot for a security object, which is used to check permissions 

as the stack is walked. These security objects are created only when needed; if a method makes no changes 

and doesn‘t need the services of the security engine, it remains uninstantiated and appears in the stack as a 

null reference. 

As you might well imagine, a complete stackwalk can be an extremely time-consuming and expensive 

operation, particularly when you stop to consider the frequency in which security checks are called for in 

the CLI framework code. In today‘s security-conscious environment, programmers are encouraged to pay 

more attention to security. Since the CLI was designed from the ground up with modern security 

requirements in mind, many of its libraries and supporting code rely on security checks. As a practical 

result, security stackwalks can take a significant amount of time in a managed program, and programmers 

may find themselves caught in the familiar conundrum of sacrificing performance for the sake of secure 

operations. 

This situation gets even more interesting when you consider interthread dependencies. A thread spawned 

within the CLI for use by managed code must not only track its own security information, but must also be 

annotated with the security information of the thread that spawned it. The reason for this is fairly simple 

and can be illustrated with an example: consider an assembly that wishes to delete a file on the local hard 

drive. It is easy to check and enforce permissions for this assembly using a stackwalk, but what if the 

assembly had spun off a thread to perform the delete? The security manager must somehow associate the 

entire security context that is in effect when the new thread is created with this thread. Not only will a 

security check on the new thread need to walk its own stack, but it will also need to check the stack of the 

thread that spawned it. 

This is implemented in the SSCLI in a way that satisfies both security and performance requirements. 

When performing a security stackwalk, it is often the case that only a few of the total number of frames 

contain information that is actually relevant to the security context. In addition, although activation frames 

are the structure used to gather the relevant context, the evidence and permissions that make up this context 

can be cached since they take the form of immutable data. The SSCLI uses a data structure called a 

CompressedStackObject to cache the relevant security information obtained from a stackwalk 

whenever it needs to store this data for calls that cross thread boundaries or calls that are deferred as 

delegates. CompressedStackObject is defined in clr/src/vm/Object.h and is obtained via a static call 

to the GetCSFromContextTransitionFrame method on the Security class, defined in 

clr/src/vm/security.h. 

Threading and Concurrency 

Reading to this point in this chapter, one might think that threads serve as little more than a place to do 

frame bookkeeping. While this aspect of threads is certainly important, the primary role of threads has 

always been to organize programming tasks into understandable units of concurrency and synchronization. 

We will now turn our attention to this more familiar facet of threading, and examine how programmers can 

use managed threads to build concurrent applications. 

Threads are the primary abstraction for execution and concurrency in the CLI. Because the CLI includes 

support for concurrent execution, it must also allow independently executing parts of a program to 

communicate and to synchronize their state, as well as provide programmers with the ability to impact the 

scheduling of concurrent activity. 



Chapter 8: Regulating the Execution Engine  | 206 

The execution engine provides mechanisms for all of these: 

 Programmers can communicate between component references that have been marshaled between 

threads using method calls. 

 Programmers can synchronize access to instance and static methods, instance fields, and arbitrary 

regions of their components, either automatically or manually. 

 Programmers can control thread scheduling by manipulating instances of the Thread component or 

by using the CLI threadpool, which is an efficient runtime service that simplifies worker thread 

creation and scheduling. 

We will visit each of these mechanisms in turn; but first, we will examine how managed threads are 

implemented. 

Managing Threads 

Managed code offers several distinct ways for programmers to use threads, which we will cover in detail in 

the next few sections. All of these techniques use the Thread type to access the execution state of their 

managed threads. The Thread type provides a number of properties and methods, and is built as a hybrid 

component; it is exposed and used as a managed component, but much of its implementation is actually 

written in C++ and is internal to the execution engine. This is done by marking methods that are 

implemented natively with the MethodImplOptions.InternalCall method attribute and by using 

the FCall calling convention described in Chapter 5. The C++ class used to represent managed instances 

can be found in sscli20/clr/src/vm/comsynchronizable.cpp. 

We‘ve already seen an incoming PAL thread being ―taken over‖ by the execution engine in 

SetupThread, but threads can also be created directly from managed code. In this case, programmers 

create a Thread and pass it a ThreadStart delegate via the constructor. Execution can be started at any 

point after this by calling the Start method of the Thread. 

Here is what the managed thread constructor, found in thread.cs in the sscli20/clr/src/bcl/system/threading 

directory, looks like: 

 

    public Thread(ThreadStart start) { 

     if (start == null) { 

         throw new ArgumentNullException("start"); 

     } 

     SetStartHelper((Delegate)start,0);  //0 will setup Thread with default 

stackSize 

 }     

Recall that ThreadStart is a delegate type (also declared in thread.cs) used to indicate the method that 

the new Thread should execute. This delegate is passed to SetStartHelper, which calls the internal 

method SetStart, whose C# representation is: 

 

    [MethodImplAttribute(MethodImplOptions.InternalCall)] 

    private extern void SetStart(ThreadStart start, int maxStackSize); 

The InternalCall attribute causes any calls on this method to become calls on the corresponding 

native FCall method in comsynchronizable.cpp : 

 

void ThreadNative::SetStart(ThreadBaseObject* pThisUNSAFE, Object* pDelegateUNSAFE, 

                            INT32 iRequestedStackSize) 

{ 

  THREADBASEREF   pThis       = (THREADBASEREF) pThisUNSAFE; 

  OBJECTREF       pDelegate   = (OBJECTREF    ) pDelegateUNSAFE; 

 

  HELPER_METHOD_FRAME_BEGIN_2(pThis, pDelegate); 
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  if (pThis->m_InternalThread == NULL) { 

    // If we don't have an internal Thread object associated with this 

    // exposed object, now is our first opportunity to create one. 

    Thread *unstarted = SetupUnstartedThread(); 

 

    pThis->SetInternal(unstarted); 

    unstarted->SetExposedObject(pThis); 

  } 

  // Save the delegate used as starter 

  pThis->SetDelegate(pDelegate); 

 

  HELPER_METHOD_FRAME_END(); 

} 

Note the use of a helper frame in this function. The HELPER_METHOD_FRAME_BEGIN_2 wraps around 

a HelperMethodFrame, which in turn registers two object references (pThis and pDelegate, in the 

previous example) with the garbage collector. Assuming that the thread is new and has no internal thread, 

the next call is to SetupUnstartedThread, which can be found in threads.cpp: 

 

    Thread* SetupUnstartedThread() 

    { 

      Thread* pThread = new Thread(); 

 

      if (pThread) { 

        FastInterlockOr((ULONG *) &pThread->m_State, 

                        (Thread::TS_Unstarted | Thread::TS_WeOwn)); 

 

        ThreadStore::AddThread(pThread); 

      } 

      return pThread; 

    } 

You can see that care needs to be taken with synchronized access to variables. Also, this is the point at 

which an internal thread is created and placed into the ThreadStore. The managed thread now has one 

CLI object instance and two native instances behind it (the CLI Thread instance, the execution engine‘s 

C++ Thread, and the entity behind the PAL HANDLE) and is ready to roll. 

Thread states 

Once a thread is running, its execution can be started and stopped in several ways. Programmers can use 

the Sleep method directly to yield control momentarily (by yielding its current timeslice) or pause for a 

minimum amount of time (after which it will be rescheduled). Programmers can also call Suspend, which 

has the effect of blocking execution of the target thread until Resume is called, or SpinWait, which kills 

time without yielding control. Finally, a programmer can call Abort, which will cause a 

ThreadAbortException to be thrown. (This exception may cause the underlying PAL thread to be 

killed, associated resources to be released, and the Thread instance to be dissociated from the execution 

engine. The Thread may also survive this exception, however, if it is caught, or if the thread is a worker 

in a ThreadPool.) 

A thread moves through a definitive lifecycle: it is born, it can be paused and resumed, and it will 

eventually die, either of natural causes (it returns from the ThreadStart delegate passed to it) or by 

outright murder (Abort). Managed threads have a read-only property named ThreadState that reflects 

their current states; for example, newly created threads are initially in the Unstarted state and remain in 

this state until a transition is initiated by a call to Thread.Start. Likewise, external threads that wander 

into the execution engine are already in the Running state. 

When viewed from the perspective of a Thread instance, state transitions seem orderly and 

straightforward. Once running, there are a number of actions that can cause the thread to change states, and 

these trigger conditions are uncomplicated. Viewed from the execution engine, however, a thread‘s 

lifecycle is anything but simple. Since a thread‘s execution state transitions must be coordinated for 
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concurrent use by both unmanaged and managed code, these state transitions must be carefully navigated to 

preserve the integrity of the execution engine. Because of the complexity that this incurs, the internal 

representation of state uses a bit mask, shown in Example 8-5, rather than an enumerated value to maintain 

current state. As you can infer from the structure of this masked value, the transitions visible to managed 

code are considerably simplified. 

An example helps show how something that looks simple in managed code can be quite complex beneath 

the surface. It also helps show how the three elements of execution engine frames, managed threads, and 

exceptions are tied together. In the CLI, the Thread type supports a number of methods that can be used 

to control thread lifetimes and scheduling. One of these methods is Abort, which causes the special 

ThreadAbortException to be raised on any thread on which it is called. This exception will kill the 

thread, except when the thread has an exception handler in place to catch it, in which case ResetAbort 

can be called from within this handler to keep the thread alive, or if the ThreadAbortException is 

propagated beyond the last managed handler on the stack and into unmanaged code, in which case an 

implicit ResetAbort occurs. Handling a ThreadAbortException is demonstrated in the simple 

program shown in Example 8-4. 

Example 8-4. Threads can be scheduled and manipulated from managed code 

 

using System; 

using System.Threading; 

 

public class WorkerClass  

{ 

  public static void StartMethod() 

  { 

backToStart: 

    try  

    { 

      for(int i=0; i<10; i++) 

      { 

        Console.WriteLine("Worker state: {0}.", Thread.CurrentThread.ThreadState); 

        Thread.Sleep(100); 

      } 

      Console.WriteLine("OK, worker finished."); 

      return; 

    }  

    catch(ThreadAbortException e)  

    { 

      Console.WriteLine("Worker caught ThreadAbortException."); 

      Console.WriteLine(" Worker state: {0}.", Thread.CurrentThread.ThreadState); 

      Console.WriteLine(" Exception message: {0}", e.Message); 

      Thread.Sleep(1000); 

      Thread.ResetAbort(); 

    } 

    Console.WriteLine("Worker not dead yet."); 

    Console.WriteLine("Worker state after reset: {0}.", 

                        Thread.CurrentThread.ThreadState); 

    // how's this? seen a goto lately? 

    goto backToStart; 

  } 

} 

 

class ThreadAbortExample 

{ 

  public static void Main() 

  { 

    ThreadStart td = new ThreadStart(WorkerClass.StartMethod); 

    Thread worker = new Thread(td); 

    worker.Start(); 

    Thread.Sleep(100); 



Chapter 8: Regulating the Execution Engine  | 209 

    Console.WriteLine("Main thread aborting worker."); 

    worker.Abort(); 

    worker.Join(); 

    Console.WriteLine("Main done."); 

  } 

} 

When the program in Example 8-4 is run, the main thread attempts to kill its worker, but the worker is both 

tireless and prepared, having put an exception handler in place that calls ResetAbort. The Main method 

of ThreadAbortExample creates and starts a new worker Thread. This Thread goes into a simple 

loop, writing out its thread state during each iteration and then sleeping. Meanwhile, the Main method 

continues by sleeping for a brief period and then calling Abort on the worker, followed directly by Join. 

Since the worker has an exception handler in place for the ThreadAbortException caused by the call 

to Abort, and since it is running at a high enough permission level to reset rather than die, the worker calls 

ResetAbort and then runs to completion. 

At the point at which Main calls Abort, the worker thread is really in more than one internal state; it is 

likely to be blocked on a call to Sleep when the other thread calls Abort, and so from the perspective of 

its two threads, it is in both the WaitSleepJoin and the AbortRequested states at the same time. 

When the thread receives the ThreadAbortException, this dichotomy will be resolved, but until this 

point, the thread‘s state must be carefully maintained. As we will see, the maintenance involved is a 

nontrivial task that falls to the execution engine. One of the primary design goals for the CLI is to hide 

complexity, such as these transitional states from higher-level managed code, when possible. Example 8-5 

shows the flags used to coordinate transitions. 

Example 8-5. Combining flags to represent thread execution state 

 

enum ThreadState 

{ 

 TS_Unknown                = 0x00000000,    // threads are initialized this way 

  

 TS_AbortRequested         = 0x00000001,    // Abort the thread 

 TS_GCSuspendPending       = 0x00000002,    // waiting to get to safe spot for GC 

 TS_UserSuspendPending     = 0x00000004,    // user suspension at next 

opportunity 

 TS_DebugSuspendPending    = 0x00000008,    // Is the debugger suspending 

threads? 

 TS_GCOnTransitions        = 0x00000010,    // Force a GC on stub transitions 

(GCStress only) 

  

 TS_LegalToJoin            = 0x00000020,    // Is it now legal to attempt a 

Join() 

  

 TS_YieldRequested         = 0x00000040,    // The task should yield 

  

 TS_BlockGCForSO           = 0x00000100,    // If a thread does not have enough 

stack, WaitUntilGCComplete may fail. 

                                            // Either GC suspension will wait 

until the thread has cleared this bit, 

                                            // Or the current thread is going to 

spin if GC has suspended all threads. 

 TS_Background             = 0x00000200,    // Thread is a background thread 

 TS_Unstarted              = 0x00000400,    // Thread has never been started 

 TS_Dead                   = 0x00000800,    // Thread is dead 

  

 TS_WeOwn                  = 0x00001000,    // Exposed object initiated this 

thread 

  

 // Some bits that only have meaning for reporting the state to clients. 

 TS_ReportDead             = 0x00010000,    // in WaitForOtherThreads() 
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 TS_TaskReset              = 0x00040000,    // The task is reset 

  

 TS_SyncSuspended          = 0x00080000,    // Suspended via WaitSuspendEvent 

 TS_DebugWillSync          = 0x00100000,    // Debugger will wait for this thread 

to sync 

  

 TS_StackCrawlNeeded       = 0x00200000,    // A stackcrawl is needed on this 

thread, such as for thread abort 

                                            // See comment for 

s_pWaitForStackCrawlEvent for reason. 

  

 TS_SuspendUnstarted       = 0x00400000,    // latch a user suspension on an 

unstarted thread 

  

 TS_ThreadPoolThread       = 0x00800000,    // is this a threadpool thread? 

 TS_TPWorkerThread         = 0x01000000,    // is this a threadpool worker 

thread? 

  

 TS_Interruptible          = 0x02000000,    // sitting in a Sleep(), Wait(), 

Join() 

 TS_Interrupted            = 0x04000000,    // was awakened by an interrupt APC. 

!!! This can be moved to TSNC 

  

 TS_CompletionPortThread   = 0x08000000,    // Completion port thread 

  

 TS_AbortInitiated         = 0x10000000,    // set when abort is begun 

  

 TS_Finalized              = 0x20000000,    // The associated managed Thread 

object has been finalized. 

                                            // We can clean up the unmanaged part 

now. 

  

 TS_FailStarted            = 0x40000000,    // The thread fails during startup. 

 TS_Detached               = 0x80000000,    // Thread was detached by DllMain 

  

  

 // We require (and assert) that the following bits are less than 0x100. 

 TS_CatchAtSafePoint = (TS_UserSuspendPending | TS_AbortRequested | 

                        TS_GCSuspendPending | TS_DebugSuspendPending | 

TS_GCOnTransitions | TS_YieldRequested), 

};  

In our example, Sleep causes the thread to yield immediately, using the threading facilities of the PAL. 

This puts it into the TS_Interruptible state. (Suspend has an interesting difference: the execution 

engine will mark the thread as TS_UserSuspendPending, and bring the thread to a ―safe place‖ before 

halting its execution and placing it into a blocked state by changing to TS_SyncSuspended.) When 

Abort is called by the main thread (assuming that the worker is sleeping), an exception is thrown. Because 

aborting a thread is an exceptional activity that should be undertaken only when normal scheduling 

solutions are unusable, design tradeoffs have been applied. The codepath is longer and less direct, since it is 

seldom exercised, and the logic involves careful audit and cleanup of internal structures, since it is meant to 

work in unanticipated and tenuous situations. 

The execution engine first requires that any caller that wishes to call the Abort method have appropriate 

security permission; it does this by placing SecurityPermissionAttribute on the method 

declaration for Abort. This can be seen in the declaration in clr/src/bcl/system/threading/thread.cs, as 

shown in Example 8-6. 

Example 8-6. The Abort method is protected using declarative security 

 

[SecurityPermissionAttribute(SecurityAction.Demand, ControlThread=true)] 

public void Abort() { AbortInternal(); } 
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This declarative demand for a permission check ensures that Abort will be called only if the current 

security context has the ControlThread permission. The JIT compiler will place a call to the security 

engine into the code that it produces to check this demand at runtime. 

AbortInternal uses an FCall to call into the native implementation, ThreadNative::Abort. This 

function is shown in Example 8-7. 

Example 8-7. The Abort method is actually implemented as an FCall (defined in 

clr/src/vm/comsynchronizable.cpp) 

 

FCIMPL1(void, ThreadNative::Abort, ThreadBaseObject* pThis) 

{ 

  THROWSCOMPLUSEXCEPTION(); 

  if (pThis == NULL) 

    FCThrowVoid(kNullReferenceException); 

 

  THREADBASEREF thisRef(pThis); 

  HELPER_METHOD_FRAME_BEGIN_1(thisRef); 

  Thread *thread = thisRef->GetInternal(); 

  if (thread == NULL) 

    COMPlusThrow(kThreadStateException, IDS_EE_THREAD_CANNOT_GET); 

  thread->UserAbort(thisRef); 

 

  HELPER_METHOD_FRAME_END_POLL(); 

} 

FCIMPLEND 

For the first time in this book, we‘ve left all of the ugly SSCLI-specific macros in place in this example. 

We now have enough information about execution engine internals to talk about what they do, and you 

should be aware of what the code in the distribution actually looks like. These macros are commonplace in 

the SSCLI code, and you should expect to encounter them routinely. They track various kinds of state on 

behalf of the execution engine. The first shown here, FCIMPL1, is one of a series of macros used to declare 

FCalls. It declares that ThreadNative::Abort is an FCall that returns a void and has a single 

argument, which is a ThreadBaseObject*. After this, THROWSCOMPLUSEXCEPTION is a declaration 

that indicates that the function may throw a managed exception (and indeed, from what we know about 

Abort, its main job in this case is to throw an exception, although usually from a different thread). 

THREADBASEREF is simply a typedef for a ThreadBaseObject* and will be used to obtain a pointer 

to the internal thread. HELPER_METHOD_FRAME_BEGIN_1 causes a helper frame to be created for the 

FCall. (The matching macro at the end of the function causes it to be popped before the function returns. 

Remember that a helper frame marks FCalls so that they will be visible during a managed stackwalk.) 

Finally, the real work begins with the call to UserAbort. As we break it down in Example 8-8, notice 

that the entirety of this large method is dedicated to coordinating a graceful state machine transition. 

Example 8-8. The beginning of the internal method that implements Thread::Abort (defined in 

clr/src/vm/threads.cpp) 

 

class CheckForAbort 

{ 

private: 

    Thread *m_pThread; 

    BOOL m_fHoldingThreadStoreLock; 

    BOOL m_NeedRelease; 

public: 

    CheckForAbort(Thread *pThread, BOOL fHoldingThreadStoreLock) 

    : m_pThread(pThread), 

      m_fHoldingThreadStoreLock(fHoldingThreadStoreLock), 

      m_NeedRelease(TRUE) 

    { 

        if (!fHoldingThreadStoreLock) 

        { 
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            ThreadStore::LockThreadStore(GCHeap::SUSPEND_OTHER); 

        } 

        ThreadStore::ResetStackCrawlEvent(); 

 

        // The thread being aborted may clear the TS_AbortRequested bit and the 

matching increment 

        // of g_TrapReturningThreads behind our back. Increment 

g_TrapReturningThreads here to 

        // ensure that we stop for the stack crawl even if the TS_AbortRequested bit 

is cleared. 

        ThreadStore::TrapReturningThreads(TRUE); 

    } 

 

    HRESULT 

    Thread::UserAbort(ThreadAbortRequester requester, 

                      EEPolicy::ThreadAbortTypes abortType, 

                      DWORD timeout, 

                      UserAbort_Client client) 

    { 

     CheckForAbort checkForAbort(this, fHoldingThreadStoreLock); 

 

        // ... 

 

// continues after Example 8-9 

Because the call to Thread::Abort could come as other threads are asking the thread to change its state, 

while overall thread state is being manipulated or during exception processing, reentrancy protection is 

necessary. However it is not sufficient to take a lock and exclude all other threads, because those threads 

may have code running in an unmanaged section of the stack that is acting as part of the execution engine. 

The important work of coordinating, for example, cannot be arbitrarily stopped. Because of this, 

unmanaged code needs to run unimpeded, because it often holds locks or resources that are needed to 

continue execution. This makes synchronization harder. 

The call to ThreadStore::TrapReturningThreads, which requests that other managed-thread 

activity be trapped during the processing of this method, shows a typical mechanism of the sort used by the 

execution engine to maintain control in lieu of a simple lock. The global variable 

g_TrapReturningThreads is set within this call to detect reentries into managed code by threads 

currently executing unmanaged code. As threads reenter, they can be safely suspended using the same 

mechanism that the garbage collector uses to suspend all managed threads. As we will see in Chapter 9, the 

garbage collector uses code emitted by the JIT compiler to regularly check whether it needs to run. This 

polling activity is used not only for GC activation, but also to rendezvous with thread state changes, such as 

the Abort method through which we are browsing. In fact, a quick glance at CommonTripThread, 

which is the function called during polling, reveals a call to HandleThreadAbort. Its implementation is 

shown in Example 8-9. 

Example 8-9. HandleThreadAbort is actually raises the ThreadAbortException 

 

void Thread::HandleThreadAbort (BOOL fForce) 

{ 

    if (IsAbortRequested() && GetAbortEndTime() < CLRGetTickCount64()) 

    { 

        HandleThreadAbortTimeout(); 

    } 

 

    if (fForce || ReadyForAbort()) 

    { 

        ResetThreadState ((ThreadState)(TS_Interrupted | TS_Interruptible)); 

        // We are going to abort.  Abort satisfies Thread.Interrupt requirement. 

        FastInterlockExchange (&m_UserInterrupt, 0); 

 

        // generate either a ThreadAbort exception 
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        if (!PreemptiveGCDisabled()) 

        { 

            DisablePreemptiveGC(); 

        } 

 

        if (!IsAbortInitiated() || 

            (IsRudeAbort() && !IsRudeAbortInitiated())) 

        { 

            PreWorkForThreadAbort(); 

        } 

 

        PreparingAbortHolder paHolder; 

 

        OBJECTREF exceptObj; 

 

        if (IsRudeAbort()) 

        { 

            exceptObj = CLRException::GetPreallocatedRudeThreadAbortException(); 

        } 

        else 

        { 

            EEException eeExcept(kThreadAbortException); 

            exceptObj = CLRException::GetThrowableFromException(&eeExcept); 

        } 

 

        RaiseTheExceptionInternalOnly(exceptObj, FALSE); 

    } 

} 

The ThreadAbortException that is thrown at the end of the HandleThreadAbort function does 

the dirty work of polishing off the thread (unless it is caught). As we will see later in this chapter, this is a 

special type of exception that is used to kill threads. In order for it to be raised during a poll, no exception 

can be in progress, and the thread state has to be set to TS_AbortRequested. Let‘s return to tracing 

through the UserAbort method to understand how TS_AbortRequested is set, as shown in Example 

8-10. 

Example 8-10. Initiating the abort sequence 

 

    MarkThreadForAbort(requester, abortType); 

 

    Thread *pCurThread = GetThread(); 

 

    // If aboring self 

    if (this == pCurThread) 

    { 

        SetAbortInitiated(); 

 

        if (CLRHosted() && GetAbortEndTime() != MAXULONGLONG) 

        { 

            AppDomain::EnableADUnloadWorkerForThreadAbort(); 

        } 

 

        GCX_COOP(); 

 

        OBJECTREF exceptObj; 

 

        if (IsRudeAbort()) 

        { 

            exceptObj = CLRException::GetPreallocatedRudeThreadAbortException(); 

        } 

        else 

        { 
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            EEException eeExcept(kThreadAbortException); 

            exceptObj = CLRException::GetThrowableFromException(&eeExcept); 

        } 

 

        RaiseTheExceptionInternalOnly(exceptObj, FALSE); 

    } 

The call to MarkThreadForAbort both sets the thread state to TS_AbortRequested and checks to 

see whether it has already been set. If it has, there is nothing more to do but wait for a poll to happen and 

the exception to be thrown. If it has not been set, but the calling thread is simply trying to abort itself, then 

the simplest thing to do is throw ThreadAbortException directly. 

This fast-track approach works because the exception is being thrown on the thread‘s own stack. There is 

no need to wait for a poll; the suicide can be accomplished cleanly and efficiently. If the abort is being 

initiated from a different thread, however, things get more complex. First, the state is set to 

TS_StopRequested, which will cause the target thread to be stopped at the first opportunity; the CLI 

specifies that a thread being aborted will be in a Stopped state and can be resurrected from within an 

exception handler. After this housekeeping is done, the loop is begun, as shown in Example 8-11. 

Example 8-11. Synchronization converges within a loop 

 

  for (;;) { 

 

        // Lock the thread store 

        LOG((LF_SYNC, INFO3, "UserAbort obtain lock\n")); 

     // ... 

        CheckForAbort checkForAbort(this, fHoldingThreadStoreLock); 

 

        // We own TS lock.  The state of the Thread can not be changed. 

        if (m_State & TS_Unstarted) 

        { 

            // This thread is not yet started. 

            return S_OK; 

        } 

 

        if (GetThreadHandle() == INVALID_HANDLE_VALUE && 

            (m_State & TS_Unstarted) == 0) 

        { 

            // The thread is going to die or is already dead. 

            UnmarkThreadForAbort(Thread::TAR_ALL); 

            return S_OK; 

        } 

 

        // What if someone else has this thread suspended already?   It'll depend 

where the 

        // thread got suspended. 

        // 

        // User Suspend: 

        //     We'll just set the abort bit and hope for the best on the resume. 

        // 

        // GC Suspend: 

        //    If it's suspended in jitted code, we'll hijack the IP. 

        //    If it's suspended but not in jitted code, we'll get suspended for GC, 

the GC 

        //    will complete, and then we'll abort the target thread. 

        // 

 

        // It's possible that the thread has completed the abort already. 

        // 

        if (!(m_State & TS_AbortRequested)) 

        { 

            return S_OK; 
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        } 

 

        // If a thread is Dead or Detached, abort is a NOP. 

        // 

        if (m_State & (TS_Dead | TS_Detached | TS_TaskReset)) 

        { 

            UnmarkThreadForAbort(Thread::TAR_ALL); 

            return S_OK; 

        }  

  // Still in for loop at this point 

The first thing to be done is to take the lock on the ThreadStore so that only one coordination operation 

will occur at any time, and races will be avoided. This is followed by a logging call for thread debugging. 

LOG is a common macro within SSCLI code; it results in a log record being produced, but only when the 

appropriate build switches and runtime flags have been set by the programmer. In a production 

environment, LOG is equivalent to a no-op, and does not impact performance. 

Each of the conditional statements within this long loop tests for various combinations of state. Because 

threads are a constantly-moving target, there is always the possibility that the target thread is in a condition 

that is unsafe to abort. (Remember, code in other threads might be waiting for or holding locks, or 

consuming resources related to the thread being aborted in other ways. The execution engine must 

anticipate these dependencies.) This loop is executed until a ―safe place‖ is found to kill the target thread. 

The first thing that needs to be done before proceeding is to obtain the handle to the underlying PAL thread 

for the target. If this handle is set to INVALID_HANDLE_VALUE, which signals a problem, then either the 

managed thread does not yet have a PAL thread associated with it or it has died. In either case, there is 

nothing else to do, and the loop can be skipped. 

Next, the underlying thread is suspended, as shown in Example 8-12. 

Example 8-12. Suspend the underlying thread 

 

    // Win32 suspend the thread, so it isn't moving under us. 

 SuspendThreadResult str = SuspendThread(); 

 switch (str) 

 { 

 case STR_Success: 

     break; 

  

 case STR_Failure: 

 case STR_UnstartedOrDead: 

 case STR_NoStressLog: 

     checkForAbort.Release(); 

     __SwitchToThread(0); 

     continue; 

  

 case STR_SwitchedOut: 

     // If the thread is in preemptive gc mode, we can erect a barrier to block 

the 

     // thread to return to cooperative mode.  Then we can do stack crawl and 

make decision. 

     if (!m_fPreemptiveGCDisabled) 

     { 

         checkForAbort.NeedStackCrawl(); 

         if (GetThreadHandle() != SWITCHOUT_HANDLE_VALUE || 

m_fPreemptiveGCDisabled) 

         { 

             checkForAbort.Release(); 

             __SwitchToThread(0); 

             continue; 

         } 

         else 
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         { 

             goto LStackCrawl; 

         } 

     } 

     else 

     { 

         goto LPrepareRetry; 

     } 

  

 default: 

     UNREACHABLE(); 

 }  

 

 // Check whether some stub noticed the AbortRequested bit in-between our test 

above 

 // and us suspending the thread. 

 if ((m_State & TS_AbortInitiated) && !IsRudeAbort()) 

 { 

     ResumeThread(); 

     break; 

 } 

 

 if (!(m_State & (  TS_Dead 

                       | TS_Detached 

                       | TS_Unstarted))); 

 { 

     ResumeThread(); 

     return S_OK; 

 } 

 

  // Still in for loop at this point 

If the thread has an AbortInitiated or a Dead or Detached state, the thread can be resumed, to run 

until its suicide. Likewise, even a thread that is unstarted may be aborted; suicide in this case will be the 

thread‘s first and only act. When Start is called, the pending abort will happen. 

As shown in Example 8-13, the next conditional is more interesting, because a thread that has been 

suspended by managed code cannot be aborted without making sure that it drops its locks. 

Example 8-13. Drop a thread’s locks 

        if (m_State & TS_SyncSuspended) 

        { 

            ResumeThread(); 

            checkForAbort.Release(); 

 

            // If it's stopped by the debugger, we don't want to throw an exception. 

            // Debugger suspension is to have no effect of the runtime behaviour. 

            // 

            if (m_State & TS_DebugSuspendPending) 

            { 

                return S_OK; 

            } 

 

            COMPlusThrow(kThreadStateException, IDS_EE_THREAD_ABORT_WHILE_SUSPEND); 

        } 

 

  // Still in for loop at this point 

 

 

// for clarity, CheckForAbort.Release looksl like this: 

// 

class CheckForAbort 

{ 
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    void Release() 

    { 

        if (m_NeedRelease) 

        { 

            m_NeedRelease = FALSE; 

            ThreadStore::TrapReturningThreads(FALSE); 

            ThreadStore::SetStackCrawlEvent(); 

            m_pThread->ResetThreadState(TS_StackCrawlNeeded); 

            if (!m_fHoldingThreadStoreLock) 

            { 

                ThreadStore::UnlockThreadStore(); 

            } 

        } 

    }  

} 

The presence of TS_SyncSuspended means that the thread is waiting for a synchronized resource, and 

this is why the ThreadStore must be unlocked before the special exception can be thrown. 

The SSCLI doesn‘t cover all possible state changes. Note in this example that suspended 

threads cannot be cleanly aborted (which is a well-known limitation of the current 

implementation). This is likely to be fixed in the future. 

After this come a series of cases, as shown in Example 8-14. 

Example 8-14. Look for special case states 

 

    if ((m_pFrame == FRAME_TOP) 

     && (GetFirstCOMPlusSEHRecord(this) == EXCEPTION_CHAIN_END) 

    ) 

 { 

     ResumeThread(); 

     return S_OK; 

 } 

  

 if (!m_fPreemptiveGCDisabled) 

 { 

     if ((m_pFrame != FRAME_TOP) && m_pFrame->IsTransitionToNativeFrame() 

     { 

         fOutOfRuntime = TRUE; 

     } 

 } 

  

 checkForAbort.NeedStackCrawl(); 

 if (!m_fPreemptiveGCDisabled) 

 { 

     fNeedStackCrawl = TRUE; 

 } 

  

 // The thread is not suspended now. 

 ResumeThread(); 

  

 // !!! Check for Exception in flight should happen before induced thread abort. 

 // !!! ReadyForAbort skips catch and filter clause. 

  

 // If an exception is currently being thrown, one of two things will happen.  

Either, we'll 

 // catch, and notice the abort request in our end-catch, or we'll not catch [in 

which case 

 // we're leaving managed code anyway.  The top-most handler is responsible for 

resetting 
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 // the bit. 

 // 

 if (HasException() && 

     // For rude abort, we will initiated abort 

     !IsRudeAbort()) 

 { 

     break; 

 } 

  

 // If the thread is in sleep, wait, or join interrupt it 

 // However, we do NOT want to interrupt if the thread is already processing an 

exception 

 if (m_State & TS_Interruptible) 

 { 

     UserInterrupt(TI_Abort);        // if the user wakes up because of this, it 

will read the 

                                     // abort requested bit and initiate the 

abort 

 } 

  // Still in for loop at this point 

The first conditional checks to see whether someone is trying to abort a thread that has no managed code in 

it. This is checked by looking for a special exception frame that is used only around managed code. If it is 

not present, all of the state flags are reset, and the thread is resumed. This is followed by a check to see 

whether an exception is in progress. If it is, the thread is resumed so that the exception handlers can be 

invoked. If the thread is blocked in a wait operation, it is interrupted so that next time around the loop, the 

right thing can happen. 

If unmanaged code is running (which is checked by examining the garbage collector mode), and there is an 

execution engine frame in place that signals that a stub exists to capture reentry, the thread is resumed. 

Once the stub code is run, the polling function that we saw in Example 8-9 will cause exception handling to 

commence. 

Finally, the end of the loop is reached. At this point, the PAL thread is resumed and the ThreadStore is 

unlocked to allow access before another iteration occurs, as shown in Example 8-15. 

Example 8-15. How to finish loop iteration 

 

    checkForAbort.Release(); 

 

 

  } // End of the for(;;) loop 

   

} 

If you haven‘t handled the call by this point, it means that the thread is in a position where you can‘t really 

do anything to it. It is most likely running within execution engine code (for example, within an FCall or a 

stub), and you just need to loop around until the thread comes back to a point where you can deal with it. 

Of course, in order for a polling strategy like this to work, the execution engine‘s internal code must be 

crafted to avoid monopolizing the thread‘s timeslice while running. 

As promised, this is a pretty hefty chunk of code. Similar code exists for suspending and resuming threads; 

it is a very typical example of coordination-type routines. They are complex because they need to handle 

every possible state transition and permit code to continue its execution while carefully avoiding race 

conditions. 

Scheduling Execution Using the Threadpool 

While it is possible to use the methods of either the managed or unmanaged thread object to manually 

create, manipulate, and destroy threads, the CLI also includes a pooling mechanism that not only makes 

concurrent operations much simpler, but in many cases also improves efficiency. Besides being available 
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for general-purpose programming use, this thread pool is used internally by the SSCLI in the following 

implementations: 

 Timer callbacks 

 Remoting channels 

 Lease management 

 Security policy 

 The Context type 

Threads that spend a great deal of time waiting for an event to occur or for periodic polls in which they 

update state are candidates for thread pool use. Pooling enables applications to share worker threads that 

are managed by the execution engine. A single thread monitors the status of all wait operations queued to 

the thread pool, and when conditions change, dispatches a worker thread from the pool (using the correct 

application domain) to execute a stored callback function. 

There is a single managed thread pool per process, and the Base Class Library (BCL) 

System.Threading.ThreadPool class is used to mediate access to it. Using the thread pool, you 

can post work items using either QueueUserWorkItem from managed code or 

CorQueueUserWorkItem from unmanaged code in the execution engine. These functions use delegates 

in the managed case (and callbacks in the unmanaged case) that are called by a thread selected and 

scheduled by the thread pool. The snippet in Example 8-16 demonstrates how to queue up a thread pool 

task from within managed code. 

Example 8-16. Using the ThreadPool 

 

using System; 

using System.Threading; 

 

class ThreadPoolExample { 

  static void Main(string[] args) 

  { 

    ThreadPool.QueueUserWorkItem(new WaitCallback(Foo)); 

    Thread.Sleep(5 * 1000); // sleep for five seconds 

  } 

 

  static void Foo(object state) 

  { 

    Console.WriteLine("Inside Foo"); 

  } 

} 

As would be expected, this program writes "Inside Foo" to the console while the thread spun out from 

Main blocks for five seconds. 

The thread pool itself is created on the first call to QueueUserWorkItem, when a timer or other client 

queues a callback function. The number of threads in the thread pool is based on a heuristic that takes into 

account the number of CPUs, how many items are in the work item queue, and how many idle threads are 

in the thread pool, although the number of threads that can ultimately be created is limited only by available 

memory. 

Most of the CLI‘s runtime services involve heuristics. You can study the heuristics that 

thread pool logic uses to decide when to create a new thread and when to reduce the 

number of threads that it contains by looking in clr/src/vm/win32threadpool.h and 

clr/src/vm/win32threadpool.cpp. Certainly there is room for improvement; it is not too 

hard to imagine some enterprising Computer Science student forming a thesis around 

ways to adaptively decide how many threads should be alive here, for example. By doing 

a little code base archeology, you can see that other approaches have already been tried in 
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the past. The execution engine provides many opportunities to tune heuristics or invent 

new ones. 

When the QueueUserWorkItem managed call is called, it eventually routes its way into 

ThreadpoolMgr::QueueUserWorkItem, as shown in Example 8-17. 

Example 8-17. QueueUserWorkItem dynamically creates worker threads as needed (defined in 

clr/src/vm/win32threadpool.cpp) 

 

BOOL ThreadpoolMgr::QueueUserWorkItem(LPTHREAD_START_ROUTINE Function, 

                                      PVOID Context, 

                                      DWORD Flags) 

{ 

    EnsureInitialized(); 

 

    if (Flags == CALL_OR_QUEUE) 

    { 

        // we've been asked to call this directly if the thread pressure is not too 

high 

 

        int MinimumAvailableCPThreads = (NumberOfProcessors < 3) ? 3 : 

NumberOfProcessors; 

        // It would be nice to assert that this is a completion port thread, but 

        // there is no easy way to do that. 

        if ((MaxLimitTotalCPThreads - NumCPThreads) >= MinimumAvailableCPThreads ) 

        { 

            ThreadLocaleHolder localeHolder; 

            QueueUserWorkItemHelp(Function, Context); 

            return TRUE; 

        } 

 

    } 

    WorkRequest* workRequest = MakeWorkRequest(Function,Context); 

    LONG lRequestsQueued = 0; 

 

    if (workRequest) 

    { 

        // see if we need to grow the worker thread pool, but don't bother if GC is 

in progress 

        if (ShouldGrowWorkerThreadPool() && 

            !(GCHeap::IsGCInProgress(TRUE) 

              )) 

        { 

            CrstHolder csh(&WorkerCriticalSection); 

            if (ShouldGrowWorkerThreadPool()) 

            { 

                if (NumRetiredWorkerThreads == 0) 

                { 

                     CreateWorkerThread(); 

                } 

                else 

                    shouldWakeupRetiredThread = TRUE; 

            } 

        } 

        else 

        { 

            EnsureGateThreadCreated(GATE_THREAD_STATUS_NOWORKERTHREAD); 

            MonitorWorkRequestsQueue = 1; 

        } 

 

    return (workRequest != NULL); 

} 
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Essentially, ThreadpoolMgr consists of two parts: a list of enqueued work items to execute and a 

collection of threads at which to throw these work items. The first call, EnsureInitialized, is simply 

a check to an internal field to see if it‘s nonzero. If it isn‘t, you‘ve not yet initialized, and Initialize 

needs to be called. After initialization is confirmed, QueueUserWorkItem consists of two steps: 

1. First, the work request is placed into a queue using EnqueueWorkRequest. 

2. Second, the function checks to see whether there needs to be a new thread to handle the queue. 

The simple decision-making process is part of ShouldGrowWorkerThreadPool, as shown in 

Example 8-18. (This is quite a bit different than Microsoft‘s commercial CLR, which uses a complex 

heuristic.) 

Example 8-18. The logic for creating new worker threads (defined in clr/src/vm/win32threadpool.cpp) 

 

BOOL ThreadpoolMgr::ShouldGrowWorkerThreadPool() 

{ 

    // we only want to grow the worker thread pool if there are less than n  

 // threads, where n= no. of processors and more requests than the number 

 // of idle threads and number of worker threads not at max ceiling 

 

    return (NumWorkerThreads < MinLimitTotalWorkerThreads && 

            NumIdleWorkerThreads < NumQueuedWorkRequests && 

            (DWORD)NumWorkerThreads < MaxLimitTotalWorkerThreads); 

 

} } 

MaxLimitTotalWorkerThreads is simply a constant, defined in the Initialize method 

mentioned earlier as NumberOfProcessors * MaxLimitCPThreadsPerCPU. This number is a 

simple, but workable, way to decide whether to increase the size of the thread pool. 

Synchronizing Concurrent Access to Components 

The sharing of resources between components that are using multiple threads is notoriously difficult. It is a 

subtle proposition to get right, and whole forests have been sacrificed to the topic. People continue to 

investigate and experiment with new deadlock detection and avoidance algorithms. 

Access to shared resources must always be synchronized or carefully coordinated in some manner. 

Component programmers can use protection mechanisms that exist in the execution engine specifically for 

this purpose, choosing to use its primitives manually, or else use higher-level constructs and leave the 

details to the execution engine. Just as the thread pool makes working with threads easier for some 

common cases, automatic features, such as synchronized regions of code and synchronized access to 

component member types, can make programming easier and less bug-prone. As always, the tradeoff is one 

of complexity and control. 

When using execution engine primitives directly, implementers can use a broad palette of managed classes 

that expose them, including the Interlocked type, the Monitor type, the ReaderWriterLock 

type, and both the ManualResetEvent and AutoResetEvent types. In addition to these types, 

WaitHandle is used to represent all synchronization objects in the runtime that allow multiple wait 

semantics, such as mutex and event handles. WaitHandle encapsulates PAL synchronization handles and 

uses the thread pool to make callbacks. 

The CLI combines operating system synchronization with CLI-specific synchronization constructs (such as 

the thread pool, which is a collection of threads that are available for communal use) into a single coherent 

service for programmers. By default, both the instance and static members of a component are not 

synchronized, and any thread can access any member at any time. Compilers, of course, can implement 

whatever locking semantics their language requires with the aid of the execution engine primitives. The 

CLI supports automatic use of syncblocks (locks associated with types) for both instances and classes; the 
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CLI will generate code to synchronize on the instance syncblock for instance methods (or on the class 

syncblock for statics) if it finds the synchronized flag in their metadata. 

CLI synchronization is interesting in its use of loosely associated instance data for storing syncblocks. 

Syncblocks are exposed to the programmer via the managed Monitor object, and can be used to protect 

global, static, and instance fields and/or methods. Monitors cannot be instantiated by themselves; they are 

associated on-demand with object or class instances. They expose the ability to take and release the 

syncblock lock on an object via the static methods Enter, TryEnter, and Exit. It is necessary to be in 

a synchronized region on an object before calling Wait or Pulse on that object. Wait releases the lock 

and waits to be notified, at which point it returns, having been granted the lock again. Pulse signals the 

next thread in the wait queue to proceed. 

In the syncblock, the monitor is implemented using the C++ class AwareLock, which can be found in 

clr/src/vm/syncblk.h. As we saw in Chapter 5, each object has a syncblock index associated with it, which 

begins empty, and is populated only when needed. When an instance is used as part of a synchronization 

operation, a syncblock is retrieved from the syncblock cache, and it is associated with the object by 

updating the index. Syncblocks themselves are sparsely allocated data structures, and when they are being 

used for synchronization purposes, they will contain the AwareLock used to implement synchronized 

methods and synchronized blocks of code, as well as a list of waiting threads for Monitor.Wait, 

Monitor.Pulse, and Monitor.PulseAll. 

On occasion, a programmer has to break a Thread out of a blocking operation, such as waiting for a 

syncblock or Sleep call. To do this, Thread provides the Interrupt method, which essentially 

releases the Thread out of the Wait without having acquired the syncblock. 

Handling Component Exceptions 

Microsoft‘s earlier component model, COM, used a fragile and failure-prone mechanism for dealing with 

violations of component contracts. Most component methods in COM returned an integer status code called 

an HRESULT. (Why HRESULT? Originally, it was designed to be a handle to a result and only late in the 

game was its definition simplified.) When COM components are deeply nested, they are supposed to check 

the HRESULT being returned by their subordinate components and pass errors up the stack either directly 

or by mapping them into new HRESULTs. As might well be imagined, this discipline is tedious, error-

prone, and leads to numerous problems, including inconsistent or erroneous HRESULT checking and 

bloated code. It also results in lost error information, which makes debugging harder. 

From the perspective of the designers of the CLI component model, structured exception handling (SEH) 

seemed to be at least a partial answer to many of these problems. SEH is familiar to programmers from 

languages such as Java and C++; what is less known is that it is also a standard part of Windows systems 

programming. It provides two very important capabilities for components: the ability to always execute 

local cleanup code declared within a finally block, and the ability to alert components further up the 

food chain about violations of behavioral contracts (whether malicious or innocent), providing those 

components with the opportunity to recover without necessitating cooperative error-passing. SEH provides 

a level playing field for components, as well as an opportunity for arms-length cooperation. Exception 

handling is an easier and safer alternative to HRESULTs. It can also be more efficient than HRESULTs 

when it is used for exceptional cases only, guaranteeing that the exception path is rarely followed. 

One of the strengths of HRESULTs was that their DWORD values needed neither allocation nor cleanup after 

use; the discipline for creating and destroying HRESULTs was simple and fast, and resulted in good 

interoperability between languages. In addition, DWORD values can easily be sent between processes or 

machines, and because of this, HRESULTs worked well for remoting operations across processes or 

machines. Because the CLI provides support for garbage collection, serialization, and is designed to be 

language-agnostic from the ground up, both of these original design points look dated. The CLI uses full-

fledged objects rather than DWORDs as its error indicators, and instantiation and cleanup are dealt with 

inside the execution engine. A reference type, System.Exception, is used as the basis for C# 

exceptions, but any object can be thrown by languages that do not wish to conform to the CTS. (Of course, 
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the Exception type was designed for this purpose. Instances of Exception marshal by value, taking 

advantage of the CLI‘s built-in support for serialization. Because of this, they can be simply propagated 

across application domain, process, or machine boundaries. On unmarshalling they are simply objects that 

are garbage collected like any other type and need no special cooperative ownership protocol.) 

CLI Exception Model 

Many programmers think of exception handling as try, catch, and finally blocks in a higher-level 

language, along with corresponding throw statements, such as those we saw in the Echo component in 

earlier chapters. The CLI, however, is designed to serve the needs of programming languages with various 

syntactic models and uses a general approach. 

The ECMA specification has a detailed discussion of this abstract model for managed exceptions. There are 

four distinct kinds of blocks (filter, catch, fault, and finally), several opcodes dedicated to 

ensuring verifiable control flow (shown in Table 8-1), and a large tree of exception types. It is possible, 

using these building blocks, to construct many different kinds of high-level exception syntax; since they 

share underlying plumbing, they can still interoperate safely despite their differences. 

Table 8-5. CIL opcodes specific to exception handlers 

Opcode Usage 

throw Throws an exception, using object on stacks 

rethrow Reissues an exception from within a catch handler 

block. 

leave Used within a section of guarded code to jump out 

to a specific point. This jump will cause execution 

of any required termination handlers. 

endfinally (alias endfault) Used at the end of a termination handler to return 

control back to the execution engine. 

endfilter Used at the end of a filter function to return the 

handler status back to the execution engine. 

In the CLI model, a block of code can be protected by one or more exception handlers. A block so 

protected is called a guarded block (or just a block). There can be multiple guarded blocks in a single stack 

frame. It is common for C# code to have multiple handlers for a single block, with each handler covering a 

subset of the possible exceptions, but this is built on top of the simpler CLI model, in which try blocks 

have a single handler. Handlers themselves may contain catch and/or finally blocks, and catch 

blocks may have filters associated with them that provide code to determine whether the catch block is 

eligible for handling a given exception. Catch blocks, filters, a fault block, and a finally block 

together constitute a single exception handler for a given try block. 

Recall that the worker thread‘s StartMethod in Example 8-4 used exception handling to catch the 

ThreadAbortException. This method is turned into the CIL found in Example 8-19 by Rotor‘s C# 

compiler. 

Example 8-19. CIL for the StartMethod in Example 8-4 

 

.method public hidebysig static void  StartMethod() cil managed 

{ 

  // Code size       189 (0xbd) 

  .maxstack  3 

  .locals init (int32 V_0, 

            class [mscorlib]System.Threading.ThreadAbortException V_1, 

   bool V_2) 

  .try 

  { 
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  // bunch of worker code omitted 

 

    IL_002d:  ldstr      "OK, worker finished." 

    IL_0032:  call       void [mscorlib]System.Console::WriteLine(string) 

    IL_0037:  leave.s    IL_00bb 

  }  // end .try 

  catch [mscorlib]System.Threading.ThreadAbortException 

  { 

  // bunch of catch code omitted 

    IL_007c:  leave.s    IL_0090 

  }  // end handler 

 

  // method continues 

Notice the block structure that is created, the use of the leave opcode, and the local variable that is 

created to hold the ThreadAbortException object. Although not shown here, there can be many 

exception handlers in a single method, and exception handlers can be nested. 

Exception handlers are grouped together into an Exception Information Table (EIT). Assemblies contain a 

compressed precursor for the EIT within the CIL headers that describe methods. This compressed table 

contains offsets into the CIL code, and is translated by the JIT into the runtime EIT, which is located in 

memory immediately above the compiled native code for the method. 

finally and fault blocks are not just redundant siblings of the catch block, since 

they can‘t be emulated using a catch that rethrows the exception. This approach would 

cause changes in the order in which filters and handlers are executed due to the two-pass 

nature of exception handling. Some languages that target the CLI depend on exact 

ordering of filters and handlers. 

Using the EIT that corresponds to the method for each activation record on the managed stack, the 

execution engine can determine which handlers are in effect at any point during execution. When an 

exception is raised, all of the eligible catch handlers are visited in turn. Each must either handle the 

exception or pass it on. After the exception is caught and handled, but before returning control, finally 

and fault handlers are given the chance to clean up; finally handlers are always called, and fault 

handlers are called only if an exception has occurred in the block that they guard (see Example 8-20). 

Example 8-20. The EIT within an executable image (Defined in clr/src/inc/corhdr.h) 

 

typedef struct IMAGE_COR_ILMETHOD_SECT_FAT 

{ 

    unsigned Kind : 8; 

    unsigned DataSize : 24; 

} IMAGE_COR_ILMETHOD_SECT_FAT; 

 

typedef enum CorExceptionFlag                        

{ 

    COR_ILEXCEPTION_CLAUSE_NONE,                     

    COR_ILEXCEPTION_CLAUSE_OFFSETLEN = 0x0000,       

    COR_ILEXCEPTION_CLAUSE_DEPRECATED = 0x0000,      

    COR_ILEXCEPTION_CLAUSE_FILTER  = 0x0001,         

    COR_ILEXCEPTION_CLAUSE_FINALLY = 0x0002,         

    COR_ILEXCEPTION_CLAUSE_FAULT = 0x0004,           

    COR_ILEXCEPTION_CLAUSE_DUPLICATED = 0x0008,      

} CorExceptionFlag;  

 

typedef struct IMAGE_COR_ILMETHOD_SECT_EH_CLAUSE_FAT 

{ 

    CorExceptionFlag    Flags; 

    DWORD               TryOffset; 

    DWORD               TryLength;      // relative to start of try block 
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    DWORD               HandlerOffset; 

    DWORD               HandlerLength;  // relative to start of handler 

    union { 

        DWORD           ClassToken;     // use for type-based exception handlers 

        DWORD           FilterOffset;   // use for filter-based exception handlers 

    } u; 

} IMAGE_COR_ILMETHOD_SECT_EH_CLAUSE_FAT; 

 

typedef struct IMAGE_COR_ILMETHOD_SECT_EH_FAT 

{ 

    IMAGE_COR_ILMETHOD_SECT_FAT   SectFat; 

    IMAGE_COR_ILMETHOD_SECT_EH_CLAUSE_FAT Clauses[1];     // variable size 

} IMAGE_COR_ILMETHOD_SECT_EH_FAT; 

These tables can exist for every method. Using the Clauses array, a variable number of handlers can 

exist for a given method. Each entry in the table will have a guarded block, represented by TryOffset 

and TryLength, followed by a handler block, represented by HandlerOffset and 

HandlerLength. (Note that it can take more than one record to store a single compound handler.) 

On Windows, interoperability with native SEH was a desirable feature, since managed and unmanaged 

code share the same execution stack, as shown in Figure 8-4. Even without this requirement, since the CLI 

exception model is intended for use by components running in managed code, it is important for the 

execution engine itself to participate in raising and handling exceptions, since it actually controls and 

manages many of the resources that components depend on. Because of the need for interoperability 

between native code and managed code, providing portable SEH was an implementation challenge for the 

SSCLI team. Consistent system-level support for SEH doesn‘t exist on some of the operating systems for 

which the SSCLI was created, and so a portable implementation was made part of the PAL using the 

Win32 SEH APIs as its interface. 

 

 
 

Figure Error! No text of specified style in document.-13. Exception frames on a stack 

containing both managed and unmanaged code 

The CLI exception model piggybacks on the lower-level portable implementation, and meshes with it 

seamlessly. Exceptions can be thrown and caught between the two implementations without restriction, but 

they are not identical mechanisms; the CLI mechanism is ―nested‖ within the portable SEH mechanism. A 
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CLI exception is not a portable SEH exception, but it may cause one to be raised if it is not handled within 

a single stack segment of managed code. Likewise, an exception thrown at the lower level, if not consumed 

by the execution engine for special purposes, may flow into the higher-level CLI system, with the 

execution engine mapping into the hierarchy of exceptions. 

Throwing Exceptions 

Exactly how exceptions come into being and are processed is dependent on where they originate. Hardware 

or software exceptions can originate from user code that has been JIT-compiled or from within the 

execution engine itself, and yet all cases must be dealt with in such a way as to give the appearance of 

seamless uniformity to the managed-code programmer. To accomplish this, every exception thrown, 

whether by hardware or by software, is routed through the PAL‘s portable SEH layer. This approach 

ensures consistency and helps simplify interoperability. 

There are three distinct ways that exceptions can be raised during the execution of managed code, produced 

by the JIT compiler: 

 Programmatically, from managed code that is throwing an exception 

 Programmatically, from the C++ code that implements the execution engine 

 From the hardware directly, not initiated by software 

If managed code is the source, an object instance is created and the JIT_Throw function is called, which 

packs the exception into a form compatible with the portable SEH and throws an exception from within that 

lower level, as shown in Example 8-21. 

Example 8-21. JIT_Throw (extracted from clr/src/vm/jithelpers.cpp) 

 

void JIT_Throw(Object* obj) 

{ 

    ResetCurrentContext(); 

 

    FC_GC_POLL_NOT_NEEDED();    // throws always open up for GC 

    HELPER_METHOD_FRAME_BEGIN_ATTRIB_NOPOLL(Frame::FRAME_ATTR_EXCEPTION);    // Set 

up a frame 

 

    OBJECTREF oref = ObjectToOBJECTREF(obj); 

 

    if (oref == 0) 

        COMPlusThrow(kNullReferenceException); 

    else 

    if (!IsException(oref->GetMethodTable())) 

    { 

        GCPROTECT_BEGIN(oref); 

        WrapNonCompliantException(&oref); 

        GCPROTECT_END(); 

    } 

    else 

    {   // We know that the object derives from System.Exception 

        if (g_CLRPolicyRequested && 

            oref->GetMethodTable() == g_pOutOfMemoryExceptionClass) 

        { 

            EEPolicy::HandleOutOfMemory(); 

        } 

 

        ((EXCEPTIONREF)oref)->ClearStackTraceForThrow(); 

    } 

    RaiseTheExceptionInternalOnly(oref, FALSE); 

 

    HELPER_METHOD_FRAME_END(); 

} 
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The call to ResetCurrentContext resets the hardware, taking care of things like resetting the FPU 

and mask values. After this, a helper frame is pushed to mark the transition from JIT-compiled code to 

execution engine code. This frame will ensure that the security engine and the garbage collector know 

about the transition. After this, RaiseTheExceptionInternalOnly is called (Example 8-22), which 

is a routine shared by all exception paths. 

Example 8-22. RaiseTheExceptionInternalOnly is shared by all types of exception (simplified from 

clr/src/vm/excep.cpp) 

 

VOID RaiseTheExceptionInternalOnly(OBJECTREF throwable, BOOL rethrow, BOOL 

fForStackOverflow) 

{ 

  Thread *pThread = GetThread(); 

  ThreadExceptionState *pExState = pThread->GetExceptionState(); 

 

  ULONG_PTR *args; 

  ULONG argCount; 

  ULONG flags; 

  ULONG code; 

 

  // Always save the current object in the handle so on rethrow we can reuse it.  

  // This is important as it contains stack trace info. 

  // 

  // Note: we use SafeSetLastThrownObject, which will try to set the  

  // throwable and if there are any problems, it will set the throwable to  

  // something appropiate (like OOM exception) and return the new 

  // exception. Thus, the user's exception object can be replaced here. 

 

  throwable = pThread->SafeSetLastThrownObject(throwable);  

 

 

   if (!rethrow || 

       (pExState->GetExceptionCode() == EXCEPTION_COMPLUS) || 

       (pExState->GetExceptionCode() == STATUS_STACK_OVERFLOW)) 

   { 

       ULONG_PTR hr = GetHRFromThrowable(throwable); 

 

       args = &hr; 

       argCount = 1; 

       flags = EXCEPTION_NONCONTINUABLE; 

       code = EXCEPTION_COMPLUS; 

   } 

   else 

   { 

       args     = pExState->GetExceptionRecord()->ExceptionInformation; 

       argCount = pExState->GetExceptionRecord()->NumberParameters; 

       flags    = pExState->GetExceptionRecord()->ExceptionFlags; 

       code     = pExState->GetExceptionRecord()->ExceptionCode; 

 

       flags |= EXCEPTION_NONCONTINUABLE; 

   } 

 

  // Tell GC that scheduling is preemptive before call into OS 

  pThread->EnablePreemptiveGC(); 

 

  RaiseException(code, flags, argCount, args); 

  EEPOLICY_HANDLE_FATAL_ERROR(COR_E_EXECUTIONENGINE); 

} 

Note the involvement of the Thread object. Exception handling is a stack-intensive activity, and since the 

Thread object is the ―owner‖ of the stack for the purposes of the execution engine, it is also the logical 
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place to keep the information needed for exception handling. The ThreadExceptionState struct is 

used to store exactly this data and can be found in sscli20/clr/src/vm/excep.h. 

In the function shown in Example 8-14, if a rethrow is in process, information about the original exception 

will be pulled from the thread‘s ExInfo and passed along to the PAL‘s RaiseException function. A 

reference to the Exception object is also placed into the current managed Thead object, which has a 

spot reserved for this purpose. The last act before a noncontinuable EXCEPTION_COMPLUS exception is 

raised (using RaiseException) is to turn off cooperative garbage collection, since system code, being 

unaware of the execution engine, doesn‘t take pains to interact safely with the garbage collector. Of course, 

noncontinuable exceptions are not supposed to return, which explains the call to 

EEPOLICY_HANDLE_FATAL_ERROR. 

Typically, when the exception is thrown from within the execution engine‘s code directly, one of many 

different exception-throwing functions that are defined in sscli20/clr/src/vm/excep.h is used to do the actual 

raising of the exception. Most of the time, COMPlusThrow is used, which is a macro that wraps 

RealCOMPlusThrow, and which eventually bottoms out in RealCOMPlusThrowWorker. Atypically, 

other wrapper functions are used but only in special circumstances, and these additional wrappers usually 

bottom out in RealCOMPlusThrowWorker themselves, as well. RealCOMPlusThrowWorker is 

shown in Example 8-23. 

Example 8-23. First part of a worker function for throwing exceptions (extracted and simplified from 

clr/src/vm/excep.cpp) 

 

static VOID RealCOMPlusThrowWorker(RuntimeExceptionKind reKind, 

                                   BOOL                 fMessage, 

                                   BOOL                 fHasResourceID, 

                                   UINT                 resID, 

                                   HRESULT              hr, 

                                   LPCWSTR              wszArg1, 

                                   LPCWSTR              wszArg2, 

                                   LPCWSTR              wszArg3, 

                                   ExceptionData*       pED) 

{ 

  Thread *pThread = GetThread(); 

 

  // Running in managed code, need to be cooperative mode 

  if (!pThread->PreemptiveGCDisabled()) 

    pThread->DisablePreemptiveGC(); 

 

  // Is enough of the execution engine in place to run exception code? 

  if (!g_fExceptionsOK) 

    COMPlusThrowBoot(hr); 

 

  // Out of memory is a special case 

  if (reKind == kOutOfMemoryException && hr == S_OK) 

    RealCOMPlusThrow(ObjectFromHandle(g_pPreallocatedOutOfMemoryException)); 

 

  // Execution engine failure is a special case 

  if (reKind == kExecutionEngineException && hr == S_OK && (!fMessage)) 

    RealCOMPlusThrow(ObjectFromHandle(g_pPreallocatedExecutionEngineException)); 

 

  // Go ahead now and gather exception data to throw 

  FieldDesc *pFD; 

  MethodTable *pMT; 

  LPWSTR wszExceptionMessage = NULL; 

 

  pMT = g_Mscorlib.GetException(reKind); 

  if (fMessage) { 

    wszExceptionMessage = 

         CreateExceptionMessage(fHasResourceID, resID, 

            wszArg1, wszArg2, wszArg3); 
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  } 

 

  // The rest of this very long function omitted for brevity 

This function first ensures that the garbage collector mode is in the correct state. There is no need to push a 

transition frame in this case, since the exception is coming directly from within the code of the execution 

engine, and transition frames will already be in place. The function checks to see that the execution engine 

has bootstrapped far enough to run managed code; if not, it will not attempt to throw a managed exception, 

as there is no engine to support this. (This check is also used for teardown. If the execution engine is in the 

process of shutting down, and is unable to throw a managed exception, it will not attempt it.) If the error is 

the result of running out of memory or an execution engine failure, preallocated exceptions that were 

prepared for this eventuality are thrown. Otherwise, an instance of the appropriate managed exception type 

is created, and the hunt for the appropriate user-readable message begins. 

The rest of the function is not shown due to its tedious length and niggling specificity. It spends a good deal 

of effort on setting up the exception object by ferreting out failure information. If there was no message 

passed from the caller, the code looks for a message to place into the exception object, sets the source and 

the HRESULT if available, and ultimately throws the exception using RaiseTheException, as seen 

previously in Example 8-14. (The HRESULT in this code is purely a result of backwards compatibility and 

interop, and shouldn‘t cause consternation.) Much of the work done in the execution engine has to do with 

mapping the different kinds of errors into the higher-level exception hierarchy, copying appropriate 

information into the exception objects, and making sure that the execution engine itself is in a safe state. 

For example, the first-pass exception handler will take lower-level status codes and map them to types that 

will fit into some part of the exception hierarchy using the function in Example 8-24. 

Example 8-24. Mapping from a lower-level exception domain to a higher-level domain (defined in 

clr/src/vm/excep.cpp) 

 

DWORD MapWin32FaultToCOMPlusException(EXCEPTION_RECORD *pExceptionRecord) 

{ 

    switch (pExceptionRecord->ExceptionCode) 

    { 

        case STATUS_FLOAT_INEXACT_RESULT: 

        case STATUS_FLOAT_INVALID_OPERATION: 

        case STATUS_FLOAT_STACK_CHECK: 

        case STATUS_FLOAT_UNDERFLOW: 

            return (DWORD) kArithmeticException; 

        case STATUS_FLOAT_OVERFLOW: 

        case STATUS_INTEGER_OVERFLOW: 

            return (DWORD) kOverflowException; 

 

        case STATUS_FLOAT_DIVIDE_BY_ZERO: 

        case STATUS_INTEGER_DIVIDE_BY_ZERO: 

            return (DWORD) kDivideByZeroException; 

 

        case STATUS_FLOAT_DENORMAL_OPERAND: 

            return (DWORD) kFormatException; 

 

        case STATUS_ACCESS_VIOLATION: 

            { 

  // ... 

   return (DWORD) kNullReferenceException; 

            } 

 

        case STATUS_ARRAY_BOUNDS_EXCEEDED: 

            return (DWORD) kIndexOutOfRangeException; 

 

        case STATUS_NO_MEMORY: 

            return (DWORD) kOutOfMemoryException; 

 

        case STATUS_STACK_OVERFLOW: 
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            return (DWORD) kStackOverflowException; 

 

        default: 

            return kSEHException; 

    } 

}  

The status codes in this function are defined as part of the PAL, where yet another layer of mapping is 

clearly taking place, depending on the operating system being used.  

In software exceptions from managed code and software exceptions from the execution engine, exceptions 

are packaged under the EXCEPTION_COMPLUS status code at the level of PAL SEH. In a hardware 

exception, other status codes will be used, but, in all cases, the portable SEH mechanism is used to find 

handlers. This is important because the execution engine causes exception handlers to run. By leveraging 

the portable SEH mechanism, the execution engine locates and executes appropriate handler code in a 

single, uniform way. 

Handling Exceptions 

Exception handling within the execution engine is a two-pass process, which is illustrated in Figure 8-5. On 

the first pass, a stackwalk checks every activation record on the stack until an appropriate filter is found. 

Then, on the second pass, the stack is ―unwound,‖ meaning that any finally blocks in the region of the 

stack about to be discarded are called before execution resumes further up the stack. 

 

 
 

Figure 8-14. Locating exception handlers using a two-pass stackwalk 

To initiate stackwalks of the managed regions that are needed for this two-pass algorithm, the execution 

engine prepares for it by using the portable SEH mechanism to install a standard exception frame around 

regions of managed code. In this way, regardless of an exception‘s source (a hardware exception, a soft 

exception in code produced by the JIT compiler, or an execution engine exception), this SEH filter kicks 

off the processing. By right of its low-level position, this handler, named COMPlusFrameHandler, has 

the first opportunity at any exception. This potentially platform-specific code is shown in Example 8-25.  

This example is defined in clr/src/vm/i386/excepx86.cpp. 

Example 8-25. The normal exception filter 

 

EXCEPTION_HANDLER_IMPL(COMPlusFrameHandler) 

{ 
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    if (g_fNoExceptions) 

        return ExceptionContinueSearch; // No EH during EE shutdown. 

 

    EXCEPTION_DISPOSITION retVal = ExceptionContinueSearch; 

 

    // Code elided for clarity 

    // 

 

    if (pExceptionRecord->ExceptionFlags & (EXCEPTION_UNWINDING | 

EXCEPTION_EXIT_UNWIND)) 

    { 

        retVal =  CPFH_UnwindHandler(pExceptionRecord, 

                                     pEstablisherFrame, 

                                     pContext, 

                                     pDispatcherContext); 

    } 

    else 

    { 

        ResetCurrentContext(); 

 

        // clear the second pass flags to handle nested exceptions 

        pEstablisherFrame->dwFlags &= ~PAL_EXCEPTION_FLAGS_All; 

 

        retVal = CPFH_FirstPassHandler(pExceptionRecord, 

                                       pEstablisherFrame, 

                                       pContext, 

                                       pDispatcherContext); 

 

    } 

    return retVal; 

}  

The first thing the COMPlusFrameHandler does is verify that the exception engine is in a state in which 

it can actually handle exceptions. If not, control is passed on to other handlers for the thread, which will 

more than likely trigger a shutdown. If the exception is already on its second pass, 

CPFH_UnwindHandler is called; otherwise, the hardware is reset, and the exception-handling process is 

begun with a call to CPFH_FirstPassHandler. 

The first pass handler, found in sscli20/clr/src/vm/i386/excepx86.cpp, is responsible for detecting nested 

exceptions and setting up the bookkeeping that surrounds their use. The first pass handler also sorts through 

a myriad of special-purpose exceptions before dispatching any ―real‖ exceptions to the correct handler. To 

do this, it first ensures that the garbage collector is in the right state. After this preliminary step, the first-

pass handler filters out exceptions that are used in special ways by the execution engine: access violations 

may indicate the need to adjust the garbage collector‘s write barrier, stack overflows can be remedied by 

expanding the stack, thread aborts get special treatment, and so on. The call to 

ShouldHandleManagedFault continues this winnowing activity, looking specifically at exceptions 

that occur within JIT-compiled code. The function calls ExecutionManager::FindCodeMan to 

determine whether the current instruction pointer is executing within JIT-compiled code; if it is, it filters for 

special cases, which include things like debugger single-step and breakpoints. If this function returns true, a 

call to HandleManagedFault is made. 

You may be curious as to why we keep mentioning garbage collector state during all this 

discussion of the exception-handling mechanism. If you are interested in modifying or 

exploring the exception mechanisms within Rotor, we recommend you step with extreme 

care. As you can probably tell by now, a garbage collection that occurs at the wrong 

moment during exception processing (or any other deeply integrated service) can make 

things really ugly really fast, due to monkeying with the thread stack, processor registers, 

and other sharp objects. Managed handlers in code that was JIT-compiled must execute 

with the state set to cooperative mode, while PAL handlers must use pre-emptive mode. 
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If by this point in the handler, the exception still qualifies as ―real,‖ the exception record and machine 

context are saved into the thread, a call to CPFH_RealFirstPassHandler is made which in turn 

pushes a  FaultingExceptionFrame to mark this special transition, and finally, a global exception 

lock is taken. The LaunchThrowHelper will be used to trigger the rethrow of the specific managed 

exception when the time comes; at this point, you are only preparing for this call and passing control back 

to the exception engine. 

The code used by the first pass handler to locate an existing managed handler is contained in 

sscli/clr/src/vm/excep.cpp. This function uses a stack walk to search the managed stack, as shown in 

Example 8-26. 

Example 8-26. Stackwalking for managed handlers 

 

LFH LookForHandler(                         // LFH return types 

    const EXCEPTION_POINTERS *pExceptionPointers, // The ExceptionRecord and 

ExceptionContext 

    Thread      *pThread,                   // Thread on which to look (always 

current?) 

    ThrowCallbackType *tct)                 // Structure to pass back to callback 

functions. 

{ 

    // Make sure that the stack depth counter is set to zero. 

    COUNTER_ONLY(GetPrivatePerfCounters().m_Excep.cThrowToCatchStackDepth=0); 

 

    // go through to find if anyone handles the exception 

    StackWalkAction action = pThread-

>StackWalkFrames((PSTACKWALKFRAMESCALLBACK)COMPlusThrowCallback, 

                                 tct, 

                                 0,     //can't use FUNCTIONSONLY because the 

callback uses non-function frames to stop the walk 

                                 tct->pBottomFrame); 

 

    // If someone handles it, the action will be SWA_ABORT with pFunc and dHandler 

indicating the 

        // function and handler that is handling the exception. Debugger can put a 

hook in here. 

    if (action == SWA_ABORT && tct->pFunc != NULL) 

        return LFH_FOUND; 

 

    // nobody is handling it 

    return LFH_NOT_FOUND; 

} // LFH LookForHandler()  

 

Each frame is examined using the COMPlusThrowCallback function. This complex function, found in 

sslcl20i/clr/src/vm/i386/excepx86.cpp, is where the exception stack trace is built and where handler 

identification takes place. When a handler match is found, the location is recorded in the tct argument, 

and the stackwalk is aborted. The callback function uses the frame‘s GetFunction method to procure a 

metadata token for the method whose activation state it represents. This token is then used to ask the code 

manager to procure the EIT. (Remember, the JIT compiler produces a header at the beginning of a 

compiled method in the code heap that includes garbage collection information as well as the EIT.) The 

flags and offsets of the EIT, along with the current instruction pointer, are used to search outward until an 

overlapping handler that meets all criteria is found. The exception filter will remember which handler needs 

to be run, and then return, causing second-pass unwinding to take place. 

At this point, if no matching managed handler has been found, the lower-level SEH mechanism continues 

along its merry way, searching in unmanaged code until a handler is found or the default handler is 

encountered. If a handler was located, it seems as though starting the managed second pass would be the 

right thing to do; for the purposes of interoperability, this can‘t be done until the lower-level SEH has also 

moved on to its second pass. The first pass handler, to perform this hand-off, sets the 
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PAL_EXCEPTION_FLAGS_UnwindCallback in the frame where the handler is located and returns 

ExceptionStackUnwind, which will cause the lower level machinery to stop searching and begin its 

second pass. The state needed to begin unwinding has been safely stored in the exception record. 

Unwinding the Stack 

Execution begins with the CPFH_UnwindHandler, already seen in Example 8-25. Two flags may have 

been set during the first pass: one that designates exceptions coming from unmanaged code that‘s 

subordinate to a region of managed code (PAL_EXCEPTION_FLAGS_LaunchThrowHelper) and one 

that designates that a managed handler was located for the exception 

(PAL_EXCEPTION_FLAGS_UnwindCallback). If the latter is set, the execution engine needs to fire 

any finally or fault blocks and then give the managed code a chance to handle the exception, which 

requires another walk of the managed stack. 

To call a managed handler, COMPlusAfterUnwind is invoked, which causes another stackwalk to 

happen via the UnwindFrames function. The callback for this second pass is 

COMPlusUnwindCallback. Once again, the code manager is queried for EIT information, and this 

information, along with the program counter, is used to find handlers. This time through, the code manager 

is also used to execute any finally or fault blocks with EEJitManager::CallJitEHFinally, 

and if a handler exists, the handler is jumped to using EEJitManager::ResumeAtJitEH. Once 

called, the handler filter itself may decline to handle the exception, in which case control will pass back to 

the SEH handler chain. By passing through the dispatch phase, the managed blocks have been executed—

both portable SEH and managed SEH remain well-synchronized and correct. 

Unmanaged faults that occur while running managed code, if unhandled, are rethrown after a 

FaultingExceptionFrame is injected into the stack. The unwind helper calls 

LinkFrameAndThrow within the execution engine, which sets the threadstate to reflect the managed 

exception, releases the global exception lock, and calls RaiseException anew, using the exception 

state gathered during the first pass. This second RaiseException can be baffling. It was put in the code 

to enable possible future compatibility and interop with exception resumption. 

It is very important that stackwalks within exception processing be ―correct‖ with regards 

to security invariants. This is especially tricky for filters because the stack is not yet 

unwound when filters are called, and because of this, the arbitrary code in them may be 

called between the time that the exception is thrown and its matching finally is called. 

This has interesting implications for writing secure managed exception handlers and 

handling reentrancy in managed libraries. To understand more about these issues, see 

Microsoft‘s recommendations concerning building secure managed libraries in the .NET 

Framework SDK. 

Summary 

The careful checking and rechecking of format, metadata invariants, and typesafety is not worth much 

without the presence of an execution engine that can enforce policies and keep control over the managed 

code that is run within it. To maintain control, the SSCLI carefully orchestrates the behavior of threads and 

exceptions, inserting control structures and bookkeeping information directly into their in-memory data for 

this purpose. 

Threads are appropriated as soon as they are detected by the execution engine, by associating managed-

thread instances with them. These managed threads actually share their runtime stacks with any unmanaged 

code running within them. To keep transitions between managed and unmanaged regions straight, the 

execution engine uses a control structure called an execution engine frame. Execution engine frames are 

small chunks of bookkeeping info that are tucked into the stack amidst the activation records that populate 

it. They are used to both mark transitions and annotate stack usage. 
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Of course, one of the primary roles of a thread is to provide a home for the runtime stack that contains its 

nested execution state. We saw in Chapter 5 that the stack in the execution engine is used for traditional 

language purposes such as parameter passing, but the execution engine also uses it to control security and 

to track exception-handler boundaries. Code access security walks the stack to find permissions, grants, and 

demands. Exceptions are used to handle nonlocal transfer of control and keep boundaries around managed 

regions of code that are interspersed with unmanaged code. 

Since multiple threads can share the services of a single execution engine instance, the CLI provides 

concurrency and synchronization primitives that match its specialized threading implementation. This 

traditional threading facility has a number of built-in conveniences, such as a thread pool, and 

synchronization components, such as monitors. 
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9. Managing Memory Within the 

Execution Engine 

Component-based applications, viewed as the vast graphs of interconnected type instances that they are, are 

notorious for their complex internal pointer manipulation, and as a result, their profligate thrashing of 

memory allocators. One of the longest standing feuds in the world of programming language design has 

centered on best practices for memory management in this kind of demanding environment. For some, it is 

even a long-standing joke: it‘s said that C programmers have long understood that memory management is 

so critical, it can‘t be left up to the system, and Lisp programmers have long understood that memory 

management is so critical, it can‘t be left up to the programmers. 

Since its introduction in the 1950s, garbage collection has received something of a nefarious reputation 

with many programmers. Garbage collection (GC) was for programmers who couldn‘t keep track of their 

own resources; GC was slothful; GC would force an application to hang for nontrivial portions of time 

while it was running internal bookkeeping; or GC was simply for wimps. But now, it is clear that garbage 

collection is enjoying something of a renaissance. Why? 

For starters, GC implementations have improved. Not only are they running on faster hardware than before, 

but the algorithms and approaches to managing garbage have gotten more accurate and faster. The pauses 

during program execution simply aren‘t there anymore. More importantly, however, programmers have 

come to realize that a price comes attached to the power of explicit memory management: programmers 

have to explicitly manage memory. Some project surveys have revealed that a C++ project spends over 

50% of its development lifecycle in the practice of memory management: ensuring allocated objects are 

freed, taking care not to make use of pointers after they‘ve been deallocated, and tracking down bugs that 

emerge from dangling pointers. To avoid spending this much time on a task that most would consider to be 

purely plumbing, many programmers now willingly surrender some control and take advantage of 

automated memory management. 

 

Memory Management Matters 
For a real-world look at how much effort can go into memory management, look carefully at the 

many different allocation and reclamation mechanisms in Rotor. An object instance and its 

associated type information, for example, commonly occupy memory from five or more distinct 

heaps. Instance memory is found on the garbage collector heap, except for the instance‘s 

SyncBlock record, which is allocated within the execution engine itself. The MethodTable 

for the object is located in the high-frequency heap of its application domain, while the EEClass 

and associated FieldDescs and MethodDescs are located in its low-frequency heap. (The 

names attached to these heaps refer to frequency of access.) Native code produced by the JIT 

compiler is found in a code heap, which is shared by all application domains. Finally, related 

items such as stubs are allocated from within a separate region of execution engine memory. 

Each memory manager or heap exists for good reason, but keeping track of this level of minutiae 

can be quite burdensome. Even harder is tracking down bugs that result from incorrect usage; it is 

not always obvious who should free memory that has been passed from consumer to consumer, for 

example. Eliminating these concerns by relying on the automated memory management service 

that is a built-in feature of the CLI is one great reason to use garbage-collected languages. 
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Is it possible for a general-purpose garbage collection mechanism to serve the decidedly nongeneral 

patterns of memory usage that algorithms dish out in an efficient enough way to be practical? For the early 

designers of the CLI, the answer to this question was obvious. Fresh from the nightmare of COM reference 

counting, which relies to this day on programmers‘ good behavior for correctness, it was clear that a 

system-mediated, automatic mechanism was not only desirable, it was an absolute requirement. Garbage 

collection is not just about programmer convenience—it also has excellent reliability benefits and recovery 

characteristics in the presence of bugs or malicious code. Security plays into this, as well, since the decision 

to relieve programmers of the burden of memory management also relieves them of the necessity to deal 

with memory locations directly (except under tightly controlled circumstances, such as interop). Because of 

all of these factors, the decision to use automatically managed memory was one of the first decisions made 

when specifying the CLI. 

Memory and Resource Management 

C or C++ programmers are already very familiar with the three different types of memory allocation that 

are commonly used by programming languages, and probably don‘t give them much thought. Static 

allocation, stack-based allocation, and dynamic allocation each represent a slightly different approach to 

allocating and manipulating values, and all three are available to those using the computational model 

exposed by the CLI. 

Static allocation was the first form of memory allocation used by venerable programming languages such 

as FORTRAN. It is a simple mechanism, by which a name is bound to a region of memory for the entire 

lifetime of a program (or in the case of the CLI, for the entire lifetime of a type within an application 

domain). Regardless of where in the code a static variable is referenced, its location in the local address 

space will remain the same. In the CLI, static memory is associated with types and referenced by using 

metadata tokens, as shown in Example 9-1. Rotor also supports per-thread static memory, but this is not a 

part of the CLI specification. 

Example 9-1. Static allocation in CIL is associated with types. 

 

.class private auto ansi beforefieldinit StaticExample 

       extends [mscorlib]System.Object 

{ 

  .field public static int32 aStatic 

} 

  

// CIL can access the value stored in the static variable 

IL_0006:  ldsfld     int32 StaticExample::aStatic 

  

// store the value 8 into the static memory location 

IL_0000:  ldc.i4.8 

IL_0001:  stsfld     int32 StaticExample::aStatic 

The concept of stack-based allocation appeared with the introduction of stack-based procedural 

programming languages, in which variable lifetimes are tied to their lexical scope on an execution stack. 

Local variables are automatically allocated on this stack when a call takes place, and automatically 

deallocated when control returns. The advantage of stack-based allocation is also its disadvantage: the 

lifetime of storage locations is tied directly to lexical scope, which restricts the expressive possibilities 

presented to programmers by the computer language. The execution stack is heavily used by languages that 

target the CLI, and memory is allocated from it in the form of method arguments and local variables. (In 

addition, stack memory can be allocated using the localloc CIL instruction, although this results in 

unverifiable code.) Example 9-2 shows instructions that access stack memory for argument values and local 

variable values. 

Example 9-2. Stack-based allocation is used for parameters and local variables 

ExampleMethod(int32& Param1, int32  Param2) 

{ 
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  // This method has two parameters allocated on the stack   // Two locals are also allocated on 

the stack, and accessed by position   .locals init (int32 V_0, int32 V_1) 

  

  // Load argument 0 from the stack 

  IL_0000:  ldarg.0 

  IL_0001:  ldind.i4 

  // Load argument 1 from the stack 

  IL_0002:  ldarg.1 

  IL_0003:  add 

  // Store the result of addition into local 0 

  IL_0004:  stloc.0 

  

  // Code skipped here 

  

  // Later, load local 1 and return 

  IL_000c:  ldloc.1 

  IL_000d:  ret 

} 

Static and stack-based allocation, while useful, did not fully satisfy engineers designing programming 

languages and the hardware on which these languages were to run. To fully round out their repertoire, 

language designers introduced dynamic memory models, in which programmers could manipulate variable-

sized chunks of memory directly through the use of one or more heaps. In many popular implementations 

of this approach, dynamic allocation and deallocation are completely under the control of the programmer, 

and memory is accessed using either handles or pointers. Because programmers are mere mortals, 

opportunities for mistakes, mischief, and mayhem abound, and yet the power and efficiency that results 

from the use of pointers and dynamically allocated memory far outweighs its inconveniences. Because of 

this, the CLI also rounds out its memory model by permitting languages to use pointers and manipulate 

them, either in a typesafe way with typed references, or else directly using unverifiable memory access 

operators. Example 9-3 shows the CIL involved in dynamic allocation. 

Example 9-3. Types can be dynamically allocated on the heap 

 

ExampleAllocator([out] object& o) 

{ 

  // This method will return a newly allocated object in argument 0 

  IL_0000:  ldarg.0 

  

  // Allocate a new object from the heap 

  IL_0001:  newobj     instance void [mscorlib]System.Object::.ctor() 

  

  IL_0006:  stind.ref 

  IL_001c:  ret 

} 

In the context of the CLI, the lifetimes of all three types of memory can be automatically managed. The 

CLI provides a garbage collector for this purpose, which enables programmers to shed the task of pointer 

management, while still using dynamic allocation to structure memory. When using a garbage collector, the 

programmer requests memory, the execution engine tracks its use, and the garbage collector reclaims it 

when it is time to recycle. This simple technique is a boon for programmers. 

Of course, programs written to leverage components not only use memory, but also share and manage 

resources that are beyond the influence of the execution engine, such as files, window handles, and sockets. 

Many programming scenarios demand that rigorous walls be in place between components, and in these 

situations, the rules of sharing or transfer of control can be complex. Garbage collection can ease the details 

of managing memory, but it doesn‘t ease the task of managing these resources, since their lifecycles are 

―owned‖ by some other entity, usually the operating system. 

From a programmer‘s perspective, any type defined to represent or wrap an external resource must be able 

to both acquire and release that resource. In the case of a file, for example, a type depending on an external 

file resource must explicitly obtain an open file handle by calling the operating system and close that 
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handle when its work is complete. The acquisition of the file is simple, but releasing it at the right time can 

be more difficult, especially when depending on a garbage collector. Since the programmer no longer has 

the responsibility (or the ability) to release the object instance, the system needs to provide that capability 

somehow. Within the CLI, this can be done through one of several mechanisms. The simplest to understand 

and most frequently used is actually built into the CLI garbage collection mechanism and is called 

finalization. 

During finalization, the garbage collector calls the Finalize method on any object that chooses to take 

advantage of this service. By defining a Finalize method, taking no parameters and returning no value, 

an object declares its interest in cleaning up after itself. In the SSCLI implementation, at some point after 

an object is classified as recyclable by the garbage collector, but before its underlying memory has been 

released, the object will be placed into a data structure called the finalization queue . This queue is then 

emptied by a background thread called the finalization thread , each object awaiting finalization being 

called in turn. (Finalization is built directly into the C# language as destructors, which implement the 

Finalize method automatically.) 

Finalization is necessary only when managing external resources. Because all garbage-collected objects fall 

under the allocator‘s jurisdiction, a type needs to implement a finalizer only when it needs to release 

external resources as part of its cleanup. Note that finalization is by no means a complete solution; in many 

cases explicit programmatic attention, such as calling a dispose method when finished, continues to be 

necessary to ensure good resource management. 

Organizing and Allocating Dynamic Memory 

The choice of a discipline for component memory allocation is deeply tied to component lifetimes. Control 

structures, such as the CLI‘s threads and application domains, offer simple and efficient disciplines for 

managing component lifetimes and memory and, as we have seen, are used by the CLI as locations for 

storing both static and stack-based information. As already pointed out, however, storage strategies based 

on these mechanisms will work only when the lifetimes of the components and resources being allocated 

are in sync with the lifetimes of the control structures. There are many cases when this is not the case. 

There are also many times when storing large amounts of data in runtime control structures might cause 

resource exhaustion problems or bad locality of reference. 

Heaps, of course, solve these problems by using regions of memory that are managed by allocating 

subblocks to clients and tracking these so that the clients can later release their subblocks in arbitrary order, 

at any time. When used manually, a programmer ―checks out‖ subblocks of heap memory with a function 

like malloc, holds them as long as necessary, and then frees them explicitly, which makes the memory 

available for recycling. Heaps that are managed using garbage collection, on the other hand, permit clients 

to release their subblocks by simply abandoning references to them. When quantities of heap memory run 

low, the garbage collection service can take care of locating memory that has been abandoned and 

recycling it, as shown in Figure 9-1. 

 

 
 

Figure 9-15. A heap that is ready for recycling (dead objects are shaded). 

The heap in the SSCLI is periodically renewed by identifying dead objects and then fusing contiguous runs 

of dead objects into blocks of memory to be reallocated. The approach used for locating dead objects is 

called tracing; by following and recording all live references to heap memory, the garbage collector can 

easily deduce that the leftover memory is available for reclamation. Live objects are found by looking for 

heap pointers on all of the stacks, in all statically allocated memory, within all object instances, and in a 

few other well-known execution engine data structures. Whenever a live pointer is found, the memory that 
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it refers to is itself examined for more pointers, and if more are found, they are likewise followed until the 

entire set of live objects is known. This procedure is called tracing the roots, and results in the transitive 

closure over the set of live objects, as shown in Figure 7-2. 

 

 
 

Figure 9-16. Recursively following live object references (“tracing the roots”) in 

preparation for garbage collection 

Often, all that is needed when recycling memory is to replenish the heap by locating blocks of memory that 

are ready for reuse, as outlined in the previous paragraph. This simple approach to replenishment is called 

mark-and-sweep collection—during the trace, live objects are marked, after which unused memory is 

―swept‖ into a free list. Mark and sweep collection, while simple and effective, can result in a fragmented 

heap over time, which can lead to heap exhaustion. To cure this tendency, compacting collection  was 

invented. During the simplest kind of compacting collection, the heap is compacted by removing dead 

objects and pockets of unused memory by sliding live objects down towards the low-address end of each 

heap segment, or moving them elsewhere, and then repairing any dangling pointers with corrected values. 

As shown in Figure 9-3, compacting the heap in this way collects available memory together into 

contiguous stretches and can have the additional positive side effect of maintaining object creation order in 

memory, which can improve locality of reference; by grouping all live objects close to each other, less 

virtual memory needs to be paged into the system as those objects are used. 

 

 
 

Figure 9-17. Compacting a heap 

Simple compacting collection is not used in the SSCLI implementation. Instead, a variation of the 

compacting mechanism is used, called copying collection, in which live objects are periodically moved into 

an entirely new heap, after which the old heap is discarded or recycled. This technique has several 

advantages over futzing with object placement within a single heap: because every object is copied into a 

new heap, the very simple allocation algorithm can be based on a high-water mark, and no elaborate fit-

finding tactics are needed. In addition, by compacting into a new heap, good virtual memory locality should 

result. The main drawback to compacting-and-copying collection strategies is the expense of copying 

objects and then fixing up references to the objects that have been moved (as well as the need for twice as 

much raw heap space). 

Actually, the expenses of copying can be reduced drastically (or at least amortized) by using an 

enhancement of the technique called generational collection, in which objects are divided into 

―generations‖ marked by the passage of time. Generational collection is more complex than simple mark-

and-sweep or compacting collection, but it has become the technique of choice for most systems, since the 
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partitioning involved results in shorter interruptions than using other techniques. Generational collection 

exploits the fact that objects have different lifetime characteristics—some live very short lives, some live 

very long lives—depending on what they are and how they are used. Objects also vary in size. By dividing 

the heap into zones that are designated to house objects that exhibit matching lifetime characteristics, and 

by then collecting these zones using frequencies or algorithms that minimize the cost of collection by 

exploiting the specificity of the zones, more efficient use of both processor and memory can result. Zones 

are collected at different times and at different frequencies, and thus the entire heap does not need to be 

scanned, nor need all objects be copied. 

When a pure generational approach is taken, objects are initially allocated in the youngest generation 

(which is called this because it houses the youngest objects). If they survive past a collection cycle, then 

they are promoted to an elder generation by copying them. The refinement of this technique over 

compacting collection is that objects in the youngest generation have a low survival rate, while objects in 

the oldest generation have a high survival rate. Because the objects are split into two distinct locations, 

different techniques can be used to scavenge for free memory. A noncopying, noncompacting collector 

works best for the elder generation because copying the survivors would be a lot of work for little gain. 

(Many objects survive in this generation, and fragmentation is low.) However, in the youngest generation, a 

compacting or copying approach is often the right choice. 

The Shared Source CLI uses exactly this approach to collection. It has a simple, two-generation collector, 

with added support for large object segregation. The younger generation is copy-collected, while the elder 

generation (and the large object heap that is conceptually part of the elder generation) is collected using a 

mark-and-sweep algorithm. Garbage collection is triggered by allocation volume or memory scarcity; when 

heap resources run low, the roots are traced, and either one or both generations are scavenged for memory. 

There is actually an entirely separate second garbage collector in the SSCLI distribution, 

which manages the lifetimes of components being used for cross-domain computation 

and distributed computing. These components are managed by a service that is part of the 

SSCLI remoting library. (The objects within this subsystem are also, of course, managed 

by the execution engine‘s regular garbage collector as well, once they have been released 

by the remoting layer.) A deep discussion of the algorithms used by the remoting library 

is beyond the scope of this book, but they use leases and a service that implements lease 

management. The code for both leases and the lease manager can be found in 

sscli20/clr/src/bcl/system/runtime/remoting. 

Garbage collection is well worth the complexity and the effort—it pays off handsomely in both program 

reliability and programmer productivity. However, since maintaining good application performance while 

using fully automatic memory management is complex, the design of the SSCLI‘s memory manager 

pervades nearly every aspect of the execution engine, from its runtime data structures to its JIT compiler. 

These mechanisms are the subject of the rest of this chapter. 

Object Allocation by Generation 

In the SSCLI, the garbage collector‘s heap is made up of one or more heap segments, which are blocks of 

memory procured from system virtual memory. Heap segments themselves are divided into various 

regions, whose layout is dynamically determined by demand for memory and the kinds of allocations being 

done. As memory is needed, the heap is expanded by either adding memory from reserves within the 

current heap segment or by adding entirely new segments. Initially, a single heap segment serves all needs. 

It is laid out as shown in Figure 9-4. 
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Figure 9-18. The heap is initially subdivided into two generations, reserved additional 

memory, and a large object area 

Heap segments begin with a heap_segment header, shown in Example 9-4. This header occupies the 

first region of the segment and is used to keep track of subregion boundaries, as well as additional segments 

created during execution. Both the initial heap_segment and the large object heap are created back-to-

back in a single allocation of virtual memory; note that the large object heap is not tracked as part of the 

heap_segment structure. 

Example 9-4. The heap_segment class (defined in clr/src/vm/gcsmppriv.h) 

 

class heap_segment 

{ 

public: 

    BYTE*           allocated; 

    BYTE*           committed; 

    BYTE*           reserved; 

    BYTE*           used; 

    BYTE*           mem; 

    heap_segment*   next; 

    BYTE*           plan_allocated; 

    BYTE*           padx; 

  

    BYTE*           pad0; 

#if ((SIZEOF_OBJHEADER+ALIGNFIXUP) % 8) != 0 

    BYTE            pad1[8 - ((SIZEOF_OBJHEADER+ALIGNFIXUP) % 8)]; 

#endif 

    plug            mPlug; 

}; 

Heap segments can be chained together, and each has an instance of the heap_segment class, followed 

directly by the actual heap, aligned appropriately for the local processor. The heap_segment header is 

utilized throughout the CLI code via inlined accessor functions; to obtain the memory being used for object 

storage in a segment, for example, the following function is used: 

 

    inline 

    BYTE*& heap_segment_mem (heap_segment* inst) 

    { 

      return inst->mem; 

    } 

These accessor functions are all declared along with their backing classes in gcsmppriv.h. A segment 

contains various, self-explanatory pointers to allocated memory, and it also has a field named used which 

points to the end of the currently initialized portion of the segment. (This is significant because the memory 

lying beyond the used pointer is known to be zero initialized and hence does not need to be zeroed when 

first used.) The other fields in heap_segment are used for calculating padding and offsets. Since the 

garbage collector views objects as nothing more than chunks of memory, there is a fair amount of pointer 

arithmetic required during access to the heap. To make this arithmetic efficient, quad-word alignment is 

used. 
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As already discussed, live objects are partitioned into two generations. Objects allocated within the 

quantum between two passes of the garbage collector are defined as being the same age, and once an object 

has survived for the length of this quantum without becoming garbage, it is promoted to elder status. 

Generational collectors operate on the assumption that elders do not need to be checked for liveness as 

often as their younger counterparts. Because of this, the younger generation is referred to as the ephemeral 

generation, since the younger the object, the more likely it is to become garbage. Although the SSCLI is 

configured to have just two generations, the code is written to be very general, and can easily be changed to 

accommodate more generations, as shown in Example 9-5. 

Example 9-5. The generation class (defined in clr/src/vm/gcsmppriv.h) 

 

class generation 

{ 

public: 

    // Don't move these first two fields without adjusting the references 

    // from the _  _asm in jitinterface.cpp. 

    alloc_context   allocation_context; 

    heap_segment*   allocation_segment; 

    BYTE*           free_list; 

    heap_segment*   start_segment; 

    BYTE*           allocation_start; 

    BYTE*           plan_allocation_start; 

    BYTE*           last_gap; 

    size_t          free_list_space; 

    size_t          allocation_size; 

  

}; 

An object‘s generation can be determined simply by comparing its address to the addresses of the 

ephemeral generation boundaries. Not surprisingly, the member fields of generation include a segment 

pointer and an allocation context, which is a small, zeroed out region of the segment from which objects are 

allocated. When the allocation context pointer exceeds its internal limit, the allocator will make a call to get 

another chunk of zeroed memory, which may trigger a collection. Also in the class are a free list and 

bookkeeping fields, the use of which will become more obvious when we talk about reclamation later in 

this chapter. 

As demand for memory grows, the boundaries of both generations change. The growth of the ephemeral 

generation is limited, since in the SSCLI this generation never spans more than one segment. However, if 

there is not enough space for new objects within the original heap_segment, the heap is expanded by 

adding additional segments to the elder generation. Because of expansion, the elder generation can 

eventually consist of many heap segments chained together. Within any of these additional heap segments, 

the oldest objects can usually be found at the lowest addresses, but the order may be scrambled because of 

the effects of mark-and-sweep garbage collection or because of the presence of pinned objects, which are 

objects that cannot be moved due to the existence of external pointers to their contents. 

To avoid polluting the ephemeral generation with pinned objects, generation zero is always created afresh 

after every collection. The memory that had belonged to the previous incarnation is either recycled into the 

segment‘s reserved memory or else is added to the memory already used by the elder generation. 

Understanding this detail should help understand why the generations are laid out in reverse order in the 

initial heap segment: generation zero follows generation one in memory to simplify the expansion of the 

generation one and reallocate generation zero from the reserve simple. 

Large Object Allocation 

Although it is convenient to think in terms of the garbage collector as a single heap partitioned into 

generations, the actual implementation of the SSCLI is not this simple. The performance impact of garbage 

collection can be huge, and it was important for implementers to capture opportunities to improve 

performance, when possible. The performance characteristics of the garbage collector and the execution 

engine are tightly interwoven, and because of this, the Shared Source CLI implementation employs a few 
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specialized strategies, the first of which is to treat very large objects differently than objects of more 

―normal‖ size. 

As previously explained, the garbage collector slices and dices its heap into multiple regions, reserving the 

large object heap for objects over a certain size. The large object heap itself is further subdivided into an 

area for objects that contain pointers to other objects and an area for objects that contain no pointers. Any 

object that doesn‘t contain internal pointers does not need to be scanned recursively when the roots are 

traced at collection time. Since in large objects the act of scanning for pointers can be very expensive, this 

segregation makes sense. The two heaps that result can be seen in the gc_heap class, which is shown in 

Example 9-6. 

Example 9-6. Large object features of the gc_heap class (excerpted from clr/src/vm/gcsmppriv.h) 

 

class gc_heap 

{ 

public: 

    static l_heap* make_large_heap (BYTE* new_pages, size_t size, BOOL managed); 

    static CObjectHeader* allocate_large_object (size_t size, 

                                    BOOL pointerp, alloc_context* acontext); 

protected: 

    static BYTE* allocate_in_older_generation (size_t size); 

    static l_heap* lheap; 

    static gmallocHeap* gheap; 

    static large_object_block* large_p_objects; 

    static large_object_block** last_large_p_object; 

    static large_object_block* large_np_objects; 

    static size_t large_objects_size; 

    static size_t large_blocks_size; 

  

    // many other fields and methods omitted 

A singleton instance of the gc_heap class manages both the large object heap and the heap segments used 

by the generational collector. To keep these separate, it implements two distinct methods for doing 

allocation: allocate and allocate_large_object. Beside the two lists of large objects—lheap, 

gheap, large_p_objects with internal pointers and large_np_objects without internal 

pointers—this class has other members that relate to special-casing large object allocation, including the 

threshold large_objects_size (defined in gc.h as 85,000 bytes) used to determine whether an object 

should be allocated in the large-object heap. 

The large-object heap itself is implemented using an open source malloc-style heap implementation, which 

can be found in gmheap.hpp. Since this heap does not implement compaction, a long-running process that 

has many large objects might experience some performance degradation from fragmentation of the heap. 

How does the allocator know whether the large object being created contains internal pointers? Objects are 

allocated based on their types, which are partially represented by a MethodTable at runtime (see Chapter 

5). When the MethodTable for a type is created from metadata, the metadata is examined for references 

to other types, and this is noted (along with whether the type qualifies for ―large object‖ status) in its flag 

bits. Metadata comes to the rescue once again. 

The Write Barrier 

It is not uncommon that the only live reference to an object is found in an object that lives in a different 

generation, a so-called cross-generational reference. By tracking which objects contain cross-generational 

references, and by visiting these objects when performing a trace, the collector can scan the heap for these 

root pointers very efficiently. The SSCLI‘s write barrier exists to facilitate exactly this approach. 

A write barrier, as the name implies, is an entity that detects writes into memory when they occur. Such a 

mechanism can be (and is) used for many different system-level purposes, including cache management 

and virtual memory features. When used in the SSCLI, the write barrier is used to watch for any writes into 

the heap of object references so that these heap-based roots can be located and so that pointers that refer to 
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them can be updated easily when their locations change. The write barrier narrows the amount of heap to be 

scanned during garbage collection. Without a write barrier, the entire heap would need to be scanned to 

correctly ferret out objects kept alive in the younger generation by intergenerational pointers, which would 

be very expensive. 

Since the CLI is a strongly typed execution environment with a carefully designed set of opcodes, all 

pointer manipulations done by a piece of CIL code can be caught during compilation and made to use the 

write barrier. Whenever the JIT compiler encounters an operation that stores a reference, it emits code not 

only to perform the store, but also code to update a carefully maintained bitmap called a card table, which 

reflects the pointer contents of the GC heap, as shown in Figure 9-5. (The origin of ―card table‖ might be 

colorful, but alas, it is unknown to the authors.) 

Card tables use 1 bit to represent 128 bytes of heap; the code in the SSCLI that implements the write barrier 

actually works at a coarser grain than this, updating 1 byte at a time, which means that in actuality the 

minimum unit tracked by the card table is a 1 KB region of the heap (128 bytes times 8 bits). The x86 

assembly code used for this can be found as OrMaskUP in clr/src/vm/i386/asmhelpers.asm and is 

implemented as a simple or instruction: 

 

    or dword ptr [ecx], edx 

 

 
 

Figure 9-19. A card table is a bit index for the GC heap 

If the pointer value being written refers to an object in the ephemeral generation (which is the only 

generation from which objects are copied), then the card table must be updated to reflect the location of this 

pointer. The bit location to be updated is obtained using the gcard_of function, and 0xFF is masked into 

it. Of course, this masking operation must correctly reflect the endian-ness of the processor. 

The JIT compiler emits a helper function whenever memory containing a reference to an object in the 

ephemeral generation is updated. This simple helper function, shown in simplified form in Example 9-8, 

first updates the pointer and then calls FastInterlockOr. 

Example 9-7. The JIT helper function that implements the write barrier (simplified from 

clr/src/vm/gcee.cpp) 

 

void JIT_WriteBarrier(Object **dst, Object *ref) 

{ 

  *dst = ref; 

  setCardTableEntryInterlocked(*(BYTE**)&dst, *(BYTE**)&ref); 

} 

There are several flavors of this helper function, but all are used in the same way. With the card table in 

place and being updated, the garbage collector uses it during collection to search for object references that 

are embedded in objects in the heap. For example, the function 

copy_through_cards_for_segments (which we will revisit shortly) uses this technique. The 

function, that scans every object in the elder generation designated by the write barrier as possibly updated, 
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takes a single parameter which is a callback function. This callback is invoked for each object found. Not 

every object found will qualify (or will even have contained pointers), but overscanning is a safe strategy 

to use, and the card table helps narrow the search. There is a corresponding function for large objects, 

named copy_through_cards_for_large_objects. 

A brick table is somewhat related to the card table; it is another interesting indexing structure and is 

maintained alongside the card table in gcsmp.cpp. Brick tables are arrays of 16-bit signed integers that 

cover the entire GC heap, much like a card table. Unlike the card table, which is a bitmap, each entry in a 

brick table can be one of three things: a 16-bit positive offset, a negative displacement within the brick 

table itself, or a special reserved value that is used as a flag. When the heap isn‘t being collected, a positive 

entry means that there is an object at that offset in the 2 KB range that the entry describes. A negative 

number, on the other hand, means that there is no object, but if you use the entry as a displacement in the 

brick table, backing up as many slots as specified, you will find an object in that position. The flag value is 

simply a marker that is used for initialization and large-object designation. Brick tables are used by the 

collector to locate objects on the heap, given a range of addresses. For example, during a scan of the elder 

generation using copy_through_cards_for_segments, the brick table is used to locate the first 

valid object in a region marked as updated in the write barrier via the find_first_object function. 

Both brick tables and card tables are kept up to date on the fly; much like a cache, they are not guaranteed 

to be completely consistent. 

Reclaiming Memory 

Reclamation in the SSCLI consists of two principal steps: the copying of promoted ephemeral objects into 

the elder generation, followed optionally by a sweep of the elder generation for dead objects. A copy 

collection performed without a sweep is called an ephemeral collection to contrast it to a full collection. For 

either kind of collection, an initial liveness trace is used to distinguish live from dead objects within the 

generations that have been condemned (designated for collection); generation zero is traced alone for 

ephemeral collection, while both generations are traced for full collection. 

The SSCLI garbage collector, like many of the runtime services, is heavily instrumented 

in logging . Not only does this help find and fix bugs, but it can also be very useful for 

understanding how it works. Try setting the COMPlus_LogLevel environment 

variable to 9 and the COMPlus_LogFacility environment variable to 0x80001 

(which is a combination of the flag for logging the roots found and the flag for logging 

collection itself) and both COMPlus_LogToConsole and COMPlus_LogEnable to 

1, to watch the garbage collector in action when running your programs. If you really 

want to go crazy, set COMPLus_GCtraceStart to 1, and you will see a live play-by-

play trace of every action. See sscli20/docs/techinfo/logging.html for detailed 

documentation on logging. 

To quickly and safely visit all objects during the trace, all threads running managed code are suspended 

(except, of course, for the thread performing the GC). Each thread is brought to a ―GC safe‖ place before 

being stopped by the execution engine and scanned for object references, as shown by the code in Example 

9-5. Of course, suspending all threads is a very expensive operation and shouldn‘t be done lightly. Many of 

the important implementation choices in building a garbage collector have to do with deciding when and 

how to interrupt the flow of the running program‘s execution, and the mechanism that the SSCLI uses to do 

this will be covered in more detail later in this chapter. 

Promoting Ephemeral Survivors 

The first step in any collection, after suspending all managed threads, is to promote all surviving live 

objects from the ephemeral generation into the elder generation by copying them. The promotion algorithm 

is straightforward: live objects are located using a recursive scan, copied into the elder generation, and 

finally, any references to these copied objects are then updated to reflect their new locations. The code for 
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promoting objects to the elder generation can be found in the first half of the copy_phase method, 

shown in Example 9-9. 

Example 9-8. The first step in garbage collection is to promote the live objects in generation zero to the 

elder generation (extracted from gc_heap::copy_phase in clr/src/vm/gcsmp.cpp) 

 

  // Promote any objects referred to by cross-generational pointers 

  copy_through_cards_for_segments (copy_object_simple_const); 

  copy_through_cards_for_large_objects (copy_object_simple_const); 

  

  // Promote any objects found on the stack or in the handle table 

  CNameSpace::GcScanRoots(GCHeap::Promote, condemned_gen_number, 

                          max_generation, &sc, 0); 

  CNameSpace::GcScanHandles(GCHeap::Promote, condemned_gen_number, 

                            max_generation, &sc); 

  

  // Promote any object referred to from the finalization queue 

  finalize_queue->GcScanRoots(GCHeap::Promote, heap_number, 0); 

First, the elder generation and the large-object heap are scanned for references in the ephemeral generation. 

If such roots are found, each object containing references is marked as live (for use by later mark-and-

sweep scans), and then the object(s) to which they refer are copied, using the 

copy_object_simple_const callback function. After this, GCScanRoots walks the stack for each 

managed thread, calling GCHeap::Promote for ephemeral object references that it finds. 

The function GCScanHandles demands more explanation. Besides the heap and the stacks, there is an 

additional control structure called the handle table that needs to be traced in the SSCLI. The execution 

engine and other unmanaged code carefully track the differences between memory that is part of the 

garbage-collected heap and memory that came from other sources. To do this, they use object handles to 

hold references to managed component instances. 

To facilitate the tracing of these handles, they are kept in tables associated with the application domain in 

which the referenced object resides. (Handles are implemented in ObjectHandle.cpp in the 

sscli20/clr/src/vm directory.) Since these tables contain pointers to heap-allocated memory, they are traced 

as part of the garbage collector‘s search for the roots. However, since code that knows nothing about the 

semantics of garbage collection may be using the memory referred to in these handles, the handles 

themselves come in different flavors, each named after the client behavior that they have been designed to 

accommodate. They are listed in Example 9-10, along with the macros that unmanaged code uses to 

manipulate them. 

Example 9-9. Common handle types and macros for manipulating them (ObjectHandle.h in 

sscli20/clr/src/vm) 

 

#define ObjectFromHandle(handle)                   HndFetchHandle(handle) 

#define StoreObjectInHandle(handle, object)        HndAssignHandle(handle, 

object) 

#define InterlockedCompareExchangeObjectInHandle(handle, object, oldObj) \ 

            HndInterlockedCompareExchangeHandle(handle, object, oldObj) 

#define StoreFirstObjectInHandle(handle, object)   HndFirstAssignHandle(handle, 

object) 

#define ObjectHandleIsNull(handle)                 HndIsNull(handle) 

#define IsHandleNullUnchecked(pHandle) 

HndCheckForNullUnchecked(pHandle) 

  

  

#define HNDTYPE_DEFAULT                         HNDTYPE_STRONG 

#define HNDTYPE_WEAK_DEFAULT                    HNDTYPE_WEAK_LONG 

#define HNDTYPE_WEAK_SHORT                      (0) 

#define HNDTYPE_WEAK_LONG                       (1) 

#define HNDTYPE_STRONG                          (2) 

#define HNDTYPE_PINNED                          (3) 
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In the same way that managed code shares the stack with unmanaged code, managed-heap memory must be 

capable of holding pointers to unmanaged memory and resources, and unmanaged memory should be able 

to hold pointers into the managed heap. The different handle types defined by these macros represent 

different usage scenarios. 

Strong references are ―normal‖ object references—they represent a pointer to memory, this pointer can be 

moved as part of a compacting operation, and the pointer will always be traced. Pinned references, on the 

other hand, are strong references that would be unsafe to move for some reason. In particular, pinned 

references are often used to interoperate with code that is unaware of the conventions of the execution 

engine; a pinned reference being used in this way will always need to stay in the same place so that the 

external code can safely access the memory location directly. This, of course, prevents the memory from 

being available for relocation; an object in this state can prevent compaction from consolidating unused 

areas in a heap segment into a single range. Fortunately, pinning is relatively infrequent. Weak references 

are object references that track, but do not keep an object alive. They are useful when implementing 

finalization and other runtime services, and there are actually two different types of weak reference: weak 

short and weak long. (We will talk more about the specifics of these in the ―Finalization‖ section of this 

chapter. They are exposed through the System.WeakReference type in the Base Class Libraries, 

which can be found in clr/src/BCL/System/WeakReference.cs.) 

Returning once again to the promotion algorithm, the final place that is searched for ephemeral roots is the 

finalization queue. Any objects that are referred to from objects awaiting finalization must be kept alive. 

Even if the finalization queue is the only valid reference, they cannot be eliminated until finalization has 

occurred. 

Relocation Fix-Up 

After ephemeral objects have been copied, outstanding references to them must be updated. The code that 

does this is shown in Example 9-11. 

Example 9-10. After ephemeral objects have been copied, references to them must be updated (extracted 

from gc_heap::copy_phase in clr/src/vm/gcsmp.cpp) 

 

  

// Fix up cross-generational pointers 

copy_through_cards_for_segments (get_copied_object); 

copy_through_cards_for_large_objects (get_copied_object); 

  

// Fix up references on the stack and in the handle table 

CNameSpace::GcScanRoots(GCHeap::Relocate, condemned_gen_number, 

                        max_generation, &sc); 

CNameSpace::GcScanHandles(GCHeap::Relocate,condemned_gen_number, 

                          max_generation, &sc); 

  

// Fix up references in objects awaiting finalization 

finalize_queue->RelocateFinalizationData (condemned_gen_number, 1, FALSE, __this); 

The same root locations that were visited during the trace are now visited to update references that were 

found. During the original trace, when objects were being copied from the ephemeral generation into the 

elder generation, the object instances being moved were updated so that their abandoned syncblock indexes 

no longer contained valid integers but rather forwarding addresses for the new copies. (Note that this 

implementation choice introduces a hard requirement: the syncblock index must be able to contain a 

pointer.) As the relocation phase unfolds in Example 9-?, each of the original references is found once 

again, and as they are found, a call to CObjectHeader::GetRelocated is used to update their 

contents with the forwarding value from the old, now-invalid object: 

 

    if (!IsPinned()) 

      return (BYTE*)*(((DWORD**)this)-1); 

    else 

      return (BYTE*)this; 
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After each reference is visited and updated with a forwarding address, all references will refer to object 

locations in the elder generation. At this point, the ephemeral generation can be recycled or added to the 

elder generation if pinned objects are found. With the exception of those pinned objects (which do not 

move and hence need no updating), all ephemeral objects have been moved. 

Marking the Elder Generation 

The SSCLI garbage collector uses a mark-and-sweep algorithm as its reclamation strategy for the elder 

generation. The tracing of live objects follows a similar path as did the ephemeral generation, although 

cross-generational references does not need to be visited, since the objects containing these references will 

have had their mark bits set as part of the preceding copying collection. Example 9-12 is a simplified 

version of the code that performs the elder generation trace. 

Example 9-11. Marking the elder generation (extracted from gc_heap::mark_phase in 

clr/src/vm/gcsmp.cpp) 

 

// Set up accumulator structure 

reset_mark_stack(); 

  

// Mark objects referred to from the stacks or the handle tables 

CNameSpace::GcScanRoots(GCHeap::Promote, condemned_gen_number, 

                        max_generation, &sc, 0); 

CNameSpace::GcScanHandles(GCHeap::Promote, condemned_gen_number, 

                          max_generation, &sc); 

  

// Mark objects referred to from the finalization queue 

finalize_queue->GcScanRoots(GCHeap::Promote, heap_number, 0); 

This code is nearly identical to what we saw for the ephemeral generation. Note that the trace uses the same 

GCHeap::Promote callback function that was used during copying. Rather than using 

copy_object_simple_const to do the work, however, during the mark phase, this callback uses 

mark_object_simple to recursively set the mark bit on live objects. The call to 

reset_mark_stack sets up a simple stack structure that is used as an accumulator during this recursive 

visit. Stacks, handle tables, and the finalization queue are all marked, just as they were for the ephemeral 

generation. 

After a number of calls that perform bookkeeping (which we will examine at the end of this chapter), the 

sweeping phase is begun with a call to sweep_large_objects, which removes any dead large objects 

from the two linked lists containing large objects. At the conclusion of this function, all live objects in the 

elder generation, whether newly copied, in the large object heap, or already resident, will have their mark 

bit set for use during reclamation. 

Reclaiming Memory by Sweeping 

The gc_heap::sweep_phase function performs the actual reclamation of memory, during which dead 

objects are converted into free list entries, ready to be used for the allocation of new objects in the elder 

generation. The ephemeral generation, since it is created anew after every garbage collection, can use a 

simple and fast allocation technique: new objects are appended from space at the end of its heap. The elder 

generation, however, does not move the objects that it contains and, because of this, must use a more 

complicated allocation algorithm. In this case, fragmentation is avoided by coalescing dead objects together 

when possible (when they are contiguous), and then linking these dead zones together into a freelist, which 

is used for first-fit allocation. 

The SSCLI uses a nonobvious strategy for constructing this freelist. Since objects lie tightly packed in the 

heap, and since the garbage collector uses knowledge of this to traverse the heap, it is desirable for dead 

zones to appear to contain valid objects, even when these regions have been constructed through the 

coalescence of multiple instances. To do this, the garbage collector converts the instances found in these 

dead zones into a single instance of a reserved type used specifically to represent entries in the freelist. This 
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type is held in the global variable g_pFreeObjectMethodTable. Since each instance can be a 

different length, the type is a subtype of System.Array. You can see how this type is constructed in 

InitializeGarbageCollector, part of which is shown in Example 9-13. 

Example 9-12. Constructing the special freelist MethodTable (excerpt from InitializeGarbageCollector in 

clr/src/vm/ceemain.cpp) 

 

// Build the special Free Object used by the Generational GC 

g_pFreeObjectMethodTable = 

    (MethodTable *) new (nothrow) BYTE[sizeof(MethodTable) - sizeof(SLOT)]; 

  

if (g_pFreeObjectMethodTable == NULL) 

  return (E_OUTOFMEMORY); 

  

// As the flags in the method table indicate there are no internal references 

// in this filler object, which means that there is no gc descriptor, which in 

// turn means that there is no need to adjust GCDesc. 

  

// Since the instances need to vary in size, they should be Arrays 

g_pFreeObjectMethodTable->m_BaseSize = ObjSizeOf (ArrayBase); 

  

// This MethodTable needs no metadata - it is internal to the execution engine 

g_pFreeObjectMethodTable->m_pEEClass = NULL; 

  

g_pFreeObjectMethodTable->m_wFlags = MethodTable::enum_flag_Array | 1; 

Using the g_pFreeObjectMethodTable to identify dead zones, and the array size field that occupies 

the first word of instance data to hold the length of each zone, the heap remains tightly packed and 

traversable. The second word of instance data is then used by the gc_heap::scavenge_phase 

function (called from copy_phase) to link freelist objects together. All of this is shown schematically in 

Figure 9-6. 

 

 
 

Figure 9-20. Dead objects in the elder generation are coalesced and threaded together to 

make up the freelist 

The code that performs the final sweep, and sets up the pointers that link the freelist objects together, is 

shown in Example 9-14 and is abridged from clr/src/vm/gcsmp.cpp. 

Example 9-13. Sweeping the elder generation 

 

void gc_heap::sweep_phase (int condemned_gen_number) 

{ 

  generation*  condemned_gen = generation_of (condemned_gen_number); 

  

  // Reset the free list 
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  generation_free_list (condemned_gen) = 0; 

  generation_free_list_space (condemned_gen) = 0; 

  

  // Elder generation can have multiple heap segments, which are swept in order. 

  heap_segment*  seg = generation_start_segment (condemned_gen); 

  BYTE*  end = heap_segment_allocated (seg); 

  BYTE*  first_condemned_address = generation_allocation_start (condemned_gen); 

  

  // Start with the first object on the heap 

  BYTE*  x = first_condemned_address; 

  

  // The "plug" is a contiguous ranges of live objects. The "end of the plug" 

  // refers to the start of a dead zone. When starting the traversal, 

  // the only safe hypothesis is that the first object is garbage, making 

  // the end of the plug equal to the current object. Plug_end will normally 

  // point to the last live object in the last run of live objects. 

  BYTE*  plug_end = x; 

   

  while (1) { 

    // Whenever the end of the plug coincides with the end of the segment, 

    // move to the next segment, if there is one. 

    if (x >= end) { 

      assert (x == end); 

      heap_segment_allocated (seg) = plug_end; 

      if (heap_segment_next (seg)) { 

        seg = heap_segment_next (seg); 

        end = heap_segment_allocated (seg); 

        plug_end = x = heap_segment_mem (seg); 

        continue; 

      } else { 

        break; 

      } 

    } 

  

    if (marked (x)) { 

      // Whenever a live (marked) object is found, start a new "plug" 

      BYTE*  plug_start = x; 

  

      // Thread_gap builds the freelist to reflect the space between the end 

      // of the last plug and the newly found live object. It also resets the 

      // brick table. This, and clearing the marked and pinned bits, is the 

      // real work of the sweep phase. 

      thread_gap (plug_end, plug_start - plug_end); 

  

      // Now build up the new plug, starting from first marked object. 

      BYTE* xl = x; 

      while (marked (xl) && (xl < end)) { 

        // While building the plug, clear the mark and pin bits, since this is 

        // the last time that they are used during this collection cycle. 

        clear_marked_pinned (xl); 

        xl = xl + Align (size (xl)); 

      } 

  

      // Reset x and plug_end for next iteration before leaving 

      x = xl; 

      plug_end = x; 

  

    } else { 

      // Skip over objects that are not marked (which make up the free list) 

      // There should normally be only one, of type g_pFreeObjectMethodTable. 

      BYTE* xl = x; 

      while ((xl < end) && !marked (xl)) { 

        xl = xl + Align (size (xl)); 
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      } 

      // Reset x to be last dead object in run of dead objects. 

      x = xl; 

    } 

  // Continue the traversal 

  } 

} 

The sweep_phase function does three important things: it clears the mark and pin bits for live objects, it 

threads the freelist together, and finally, it cleans up the brick table to reflect the disappearance of dead 

objects that were converted into free space. 

At the conclusion of the scan, the mark and pin bits, set during the trace, must be cleared, since they are 

masked into the same memory location that holds an object‘s MethodTable pointer during normal 

execution. Because these bits take up space in a value that is normally interpreted directly as a pointer, it is 

critical that the bits be zeroed so that the address is not corrupted. 

It is also important for the elder generation allocator to be able to walk the freelist, looking for blocks of 

memory when new objects are allocated. This scan is enabled by writing a pointer value into the instance 

data of freelist objects that points to the next entry. This pointer value follows the array size and occupies 

the second word of instance data, and is used to find the next available block of memory. The freelist is 

reconstructed after every mark-and-sweep cycle, to fold newly created gaps into the list. 

By this point, it should be obvious that a tracing garbage collector needs to be able to find the complete set 

of root objects to perform its trace. As you can see from the previous code, the roots for the SSCLI can be 

found in the process stacks, the heaps, the handle table, and the finalization queue. We‘ve also seen the 

code that handles intergenerational references, which are references that emanate from fields within 

reference-typed objects. There is a final form of reference that is also a source of roots: interior pointers. 

The SSCLI can handle stack-based interior pointers; it cannot refer to locations on the heap. Compilers can 

pass references to these interior pointers as byref parameters in the same places that object references to 

heap-allocated types can be passed. 

Structuring Metadata for Collection 

We have already touched on object layout in other chapters, but we should now look at it again in more 

detail. All object instances begin with a pointer to their method table; as we have seen, the space allocated 

for this pointer is overloaded during garbage collection to contain two critical bit flags, one for marking the 

object as live and the other for marking the object as pinned. It is guaranteed that the normal activity of the 

execution engine will be suspended during a collection, leaving the collector free to monkey around with 

memory. Because of this, the garbage collector can get away with overlaying bit flags directly; the pointer 

itself will always contain zeros in the necessary locations because of the way that memory is laid out, and 

the execution engine will not try to redirect through the pointer during collection. 

The MethodTable, as we saw in Chapter 5, contains more than just a table of method pointers. It is also 

a useful place to store additional information related to garbage collection that is per-type rather than per-

instance. As an example of this kind of per-type information, a set of flag bits for MethodTable can be 

seen in Example 9-15. 

Example 9-14. MethodTable flags include garbage collection information (defined in clr/src/vm/class.h) 

 

    enum 

    { 

        enum_flag_Array                 =    0x10000, 

        enum_flag_large_Object          =    0x20000, 

        enum_flag_ContainsPointers      =    0x40000, 

        enum_flag_ClassInited           =    0x80000, 

        enum_flag_HasFinalizer          =   0x100000, 

        enum_flag_Sparse                =   0x200000, 

        enum_flag_Shared                =   0x400000, 
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        enum_flag_Unrestored            =   0x800000, 

  

        enum_TransparentProxy           =  0x1000000, 

        enum_flag_SharedAssembly        =  0x2000000, 

        enum_flag_NotTightlyPacked      =  0x4000000, 

  

        enum_CtxProxyMask               = 0x10000000, 

        enum_InterfaceMask              = 0x80000000, 

    }; 

Both the flag for finalization and the flag used to designate objects with contained object references are 

checked during collection. The large object flag is used by the SSCLI only for debugging; the large object 

allocator uses a value that is defined in gc.h to determine membership in this set. The information about 

proxies is also used during some collection phases, since proxies do not have instance data. 

MethodTable can also contain data that is located at a negative offset to its this pointer, in the same 

way that object instances were shown to store their syncblock index at a negative offset in Chapter 5. The 

variable-length data associated with MethodTable, if present, consists of an instance of the 

GCDescSeries class, seen in Example 9-16, which describes the location of object references within 

instances of the type. (This information is per-type rather than per-instance.) 

Example 9-15. The GCDesc structure (defined in clr/src/vm/gcdesc.h) 

 

struct val_serie_item 

{ 

    HALF_SIZE_T nptrs; 

    HALF_SIZE_T skip; 

    void set_val_serie_item (HALF_SIZE_T nptrs, HALF_SIZE_T skip) 

    { 

        this->nptrs = nptrs; 

        this->skip = skip; 

    } 

}; 

  

class CGCDescSeries 

{ 

public: 

    union 

    { 

        size_t seriessize;              // adjusted length of series 

        val_serie_item val_serie[1];    // coded serie for value class array 

    }; 

  

    size_t startoffset; 

  

  // class continues 

The garbage collector relies on the information in the CGCDesc to locate object references that are stored 

in instance variables and arrays. To see how it is used, consider the go_through_object macro in 

Example 9-17. 

Example 9-16. go_through_object uses CGCDesc to find contained pointers (defined in 

clr/src/vm/gcsmp.cpp) 

 

#define go_through_object(mt,o,size,parm,exp)                               \ 

{                                                                           \ 

    CGCDesc* map = CGCDesc::GetCGCDescFromMT((MethodTable*)(mt));           \ 

    CGCDescSeries* cur = map->GetHighestSeries();                           \ 

    CGCDescSeries* last = map->GetLowestSeries();                           \ 

                                                                            \ 

    if (cur >= last)                                                        \ 

    {                                                                       \ 
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        do                                                                  \ 

        {                                                                   \ 

            BYTE** parm = (BYTE**)((o) + cur->GetSeriesOffset());           \ 

            BYTE** ppstop =                                                 \ 

                (BYTE**)((BYTE*)parm + cur->GetSeriesSize() + (size));      \ 

            while (parm < ppstop)                                           \ 

            {                                                               \ 

                {exp}                                                       \ 

                parm++;                                                     \ 

            }                                                               \ 

            cur--;                                                          \ 

                                                                            \ 

        } while (cur >= last);                                              \ 

    }                                                                       \ 

    else                                                                    \ 

    {                                                                       \ 

        SSIZE_T cnt = (SSIZE_T)map->GetNumSeries();                         \ 

        BYTE** parm = (BYTE**)((o) + cur->startoffset);                     \ 

        while ((BYTE*)parm < ((o)+(size)-plug_skew))                        \ 

        {                                                                   \ 

            for (SSIZE_T __i = 0; __i > cnt; __i--)                         \ 

            {                                                               \ 

                HALF_SIZE_T skip =  cur->val_serie[__i].skip;               \ 

                HALF_SIZE_T nptrs = cur->val_serie[__i].nptrs;              \ 

                BYTE** ppstop = parm + nptrs;                               \ 

                do                                                          \ 

                {                                                           \ 

                   {exp}                                                    \ 

                   parm++;                                                  \ 

                } while (parm < ppstop);                                    \ 

                parm = (BYTE**)((BYTE*)parm + skip);                        \ 

            }                                                               \ 

        }                                                                   \ 

    }                                                                       \ 

} 

This macro walks through the pointer series contained in the CGCDesc instance to locate contained object 

references and is used when tracing roots that emanate from cross-generational pointers. The CGCDesc is 

also used when tracing the stack; when a value type or an array is encountered, the stackwalk uses it to find 

any interior references that need to be added to the mark set. The CGCDesc runtime structure is filled in 

when the MethodTable is initially populated; see the BuildMethodTable method of EEClass in 

class.cpp for the gory details. 

Scheduling Collection 

We‘ve already seen the JIT compiler‘s role in maintaining the write barrier on behalf of the garbage 

collector. The compiler has another equally important role to play with regard to garbage collection 

scheduling in the SSCLI. Garbage collection, although it is triggered by the allocator running out of space, 

can occur only when all threads are at safe points in their execution and yield control to the collector. In 

Rotor, your thread will trigger a GC only when it asks for a collection explicitly, when it performs an object 

allocation, or else when it is running JIT-compiled code that polls. The last case involves generating calls 

from within the JIT compiler that offer to yield the thread if necessary. The helper function that the JIT 

inserts to implement polling is shown in Example 9-18. 

Example 9-17. The JIT compiler marks good places to perform a collection (summarized from 

clr/src/vm/jithelpers.cpp) 

 

void JIT_PollGC() 

{ 

    FC_GC_POLL_NOT_NEEDED(); 



Chapter 9: Managing Memory Within the Execution Engine  | 254 

 

    Thread  *thread = GetThread(); 

    if (thread->CatchAtSafePoint())    // Does someone wants this thread stopped? 

    { 

        HELPER_METHOD_FRAME_BEGIN_NOPOLL();    // Set up a frame 

        CommonTripThread();         // Indicate we are at a GC safe point 

        HELPER_METHOD_FRAME_END(); 

    } 

} 

The JIT emits calls to this trap in places that might cause a piece of code to take a long time to complete. It 

uses one simple rule to place these calls: trap at all backward branches in the execution path (conditional 

branches, jumps with negative offsets, or leave operations). CommonTripThread indicates to the 

thread-scheduling machinery that it would be safe to suspend the thread and perform a collection. For 

example, consider the following simple C# application: 

 

    class MainApp { 

      public static void Main() { 

        int i = 0; 

        do { 

          i++; 

        } while (i < 1000); 

      } 

    } 

When compiled using the JIT compiler in the SSCLI, the x86 code for the loop portion (extracted using the 

SOS debugger extension that ships as part of the SSCLI distribution) is as follows: 

 

    02d42d3b e2fc             loop    02d42d39 

    02d42d3d 33c0             xor     eax,eax 

    02d42d3f 8945f0           mov     [ebp-0x10],eax 

    02d42d42 8b45f0           mov     eax,[ebp-0x10] 

    02d42d45 50               push    eax 

    02d42d46 b801000000       mov     eax,0x1 

    02d42d4b 59               pop     ecx 

    02d42d4c 03c1             add     eax,ecx 

    02d42d4e 8945f0           mov     [ebp-0x10],eax 

    02d42d51 8b45f0           mov     eax,[ebp-0x10] 

    02d42d54 50               push    eax 

    02d42d55 b8e8030000       mov     eax,0x3e8 

    02d42d5a 50               push    eax 

    02d42d5b b8dbd43779       mov     eax,0x7937d4db 

    02d42d60 ffd0             call    eax (mscorejt!JIT_PollGC) 

    02d42d62 58               pop     eax 

    02d42d63 59               pop     ecx 

    02d42d64 3bc8             cmp     ecx,eax 

    02d42d66 0f8cd6ffffff     jl      02d42d42 

Don‘t fret if you don‘t know x86 assembler. Because the do loop had a backwards branch at the while 

keyword, the compiler emitted this polling operation into the instruction stream to ensure timely garbage 

collection. 

When the JIT compiler emits traps, it is asserting that the code is at a safe point, and that it has made sure 

that the scratch registers do not contain any object references. In addition, if collection is triggered 

immediately after a method return instruction that returns an object reference, it must be sure to protect the 

exposed object reference from being incorrectly scavenged. 
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Finalization 

There is an obvious problem with using automatic memory management in conjunction with pointers to 

unmanaged resources: when components hold references to nonmanaged resources that need to be 

explicitly disposed of, it is necessary to make sure that the resource is disposed of before the object is 

collected. The CLI supports a concept called finalization to solve this problem. Finalizable objects are 

placed on a special weak reference list when created. The collector monitors this list and when all strong 

references to a finalizable object are released, moves the reference from the weak list to the finalization 

queue, which continues to keep the object alive. (We saw the finalization queue appear in numerous scan 

examples earlier in this chapter.) The finalization thread will go though the list of objects in a lazy fashion 

and call the finalization method on each object. If an object does not become reachable again as a result of 

being finalized (remember, arbitrary code is being run within the finalization method that can reestablish 

references!), the finalization reference will be released, and the object will be collected in a normal fashion. 

One interesting issue for programmers is that garbage collection happens at unpredictable 

times, depending on the algorithm and the load. Because of this, it is sometimes desirable 

to go beyond finalization and revert to an old-fashioned disposal pattern, in which 

programmers are required to explicitly ―close‖ resources by calling a Dispose method 

directly. The code for the Base Class Libraries that is contained in sscli20/clr/src/bcl uses 

this convention in many places, and it is well documented in the .NET SDK 

documentation. 

To make a component eligible for finalization, it should override the Object.Finalize method, as in 

Example 9-19. (In C#, finalization is done using the object destructor syntax, which produces code that 

overrides Finalize.) The Finalize method can have a negative impact on performance, however, 

since there is extra bookkeeping involved. Because of this, the mechanism should be used only when 

necessary. 

Example 9-18. Adding a destructor to the echo component will trigger its finalization 

 

  ~ Echo { 

        System.Console.WriteLine("Echo component is finalizing!"); 

        // if any external resources were being held, release here 

    } 

The C# compiler turns the destructor body into a method named Finalize that has the correct signature. 

But how is this method called at the correct time? The heart of the finalization thread, which watches for 

objects that are ready for finalization, is shown in Example 9-20. 

Example 9-19. The SSCLI finalization loop (excerpt from clr/src/vm/gcee.cpp) 

 

FinalizerThread->SetBackground(TRUE); 

BOOL noUnloadedObjectsRegistered = FALSE; 

  

while (!fQuitFinalizer) { 

  // Wait for work to do... 

  FinalizerThread->EnablePreemptiveGC(); 

  WaitForFinalizerEvent (GCHeap::hEventFinalizer); 

  

  // The finalizer thread is a good place to do small work items 

  if (FinalizerThread->HaveExtraWorkForFinalizer()) { 

    FinalizerThread->DoExtraWorkForFinalizer(); 

  } 

  

  FinalizeAllObjects(NULL, 0); 

  

  // Schedule any objects from an unloading app domain for finalization 

  // on the next pass, even if they are reachable. It may take several passes 



Chapter 9: Managing Memory Within the Execution Engine  | 256 

  // to complete the unload, if new objects are created during finalization. 

  if (GCHeap::UnloadingAppDomain != NULL) { 

    if (!FinalizeAppDomain(GCHeap::UnloadingAppDomain, 

                           GCHeap::fRunFinalizersOnUnload)) { 

      if (!noUnloadedObjectsRegistered) { 

      // There is nothing left to schedule.  However, there are 

      // possibly still objects left in the finalization queue. 

      // We might be done after the next pass, assuming 

      // we don't see any new finalizable objects in the domain. 

      noUnloadedObjectsRegistered = TRUE; 

    } else { 

      // We've had 2 passes seeing no objects - we're done. 

      GCHeap::UnloadingAppDomain = NULL; 

      noUnloadedObjectsRegistered = FALSE; 

    } 

  } else { 

    noUnloadedObjectsRegistered = FALSE; 

  } 

  

  // Anyone waiting to drain the queue can now wake up.  Note that there is a 

  // race in that another thread starting a drain, as we leave a drain, may 

  // consider itself satisfied by the drain that just completed.  This is 

  // acceptable. 

  SetEvent(GCHeap::hEventFinalizerDone); 

} 

Note that reclamation will require at least two garbage collection cycles. On the first pass, objects from the 

finalization queue that are ready for finalization are detected and marked as ready for finalization. In the 

interim, the finalization thread becomes active and calls FinalizeAllObjects, which ultimately 

results in a call to the CallFinalizer method on the MethodTable class. This, in turn, will cause the 

object‘s Finalize method to be called from the context of the finalizer thread, as shown in Example 9-

21. At this point, a future garbage collection will find the dead finalized objects, since all references, both 

weak and strong, have been eliminated. (The object is no longer in the queues, nor anywhere else in the GC 

root set.) 

Example 9-20. Constructing the call to the finalizer (defined in clr/src/vm/methodtable.cpp) 

 

void MethodTable::CallFinalizer(Object *obj) 

{ 

    MethodTable *pMT = obj->GetMethodTable(); 

    if (pMT == g_pThreadClass) 

    { 

        // Finalizing Thread object requires ThreadStoreLock.  It is expensive if  

        // we keep taking ThreadStoreLock.  This is very bad if we have high 

retiring 

        // rate of Thread objects. 

        // To avoid taking ThreadStoreLock multiple times, we mark Thread with 

TS_Finalized 

        // and clean up a batch of them when we take ThreadStoreLock next time. 

 

        // To avoid possible hierarchy requirement between critical finalizers, we 

call cleanup 

        // code directly. 

        CallFinalizerOnThreadObject(obj); 

        return; 

    } 

 

    // Notify the host to setup the restricted context before finalizing each object 

    HostExecutionContextManager::SetHostRestrictedContext(); 

 

    // Determine if the object has a critical or normal finalizer. 

    BOOL fCriticalFinalizer = pMT->HasCriticalFinalizer(); 
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    // There's no reason to actually set up a frame here.  If we crawl out of the 

    // Finalize() method on this thread, we will see FRAME_TOP which indicates 

    // that the crawl should terminate.  This is analogous to how KickOffThread() 

    // starts new threads in the runtime. 

    SLOT funcPtr = pMT->GetSlot(g_pObjectFinalizerMD->GetSlot()); 

 

    OBJECTREF orThis = ObjectToOBJECTREF(obj); 

    GCPROTECT_BEGIN(orThis); 

    MethodDescCallSite objectFinalizer(g_pObjectFinalizerMD, &orThis, TypeHandle(), 

      fCriticalFinalizer); 

 

    ARG_SLOT arg = ObjToArgSlot(orThis); 

    objectFinalizer.Call(&arg); 

} 

Since the finalization method is standard, its MethodDesc can be shared, and it is stored in a static 

variable. After many marks and moves, the object is told to eviscerate itself, and life goes on. 

There is one final wrinkle to finalization, which has to do with object handles. Objects that are being 

tracked using weak handles have two options with regard to their finalization behavior. In particular, since 

there is latency involved with objects resting in the finalization queue, it is possible to resurrect objects that 

had been eligible for collection. Of course, these objects may or may not have had their Finalize 

methods called. To give programmers control over this, there are two different flavors of weak handles—

weak short and weak long. Weak long handles are designed to track resurrection, while weak short do not. 

In Example 9-22, we revisit the copy_phase method one last time to see how handles are checked (there 

is similar code in mark_phase). After objects have been left for dead, weak short handles can be cleaned 

up, and the dead objects must be added to the finalization queue if necessary. This code shows where these 

bookkeeping activities are performed. 

Example 9-21. Finalization housekeeping (extracted from gc_heap::copy_phase in clr/src/vm/gcsmp.cpp) 

 

  // After promotion check to see whether short weak pointers can be eliminated 

  CNameSpace::GcShortWeakPtrScan(condemned_gen_number, max_generation, &sc); 

  

  // After promotion, check for objects that can now be finalized 

  finalize_queue->ScanForFinalization (condemned_gen_number, 1, FALSE, __this); 

Summary 

We‘ve seen many ways in which Rotor provides automatic memory management on behalf of managed 

code. The JIT compiler colludes with the code manager (for stack walking) and the metadata system to 

track every object reference that exists in code being managed by the execution engine. Any object instance 

that is in use will have at least one outstanding reference to it; because of this, instances that are no longer 

needed can be detected by recursively ―tracing the roots,‖ or walking all known live references. The 

difference between the complete set of object references and the set of live references yields garbage, or 

memory that can be reclaimed. 

Rotor uses a hybrid generational copying strategy for memory reclamation. When an object is allocated, the 

new instance is classified as either a normal object or a large object. Large objects are allocated from a 

special pool of memory and are managed as a simple linked list. Normal objects are allocated first within 

the ephemeral generation, a compact heap that uses a fast and simple allocation scheme. Instances with 

short lifecycles can come and go in this generation during the span of a single collection cycle; since the 

heap that backs the generation is fully reallocated on every cycle, their memory is reclaimed as old 

instances are overwritten. To avoid clobbering live objects, any object in the ephemeral generation that is 

found to be live when collection occurs has new space allocated for it in the elder generation and is 

relocated. Elder objects are never again moved; objects in this generation that are no longer needed are 

discovered during tracing and moved onto a freelist, from which their space can be recycled. 
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The process of finding root references and tracing from them is complex but fascinating. The runtime stack, 

since it holds variables and parameters (as well as internal object instances such as the security object), is a 

fertile source of roots. The JIT compiler, as it computes the layout of method activation records, notes 

where object references will occur in a method‘s activation record. This information, along with similar 

information provided by frames on the stack, is used by the garbage collector when it is seeking live 

objects. The objects themselves can also contain subreferences. When type metadata is loaded and memory 

layout is computed, the class loader doing the work builds descriptions of the locations at which object 

references will be found within the type being loaded. This information is used by the garbage collector as 

it searches for live objects. 

The heap used by the garbage collector is also a source of roots. The collector keeps several indexing 

structures, known as brick tables and card tables, to accelerate the process of scanning the heap for live 

objects. These indexes are maintained not only during garbage collection, but also at runtime. The JIT 

compiler assists in this process by emitting code that maintains a write barrier: every time an object 

reference is assigned a new value from managed code, the emitted code records this fact in the card table 

on behalf of the garbage collector. Using cards and bricks, the heap can be scanned efficiently. 

Other sources of roots are the handle tables that belong to application domains and the finalization queue. 

During collection, these are visited and scanned for live objects, just as the stack and heap are scanned. 

The garbage collector is triggered by resource scarcity (or by programmatic invocation) and begins its 

search for root objects by suspending the execution of all managed threads. Once all roots have been traced, 

the garbage collector promotes any surviving ephemeral objects to elder status, updates object references to 

reflect these relocations, executes finalization code as necessary, and prepares its freelist for further use by 

the allocator by sweeping any dead objects in the elder generation into it. At this point, execution can be 

resumed until another collection cycle is triggered. 
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10. Interlude: Enabling Component 

Integration with Metadata 

We‘ve now met all of the major actors in the CLI component model. Types, which are programmers‘ 

specifications about component structure and behavior, are the core around which the CLI is built. 

Transforming these types into processor-specific values and weaving these values into the native 

instruction stream is the runtime task of the CLI‘s execution engine, and is done using a combination of 

loaders, runtime services, and the JIT compiler. 

In the data-driven world of the CLI, the representation of types constantly unfolds during the process of 

loading and execution. There is an incremental, but constant, build-up of data associated with types. This 

build-up is caused by the collaboration between the facilities of the execution engine as type metadata is 

poked, prodded, transformed, augmented, and annotated. While the CLI lays out data and creates code, and 

ushers types and their instances through their lifecycles, the execution engine not only consumes metadata, 

but also produces large volumes of it. 

Altering Metadata Representation 

Consider the process of moving type information into and out of assemblies. If you carefully examine the 

code that makes up the metadata implementation, you will discover that there are two completely different 

codepaths: one for creating and modifying editable metadata, and another for mapping read-only metadata 

into memory. Programmers know that the existence of two implementations often implies conflicting 

requirements. In this case, easily editable metadata must take on a radically different runtime shape than the 

compact, fast-loading, and efficiently searchable metadata that is loaded from disk with assemblies. For 

editable metadata, the data structures are connected using pointers, since they are frequently altered and 

rearranged. For read-only metadata, the data is carefully arranged using optimized layouts in advance, since 

speed and size make all the difference. It makes sense to have multiple views, escpecially from a 

performance prospective where significant speed gains can be made by keeping readily accessed data ―hot‖ 

in the on-chip caches of the CPU. 

As metadata is used throughout the CLI execution engine, additional specialized views are built that 

augment what is already there. Remember from Chapter 5 that a separation exists between ―hot‖ data that is 

used constantly at runtime versus ―cold‖ data that is used when compiling methods or reflecting. The 

organization of metadata within the execution engine, since it is most often used to provide efficient 

runtime access to type information, bears little resemblance to the assembly metadata from which it is 

derived. Within an assembly, metadata is structured to be ready to scan and efficient to map from 

secondary storage directly into memory, while within the execution engine, the same data is factored into a 

pointer-based graph that facilitates traversal by various execution engine services. The metadata contained 

in the EEClass and the MethodTable, although derived directly from assembly metadata, has been 

transformed. 

Likewise, when a type is loaded, the data that represents its structure is moved from abstract, passive form 

into a processor-specific form. In this case, the assembly metadata is also actually augmented by the 

execution engine‘s built-in knowledge of the local execution environment. For example, native byte order 

and processor word length are pieces of knowledge that the execution engine implementation adds to the 

original processor-independent metadata to give more specific context. 
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Transforming Metadata in the CLI 

The sequence of annotation, transformation, and continuous refinement results in constant production of 

metadata and interpretation of that metadata. As we mentioned in Chapter 1, this sequence defines a data-

driven architecture, onto which it is easy to graft new services. The integration costs of a data-driven 

architecture for extensibility are low compared to one based on API definitions, and since component 

integration is the most important feature enabled by the CLI specification, a data-driven architecture is the 

right choice for the task. Using this approach, one subsystem‘s data becomes another subsystem‘s 

executable code. (The programming community has known this since the fifties, and it is as good an idea 

now as it was then.) 

Figure 10-1 shows some of the transformations and augmentations that occur in the SSCLI. Starting from 

the left, an abstract type, written as code in a high-level programming language, is transformed by a high-

level compiler into CIL and type metadata, which is bundled into an assembly. After this, file loaders, 

module loaders, and class loaders sequentially transform an on-disk PE file to an in-memory structure that 

is optimized for the JIT compiler and the execution engine. With these structures in place, the JIT compiler 

can produce native code from the intermediate representation. Unlike traditional compilers, a JIT compiler 

makes decisions in the context of the current execution environment; as it generates native code it also 

verifies for typesafety and makes layout decisions. It enriches already present in-memory data structures 

with new information for the code access security engine, the garbage collector, and the exception-handling 

mechanism. 

 
 

Figure 10-21. The CLI’s sequential transformation and augmentation of types. 

Once native code has been produced, this code is executed under the control of the execution engine. The 

execution engine continues to annotate the type, maintaining information about its memory use and 

injecting frames and exception handlers into the runtime stack. The runtime bookkeeping, of course, is 

based on information that was originally provided by the high-level language compiler, the loaders, and the 

JIT compiler. The execution engine simply builds on what was available. As components are created and 

referenced by other components, the execution engine allocates and tracks resources for their use, cleans up 

after their demise (whether clean or exceptional), and protects them from one another. 

The chain of metadata augmentation and annotation does not need to stop at this point. In fact, two of the 

most useful runtime services in the CLI, serialization and remoting, extend it even further. 

Serializing Components by Using Metadata 

To many programmers, the task of serializing component state is numbingly familiar. Every time that a 

component needs to be ―saved,‖ whether for preservation in a database, for transmission via XML, or for 

the purposes of copying the component into another process, its state needs to be squirreled away. In the 

past, this was often a manual process, despite the repetitive nature and highly structured characteristics of 

the task. Each component needed custom (and bug-prone) code to move its state from memory into a 

stream or a file; this code was typically matched to a separate routine that could read the saved state back 

into a new object during the process of reconstituting the original object. 

The act of transforming a component‘s data so that it can be transferred or saved is often called either 

serialization or externalization. In the CLI, thanks to the presence of metadata, externalization has become 

considerably easier. To convert a component instance (or graph of instances) into some storage-oriented 

format, an automatic serialization service only needs to examine the member types of the component and 

apply a set of generic pickling routines to these members to move their values in and out of storage. When 

pickling values in this way, moving state from a component instance into storage is typically what‘s called 
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serialization, though the term tends to be used somewhat more generally, and when moving state from 

storage back into an instance, deserialization. The service that performs both serialization and 

deserialization in the SSCLI is implemented in the System.Runtime.Serialization namespace, 

and features a set of types that have been engineered to provide pickling via Formatter objects and 

serialization via the ISerialize interface and the Serializable custom attribute. 

Creating Proxies Using Metadata 

Besides having the information needed to externalize component state, the execution engine also has 

enough metadata to create proxy objects, which mimic other objects by conforming to the type signature of 

the object that they mimic. Instead of implementing type-specific behavior, proxies generically forward any 

and all operations to other objects, as shown in Figure 10-2. 

 

 
 

Figure 10-22. Forwarding proxy objects can be created automatically using metadata. 

In Figure 10-2, a proxy object forwards operations to a ―real‖ instance of its underlying type. By doing this, 

the proxy appears to behave exactly as though it were an instance of the underlying type. Proxy objects 

such as this are frequently used in distributed computing to provide location transparency. The proxies 

stand in for remote object instances that cannot or should not be moved, giving the impression that local 

instances exist. The SSCLI has a complete remoting subsystem, including support for this kind of 

transparency. The code is complicated but worth examining; generic behavior can be automatically 

provided by using metadata to create fields and methods that stand in for their remote counterparts. 

Even when running in a single process, proxies are used to provide isolation between application domains 

in the SSCLI. The implementation of a proxy lives in code implemented as part of the execution engine, 

and because of this, the SSCLI can rely on it to stand between instances that reside in different domains and 

enforce safe separation. 

Types are always loaded in the context of an application domain, and that application domain serves to 

isolate type implementations from one another. Isolation itself is implemented by using frames on the stack 

to mark transitions, by enforcing code access security, and by automatically emitting special code that 

creates and uses proxy-based communication. With remoting barriers in place, components can 

communicate safely without leaving themselves vulnerable to faults or malicious behavior. 

Metadata in Action 

The thing that programmers spend the most time doing today is jiggering and adapting code for the 

purposes of integration: moving from format to format, from place to place, from API to API, or from 

operating system to operating system. Programming was once largely about algorithms and clever 

performance tricks, but in today‘s connected world in which programs are built by combining third-party 

components, it is much more about mapping, copying, integrating, and communicating intelligibly. 

Rich, runtime-available metadata makes it possible to do such operations automatically, by ―rule.‖ On the 

surface, this would seem to be a statement about programmer productivity, but it is actually deeper, since 

metadata standards enable meaningful communications in an extensible way. By providing standard ways 

to refer to types and behaviors across processor types and across time, the CLI enables stable 

interoperability, and once stable interoperability is available, large component ecosystems will form.  
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Appendix A: The Platform Adaptation 

Layer 

The SSCLI 2.0 distribution had no major Platform Adaption Layer updates or changes, so 

what was originally Chapter 9 of this book, has now been attached as an appendix. 

Because we wanted to focus on shipping as early as possible after the production CLR 

went live (Whidbey 2.0 CLR), we decided it was best to concentrate on the platforms 

with the widest reach: x86 and Windows. As a result, the PowerPC and FreeBSD PAL 

code remain unchanged (but still attached to the 2.0 distribution).  

 

 

Portability is a key design goal for Rotor. To achieve portability , all of the code in the distribution is 

written against an API layer, called the Platform Adaptation Layer (PAL), which hides the differences 

between underlying operating systems and provides consistent operating semantics. Since Rotor started life 

as a large Win32 application, it should come as no surprise that the PAL mimics a subset of the Win32 

API. Only the subset absolutely required by the SSCLI and its supporting tools is implemented, however, 

which means that there is does not need to be any support for graphics, most of COM, the Windows 

registry, Active Directory, or other features commonly used by Windows programmers. 

This chapter, rather than act as a comprehensive catalog of the PAL‘s nooks and crannies, will instead visit 

the areas most crucial to understanding the CLI mechanisms described in earlier chapters, since Rotor‘s 

runtime infrastructure heavily depends on the operating systems constructs provided by the PAL. In 

Chapter 6, for example, the sections ―Threads,‖ ―Synchronizing Concurrent Access to Components,‖ and 

―Handling Component Exceptions” referred repeatedly to the PAL‘s threading and synchronization model, 

as well as its structured exception-handling facilities. Chapter 7, in its discussion of ―Organizing and 

Allocating Dynamic Memory,” highlighted the reliance of Rotor‘s heaps on virtual memory (and how 

different uses of virtual memory features can impact application performance). By examining the PAL 

implementation from an internal perspective, the implications of design choices made in higher-level code 

should become clearer. 

PAL Overview 

The PAL is actually two things: a specification and an implementation of that specification. The 

specification, located in docs/techinfo/pal_guide.html, describes the minimum subset of the Win32 API that 

a PAL implementation     must provide. (Writing a richer PAL would be fine, but the code in Rotor 

wouldn‘t care.) It also specifies, on a per-API basis, which features of a function need to be implemented. 

Those who need to understand the PAL specification in detail will need to read it with a 

copy of Microsoft‘s MSDN documentation near at hand. The PAL specification is written 

to call out differences in behavior from the baseline Win32 API rather than as a 

standalone description of correct behaviors. 

In addition to the PAL, Rotor includes the code for a dynamically loadable library referred to as the PAL 

runtime, which implements a number of additional Win32 APIs. These implementations do not depend on 



Appendix A: The Platform Adaptation Layer  | 263 

the hosting operating system; they are completely implemented within their library and do not need to 

interact with external resources. Since they are self-contained, they do not need to be reimplemented for 

each new PAL; they are essentially internal support functions for the SSCLI implementation. 

The Rotor distribution provides two PAL implementations: one for Win32 (XP and Windows 2000) and 

one for Unix operating systems that has been ported and tested on FreeBSD (Versions 4.5-4.7) and Mac OS 

X (Version 10.2). 

Could another Win32 API layer or emulator be used to support Rotor? The PAL 

specification calls out the Win32 APIs that must be implemented in order for Rotor to run 

correctly, and the existence of two distinct implementations in the code has proven that 

this approach works. In theory, other Win32 layers could be linked against Rotor to 

replace the PAL, although it is highly likely that many bugs and subtle compatibility 

problems would have to be fixed to make this work. PAL-specific functions would also 

have to be implemented, and the Rotor build process modified, to accommodate this 

change. Nonetheless, another new PAL implementation could certainly be created by 

adapting code from other sources. 

One might question why a PAL is provided for Win32, since the API is literally a subset of the Win32 API 

plus a small number of additional functions. There are four reasons: 

PAL-specific APIs 

There are 20 APIs in the PAL that are not in Win32 at all. These APIs can be identified by the PAL_ 

prefix to their names. Good examples of these APIs are the PAL_Initialize and 

PAL_Terminate APIs, located in pal/win32/win32.c. These APIs are called by the program hosting 

the PAL before the first and after the last PAL API is used, and encapsulate startup and termination 

tasks. 

More portable abstractions 

In several cases, Win32 does not provide a distinct and separable set of APIs for a given task, although 

the task is needed within the CLI implementation. For this small number of cases, it made sense to 

construct new abstractions in the PAL layer. PAL_Random and 

PAL_GetUserConfigurationDirectory are two examples of this approach. 

Development conveniences 

During the development of the SSCLI, having a PAL allowed the development team to catch cases in 

which code was inadvertently using functionality that was outside the PAL specification, through the 

use of parameter validation in the checked build. The code to do this was left in the Win32 PAL so that 

anyone making future modifications to the SSCLI could do the same kinds of validation on their own 

modifications. 

Event logging 

One extremely powerful debugging technique for a complex system, such as the SSCLI, is to log 

important events that occur during execution to narrow down the source of a problem. The 

development team implemented a logging mechanism in both the Win32 and the Unix PALs to assist 

in debugging failures. 

An important design point for the PAL was that, with the exception of C runtime calls, calls from the 

SSCLI should flow through the PAL before using operating system resources, making it a place where 

impedance-matching code could be placed. The thickness of this impedance-matching code varies, 

depending on the services offered by an underlying operating system and how closely they match the 

semantics specified by the PAL. Not surprisingly, the Win32 PAL is quite thin, while the Unix PAL is 

much more substantial. Unless otherwise noted, the remaining sections of this chapter refer to the Unix 

PAL. 
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Common Infrastructure 

Before going through the sections of the PAL that support the subsystems already discussed in this book, 

two areas need to be explored that are important plumbing details but not directly seen by PAL consumers: 

shared memory and the handle manager . Remember that although the PAL is represented by an API, the 

API has code behind it that manages operating system resources on behalf of the programmer. In the case 

of the Unix PAL, the visibility of Windows resources is very different than the visibility of resources 

within the Unix process hierarchy. To implement the looser Windows semantics, shared memory   is used 

by the Unix PAL to make data available to any Unix process that is using the services of the CLI execution 

engine. A set of one or more processes that share a shared memory segment in the Unix PAL are referred to 

collectively as a PAL process group . 

The term ―process group‖ can be confusing, since a process group does not always need 

to consist of multiple Unix processes. In fact, it is normal for a single Rotor PAL process 

to live within a single Unix process. Even when this is the case, we will refer to this 

singleton process as a process group in an effort to differentiate PAL processes, Unix 

processes, and shared process groups . 

Many of the Win32 resources within a PAL process group are represented to programmers using opaque 

handles. Handles are used as parameters to the calls that manipulate them, such as WriteFile or 

SuspendThread. (Not all APIs use handles. The WinSock API, for example, exposes and manages its 

own opaque token, called a socket.) The handle manager tracks the handles that are in use, and maintains 

the associations between internal data structures and their handles. 

Sharing Memory Between Unix Processes 

A PAL process group uses a segment of shared memory to share its state between Unix processes. A 

debugger, for example, might need to share operating system state with the managed processes under its 

control. The PAL would use its shared memory as a shared database of system resources to support this 

scenario. (There is also a small amount of shared configuration information that can be computed directly 

and does not need to occupy shared memory.) Figure 9-1 shows how sharing is implemented for a single 

PAL process group. 

There are a number of structures that are stored in the shared memory: 

SHMPROCESS 

Defined in pal/unix/thread/process.h, this is used to keep track of PAL processes that are members of a 

process group. 

SHM_NAMED_OBJECTS 

This is a list of named objects associated with a given PAL process group. (See the later section ――The 

Handle Manager‖― in this chapter for a discussion.) 
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Figure Error! No text of specified style in document.-23. Many operating system 

processes may share a single PAL process group and its shared memory segment. 

SHMFILELOCKS 

Defined in pal/unix/include/pal/file.h, this is used to keep track of access rights to open files associated 

with a PAL process group. 

HREMOTEOBJSTRUCT 

This is used by the handle manager and can be found in pal/unix/handlemgr/handle.c. 

GLOBAL_FILE_MAPPING_OBJECT 

Found in pal/unix/map/map.c, this enables other processes to access memory-mapped objects. 

GLOBAL_EVENT_SYSTEM_OBJECT 

This is used when working with events to access named events from other processes. It can be found in 

pal/unix/sync/event.h. 

GLOBAL_MUTEX_SYSTEM_OBJECT 

Defined in pal/unix/include/pal/mutex.h, this is used to make mutexes accessible to other processes. 

The implementation of shared memory can be found in pal/unix/shmemory/shemory.c. It is based on the 

Unix mmap system call. Access to shared memory is controlled by a lockfile (see SHMInitialize) and a 

spinlock mechanism (see SHMLock and SHMRelease). Each PAL process that joins a process group is 

responsible for determining whether shared memory has been initialized. 

Processes hosting the Unix PAL will share the same memory segment if they are run using the same 

dynamically loaded library and a matching user ID. The uid at the time that the process was launched, 

along with the inode of librotor_pal .so on FreeBSD, or librotor_pal.dylib on Mac OS X, 

determine this. PAL processes don‘t need to have an ancestor/child relationship to share their state. As long 

as the same uid is used to launch them and the same librotor_pal runs both, they use the same shared-

memory region. 

How Much to Share? 
The criteria that determine when a PAL is shared, the user ID and the library‘s inode, may not be 

appropriate for all situations. The current settings keep different implementations of the PAL and 

their users quite isolated, which is good for experimentation during development. Security settings 

are also scoped to user identity (as can be seen in the code for the caspol utility), which is an 

important factor. 



Appendix A: The Platform Adaptation Layer  | 266 

If the SSCLI were to be used in other settings, it might make sense to make its PAL more shared, 

perhaps by dropping its user ID partitioning. 

A file to back the shared-memory region is created from within the SHMInitialize call, which uses 

PALGetPalConfigDir to find the directory in which to place this file. The config directory itself comes 

from INIT_InitPalConfigDir in pal/unix/init/pal.c, which creates directories that follow a 

/tmp/.rotor-pal-<uid>-<inode> convention. 

Once a PAL process has been initialized, SHMLock enters a critical section (discussed in ―Synchronizing 

Processes and Threads‖) to ensure that only one of the process‘ threads is attempting to obtain the lock. 

Having obtained the critical section, it then calls InterlockedCompareExchange (defined in 

pal/unix/arch/<architecture>/interlock.c) on a spinlock located in the shared-memory header. If the 

spinlock is set to 0, no one holds it; otherwise, it will contain the process ID of the lock holder. If some 

other process holds the lock, SHMLock will loop, testing the value until the lock is released. To enable 

other threads and processes to run without waiting, the code makes calls to the operating system to yield its 

time to other processes. SHMRelease simply resets the spinlock to 0 and releases the critical section 

obtained in the SHMLock code. 

The use of a spinlock might seem like an odd choice; why not use a SysV mutex instead? 

Originally, this was the design choice, but on FreeBSD 4.5, the mutex implementation is 

not pthread-friendly. When any thread in the process blocked on a SysV mutex, the 

kernel would stop scheduling the entire process until the mutex was unblocked. The 

spinlock code works correctly on all platforms, but there is a good efficiency argument to 

be made for looking for better mechanisms on other platforms. 

The PAL‘s shared memory segment is structured as a series of segments, as shown in Figure 9-2, to which 

pointers can be found in shm_segment_bases in shmemory.c. 

Each segment contains a SHM_SEGMENT_HEADER , which contains the name of the next segment and an 

array of pointers that reflect the beginnings and ends of memory pools within the segment. There are four 

different memory pools in each segment, one each for 16-, 32-, 64-, and 520-byte objects. (520 is twice the 

value of Windows‘ MAX_PATH, so long Unicode strings used for pathnames will fit in a buffer of this size. 

The mismatch between Unix and Windows maximum path lengths might cause problems; this is something 

to be aware of.) The total size of each of these pools is determined when the segment is added to the shared 

memory region; initially, the calculation in SHMInitialize divides the available memory in the 

segment evenly between each of the pools. Subsequent additions in SHMAddSegment allocate memory to 

each pool in a new segment using the ratio of memory currently in use by all pools in all other segments 

that contain the same-sized objects. Once allocated, the pool size in a segment cannot be changed. Since 

each pool contains fixed-sized objects, once the pool size is set and the end pointer is established, the 

memory manager can treat the pool as an array of fixed-size elements. 

The first segment is distinguished from any that follow, because it contains three additional pieces of 

information in memory after its SHM_SEGMENT_HEADER. The first of these is the location where the 

segment‘s spinlock can be found. After this, for each of the pools, an array header points to the size-

specific free block lists. Finally, there is an array of pointers to linked lists containing the three classes of 

data stored in shared memory: SHMPROCESS, SHM_NAMED_OBJECTS, and SHMFILELOCKS. 

The free lists are created initially when pools are reserved for each segment. If a block is free, it contains a 

next pointer to another free block (which is initially the next item in the pool). When subsequent segments 

are allocated, the additional pools that they contain are added to this list. A count 
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Figure Error! No text of specified style in document.-24. The PAL’s shared-memory 

layout. 

of free items in each pool across all segments is also maintained as part of the SHM_POOL_INFO structure 

in the first segment, which is shown in Example 9-1. 

Example Error! No text of specified style in document.-1. The structure of a shared-memory pool 

(defined in pal/unix/shmemory/shmemory.c) 

 

typedef struct 

{ 

 int item_size;   /* size of 1 block, in bytes */ 

 int num_items;   /* total number of blocks in the pool */ 

 int free_items;   /* number of unused items in the pool */ 

 SHMPTR first_free; /* location of first available block in the pool */ 

} SHM_POOL_INFO; 

When an allocation is requested, SHMalloc determines which pool‘s item_size will be large enough 

to contain the allocation and then consults the number of free_items in that pool. If free blocks exist, 

the block at the head of the list is returned and the number of free blocks is decreased. Otherwise a new 

segment is allocated. (It is important to note that the SHMPTR that is returned actually contains two pieces 

of data: the segment ID from which the allocation came and the offset into the segment. Thus, the pointer 

cannot be used directly, but instead must be dereferenced through the macro SHMPTR_TO_PTR.) 

For SHMFree, the SHMPTR is first decomposed to recover the segment to which the allocation belongs. 

After this, a series of sanity checks are performed on the SHMPTR‘s offset to ensure that the block was 
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actually handed out by the shared-memory allocator and to identify the pool to which it belongs. The block 

is inserted as the first free block in the free block list, the current head pointer is injected into the freed 

block as a next pointer, and the head pointer is updated. Finally, the number of free blocks is increased by 

1. 

The linked lists of SMHPROCESS, SHM_NAMED_OBJECTS, and SHMFILELOCKS are each built by the 

respective portions of the PAL that store these data structures. The array in the first segment is provided for 

their use—no other portion of the shared memory keeps track of those lists. 

The Handle Manager 

The PAL makes extensive use of handles to identify the resources that the PAL creates, operates on, and 

destroys. The HANDLE data type is defined in pal/rotor_pal.h as a void*, to be opaque. The consumer of 

a HANDLE does not need to understand what backing data structure the HANDLE refers to—but only that it 

is an identifier for the object in question. The PAL itself can internally disambiguate the type of a handle by 

examining the type field in the handle header, as shown in Example 9-2. 

Example Error! No text of specified style in document.-2. The HOBJSTRUCT used to represent PAL 

handles, along with their valid types (defined in pal/unix/include/pal/handle.h) 

 

typedef enum 

{ 

 HOBJ_PROCESS, 

 HOBJ_THREAD, 

 HOBJ_FILE, 

 HOBJ_MAP, 

 HOBJ_SEMAPHORE, 

 HOBJ_EVENT, 

 HOBJ_MUTEX, 

 HOBJ_LAST,     // this is not a type, it is a convenience value 

} HOBJTYPE; 

 

struct _HOBJSTRUCT 

{ 

 HOBJTYPE type; 

 /* callback functions for type-specific work */ 

 DUPHANDLEFUNC  dup_handle; 

 CLOSEHANDLEFUNC close_handle; 

}; 

The handle manager, located in pal/unix/handlemgr/handle.c, is responsible for tracking handles and their 

backing data. At the core of the handle manager is an array, handle_table, of HANDLE_SLOT 

structures. Each HANDLE_SLOT contains three fields: a pointer to the HOBJSTRUCT shown in Example 9-

2, a lockcount used to track the number of times that the handle has been locked so that it is not 

incorrectly deleted or modified, and a field named closing used to signal when the handle is being 

closed. 

To generate the value for a handle, the index into handle_table is offset by 1 and multiplied by 4, 

duplicating the Win32 semantics in which all handles are multiples of 4, and 0 represents a null handle. 

Using this scheme, the handle code can easily convert a handle into an index in handle_table. The 

macros HANDLE_TO_INDEX and INDEX_TO_HANDLE perform this conversion. 

The HOBJSTRUCT structure has a type field of HOBJTYPE, which enumerates all possible resource types: 

PROCESS, THREAD, FILE, MAP, SEMAPHORE, EVENT, and MUTEX. For each handle type, there is a 

corresponding structure defined in the portion of the PAL that deals with that type, such as the 

MUTEX_HANDLE_OBJECT. Each of these data structures defines an HOBJSTRUCT as its first field. By 

doing this, any of these structures may be cast to an HOBJSTRUCT, and the handle code does not need to 

know anything about their details. 
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The two additional fields in HOBJSTRUCT, close_handle and dup_handle, contain function 

pointers used to close the resource and duplicate the handle. These functions are supplied by the subsystem 

in the PAL that defines the type-specific handle. Again, code does not need to understand the details of 

each handle type to close or duplicate handles. It simply defers to a PAL subsystem using the helper 

functions provided. (This is good, old-fashioned ANSI C object-oriented code. Perhaps C++ is good for 

something after all.) 

Handles are allocated in a way that helps catch bugs that arise from handle recycling (which are 

characterized by code that frees a handle, allocates another, and depends on the second to be the same as 

the first). The allocator maintains a singly linked list of free handles in the handle table; the head is in 

free_handle_list and free_handle_list_tail is the final element. These values hold indexes 

in the handle_table array. Handles on the free list use the object field to hold the index in the next 

free element in the list. 

Initially, all handles are on the free list. When a handle is allocated, the handle at the head of the list is 

used, and the object field points to a resource-specific handle data structure. When a handle is released, 

it is placed at the tail of the linked list. The allocation and freeing of the resource-specific handle data 

structure is the responsibility of the PAL subsystem responsible for the resource in question. 

As with Win32, the opening or creation of a handle occurs during a resource-specific API, such as 

OpenFile. Duplication and closing, as we have seen, are general routines. (Not every handle can be 

duplicated. The PAL specification calls out those that can be.) Handles are closed when their 

lock_count, maintained by HMGRLockHandle/HMGRUnlockHandle, reaches 0 and their closing 

flag is set. The actual call to the handle-specific close_handle routine is made by 

HMGRUnlockHandle. If there are any handles still open when HMGRStopHandleManager is called 

during PAL shutdown, the corresponding close_handle calls are made unconditionally. 

Processes and Threads 

The SSCLI provides a rich set of threading features to the developer, and because of this, it makes some 

heavy demands on the operating system beneath its PAL. The PAL specification requires support for: 

 Process creation 

 Process termination 

 Process exit code access 

 Interprocess memory access 

 Interprocess communication using memory mapping 

 Interprocess communication using events 

 Inheritance of standard handles through process creation 

Between the C runtime, POSIX system calls, and pthreads (the POSIX threads package), the Unix PAL has 

most of what it needs to implement these features on Mac OS X and FreeBSD. 

PAL Processes 

The model for process isolation in the PAL is simple: each process created is mapped to an underlying 

operating system process. The first process is created by a program that wishes to host the PAL, which can 

then create additional subordinate processes by calling CreateProcess . (CreateProcess, as with 

many Win32 APIs, comes in two related flavors: CreateProcessA for use with ANSI string arguments 

and CreateProcessW for use with Unicode string arguments.) The API ensures that the executable file 

being used is either a valid CLI PE file or else a native executable. If it is a CLI executable, the name of the 

application launcher, clix, is prepended to the command line. From there, the Unix PAL uses fork to 

create the new process and execve to launch it, inheriting standard filehandles if requested. 
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Information about processes is divided between two important data structures defined in 

pal/unix/thread/process.h: the PROCESS and the SHMPROCESS . Processes also contain an additional 

structure, INITIALPROCINFO, which contains the command line and current directory used to launch the 

process. One PROCESS structure is allocated for the initial process, as well as for each Win32 process that 

is created via a call to CreateProcess or OpenProcess. The SHMPROCESS structure is shared 

across the PAL process, primarily for the use of debuggers, and so it is allocated in shared memory and 

reference-counted. (It is deleted by the closeProcessHandle helper when all outstanding references 

are removed.) Each PROCESS structure contains a pointer to its corresponding SHMPROCESS structure. 

All of these relationships are demonstrated in Figure 9-3, which shows two Unix processes, one 

subordinate to the other, sharing a single PAL process group. Process 1 belongs to the program hosting the 

PAL, while Process 2 was created with a call to CreateProcess. Within Process 2, there are two 

process handles pointing to the same PROCESS, implying a call to DuplicateHandle. 

 

 
 

Figure Error! No text of specified style in document.-25. The relationship of PROCESS, 

INITIALPROCINFO, and SHMPROCESS. 

The first PROCESS within a program hosting the PAL is created by a call to PAL_Initialize, which in 

turn calls PROCCreateInitialProcess to set up necessary scaffolding within a hosting process. 

Initialization can be performed automatically on Unix by including the header file clr/src/inc/palstartup.h. 

Using simple macrology, this header file redefines the main entrypoint as PAL_startup_main and 

then interposes its own main function, shown in Example 9-3, which takes care of initialization and that 

the PAL_Terminate function will be called when the process exits. Lastly, this function does is chain to 

the ―real‖ main from within a call to exit, which executes the hosting program transparently. 

Example Error! No text of specified style in document.-3. The PAL is initialized by hooking a hosting 

program’s main entrypoint (defined in clr/src/inc/palstartup.h) 

 

int _  _cdecl main(int argc, char **argv) { 

 if (PAL_Initialize(argc, argv)) { 

  return 1; 

 } 

 atexit((void (_  _cdecl *)(void)) PAL_Terminate); 

 exit(PAL_startup_main(argc, argv)); 

 return 0; 

} 

Looking at the PROCESS structure itself, which is reproduced in Example 9-4, notice how the 

HOBJSTRUCT header for this handle is embedded as the first element of the structure. This layout 

technique of beginning with the handle header, which enables easy access via casting and was discussed in 

the section entitled ―The Handle Manager,‖ is used throughout the PAL for entities represented by handles. 

Example Error! No text of specified style in document.-4. The PROCESS structure is used to track Unix 

processes associated with the PAL (defined in pal/unix/thread/process.h) 

 

typedef struct _PROCESS 
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{ 

 HOBJSTRUCT  objHeader; 

 HANDLE    hProcess; 

 DWORD    dwMagic; 

 DWORD    processId; 

 DWORD    refCount; 

 CRITICAL_SECTION critSection; 

 INITIALPROCINFO *lpInitProcInfo; 

 

 SHMPROCESS *shmprocess; 

 PROCESS_STATE state; 

 DWORD     exit_code; 

} PROCESS; 

Within the PROCESS structure, the handle‘s type will always be HOBJ_PROCESS, and its type-specific 

close and duplicate helper routines will be closeProcessHandle and dupProcessHandle, which 

can be found in pal/unix/thread/process.c. The handle manager is called to assign the actual handle value 

found in hProcess, as follows: 

 

    lpProcess->hProcess = HMGRGetHandle((HOBJSTRUCT *) lpProcess); 

To track the underlying process, the processID field contains the value returned by getpid. Calls to 

the PAL API GetCurrentProcessID return this field directly. The refCount field is used to keep 

track of the number of references to a process, and is increased by calls to dupProcessHandle and 

decremented by closeProcessHandle. Once the refCount goes to 0, the underlying process is 

freed. 

The exit_code and state fields are used to implement the routine GetExitCodeProcess. The 

PAL uses the system routine waitpid to obtain the exit code of a child process. The catch is that once a 

process has exited, waitpid may only be called once. If the data is needed at some later time, it must be 

stored. Since Win32 allows a PAL consumer to call GetExitCodeProcess on a process handle as 

often as it likes, the implementation of this API first checks the state field, which it uses to determine 

whether an exit code has been cached in the exit_code field. If the state is set to PS_DONE, the 

exit_code field already contains the exit code for the process. Otherwise, exit_code is filled by 

calling waitpid in nonblocking mode, as shown in Example 9-5. 

Example Error! No text of specified style in document.-5. Retrieving a process exit code (Extracted from 

pal/unix/thread/process.c) 

 

wait_retval = waitpid(process->processId, &status, WNOHANG); 

 

if ( wait_retval == process->processId ) { 

 /* success; get the exit code */ 

 if ( WIFEXITED( status ) ) { 

  *exit_code = WEXITSTATUS(status); 

 } else { 

  *exit_code = EXIT_FAILURE; 

 } 

 *state = PS_DONE; 

} 

Finally, the dwMagic field within the PROCESS structure deserves some explanation. A field of this name 

is used to perform validity checking, not only for processes, but also for threads, semaphores, and events. 

Each has a dwMagic field following its HOBJSTRUCT header and each sets the dwMagic field to a 

known value that is unique for its type—PROCESS_MAGIC in the case of a process object. When the Unix 

system entity that they track is no longer valid, their dwMagic field will be set to NULL. 
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The dwMagic field is checked by type-specific routines named isValidsystypeObject. These 

routines check that the dwMagic field is non-NULL and that it matches the known value for the type, and 

are called before operations that depend on the underlying system object being valid. 

Controlling PAL Processes 

Once a PAL process has been created, it can be further manipulated using the Win32 process APIs that are 

implemented as part of the PAL. These include GetCurrentProcess, OpenProcess, 

ExitProcess   , and TerminateProcess. 

GetCurrentProcess returns the handle of the current process. Following the definition of this API in 

the PAL specification, the handle that is returned is a special handle that the PAL recognizes as the current 

process. The handle‘s value is taken from the variable hPseudoCurrentProcess and has the value 

0xFFFFFF01. 

In the PAL API subset, OpenProcess is used only to support debuggers or other development tools. (If 

you are not building tools, you will probably never need to call it.) Given a processID, OpenProcess 

will return a process handle that can then be used with other APIs. Only PAL processes within the same 

process group may be opened in this way. The SHMPROCESS structures for a process group are searched, 

and if a matching process is found, a new PROCESS structure is created, the refcount is incremented, and 

the process handle is returned. 

ExitProcess is the main PAL function for shutting down a process cleanly and is shown in Example 9-

6. 

Example Error! No text of specified style in document.-6. ExitProcess is the main PAL shutdown function 

(summarized from pal/unix/threads/process.c) 

 

ExitProcess(IN UINT uExitCode) 

{ 

 DWORD old_terminator; 

 old_terminator = InterlockedCompareExchange(&terminator, 

                       GetCurrentThreadId(),0); 

 

 if(GetCurrentThreadId() == old_terminator) { 

  if (!PALIsInitialized()) { 

   exit(uExitCode); 

  } else { 

   PROCEndProcess(GetCurrentProcess(), uExitCode, FALSE); 

  } 

 } else if(0 != old_terminator) { 

  // If another thread ending process, sleep for a really long time 

  poll(NULL,0,INFTIM); 

 } 

 

 if ( PALInitLock() && PALIsInitialized() ) { 

  PROCQueueDllMainCalls();   LOADCallDllMain(DLL_THREAD_DETACH);   

PROCEndProcess(GetCurrentProcess(), uExitCode, FALSE); 

 } else { 

  exit(uExitCode); 

 } 

 

 /* this should never get executed */ 

 PALInitUnlock(); 

} 

A normal exit begins with the highlighted call to PROCQueueDllMainCalls, which ensures that 

DLL_THREAD_DETACH events are posted to each dynamically loaded library. (Note that there is no 

guarantee that these events will actually be received by the libraries on any thread besides the calling 

thread, as the PAL specification makes clear.) After this, the DllMain entry point for each library is called 
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directly with DLL_PROCESS_DETACH as a parameter. Finally, TerminateProcess   is called from 

within PROCEndProcess. 

TerminateProcess is a simple routine, whose real work is done in a call to PROCCleanupProcess, 

which first corrals other threads in the process by suspending them (discussed later in ――Suspending and 

Resuming PAL Threads‖―). After the process‘ threads are under control, any libraries loaded through 

LoadLibrary and still resident are unloaded, all mutexes are abandoned, and PALShutdown is called. 

Having successfully shut down the PAL, HMGRStopHandleManager is invoked to stop the handle 

manager and close any currently open handles, and finally SHMCleanup is called to shut down access to 

shared memory and remove the current process from the list of client processes that make up the PAL 

process group. 

TerminateProcess is a lower-level entry point and should be used by PAL consumers only in extreme 

situations where immediate exit with no cleanup is required. Internally, TerminateProcess is used 

when a critical error occurs for which the only solution is to kill off the process. 

Threads 

Rotor‘s C# frameworks depend on the CLI‘s threaded execution model for concurrency, and the Rotor 

implementation itself makes heavy internal use of threads within the execution engine and within its build 

tools. The semantics of threading , however, vary widely from operating system to operating system. The 

PAL takes care of hiding these differences beneath a single set of APIs. 

Like PAL processes, PAL threads have a one-to-one correspondence with an underlying thread. The Unix 

PAL uses the pthreads library for this purpose, backing each PAL thread with a matching pthread. 

Although the pthreads library provides a solid basis, there are a number of areas in which the PAL‘s 

threading requirements differ from the features provided by the pthreads package, including interthread 

synchronization. There are also Win32 features for which there are no pthread equivalents, such as queued 

Asynchronous Procedure Calls (APCs). To support the additional features demanded by the PAL 

specification, a fairly thick layer of code wraps and extends the pthreads package within the Unix PAL. 

The representation of PAL threads within the PAL is very similar to the representation of PAL processes. 

The thread itself has a THREAD structure that contains its state and that begins with an HOBJSTRUCT 

followed by a handle and a dwMagic field. Also contained in this struct is a field named dwThreadID, 

which is used to store the pthread‘s thread identity number, and a field to contain the thread‘s current 

THREAD_STATE, named thread_state. Valid thread states are defined as follows: 

TS_STARTING 

A thread with this state is being created. It is used for debugging purposes. 

TS_RUNNING 

A thread with this state is in the normal running state. 

TS_FAILED 

This state is used to indicate that a thread has failed initialization. It is used as an internal signal 

between CreateThread and the worker function THREADEntry (whose use is described shortly, 

in the discussion of CreateThread). 

TS_DONE 

A thread with this state has finished executing and is either being destroyed or has been destroyed. It is 

used to prevent reentrancy problems that would result from other threads accessing its state during 

destruction and to keep the THREAD structure alive after the destruction of its underlying pthread so 

that its exit code can be retrieved. 
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TS_DUMMY 

This special state indicates that the THREAD represents a process as a whole rather than a pthread. The 

PAL uses this type of thread when creating a process that starts in a suspended state. 

Much like GetCurrentProcess, the PAL reserves a special handle to represent the current thread, 

which has a value of 0xFFFFFF03 and is stored in the variable hPseudoCurrentThread. This handle 

is returned by the GetCurrentThread API. 

Threads are created using the CreateThread API, which is actually implemented as two mutually 

dependent, but distinct, functions: THREADCreateThread and THREADEntry. The first of these is 

called directly, allocating and initializing a THREAD structure and handle and requesting that a platform-

specific thread be created on its behalf. The second function, however, is not called directly. Instead, it is 

called from the new thread once it has been spawned. THREADEntry allocates and initializes any runtime 

resources that must be associated with the context of the new thread. 

There are three reasons for creating threads using this two-step mechanism: 

Thread-specific initialization 

Some of the thread initialization sequence needs to occur prior to a new pthread being created, while 

other parts must occur in the new thread‘s context, such as the initial setup for structured exception 

handling. 

Initially suspended threads 

The pthread_create function does not support creating threads in a suspended state. To 

implement this feature for the PAL, there needs to be point at which control can be suspended before 

any client code is run. 

Graceful failure 

While some of the code in THREADCreateThread could migrate to THREADEntry, the general 

strategy is to do work that might need to be undone prior to creating the actual pthread. In this way, 

backing out of THREADCreateThread remains as simple as possible. 

Once a thread has been created, it is scheduled based on its priority. Mapping the PAL‘s concept of thread 

priority to the POSIX thread priority scheme takes a little work. PAL thread priorities run from 

THREAD_PRIORITY_IDLE to THREAD_PRIORITY_TIME_CRITICAL (which correspond to the 

integer range -15 to 15). In the POSIX world, however, there are no fixed minimum and maximum thread 

priorities. Instead, a thread runs with a scheduling policy that has its own concept of minimum and 

maximum priority. To map the Win32 approach onto the POSIX approach, SetThreadPriority 

retrieves the underlying pthread‘s scheduling policy as well as its minimum and maximum limits. The 

requested PAL priority is then normalized against the reported range and added to the minimum pthread 

priority. The underlying pthread is updated with the normalized number, while the originally requested 

(nonnormalized) thread priority is stored in the threadPriority field in the THREAD. 

PAL threads, like PAL processes, can either exit gracefully (via ExitThread) or be terminated abruptly 

(via TerminateCurrentThread). ExitThread calls DllMain for each loaded library with a 

parameter value of DLL_THREAD_DETACH and cleans up other runtime structures, such as the thread‘s 

hostent structure (used by the networking code). As with processes, most of the real work of 

ExitThread is performed by the lower-level termination function. In TerminateCurrentThread, 

outstanding mutexes are abandoned, support buffers are freed, and threads that are waiting on the thread 

being terminated are removed from the waiting thread list and are awakened. After these tasks have been 

performed, the number of remaining threads in the process is checked, and if the thread being terminated is 

the final thread, TerminateCurrentProcess is called. Otherwise, the thread is removed from the list 

of threads in the process, and the thread-specific data that remains is cleaned up. As with all handle-based 

objects, the thread data structure does not disappear automatically—if there are outstanding references to 

the object, it remains allocated until the final reference is released (or until the process closes). 
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Thread Local Storage 

Thread Local Storage (TLS ) is a useful feature that allows a PAL consumer to associate data with a 

particular thread, so it can be retrieved later in that thread‘s context. To use TLS, a programmer requests a 

slot by calling TlsAlloc. If a slot is available, an LPVOID-sized piece of memory is allocated in each 

thread in the process, which can have its value set using TlsSetValue and be retrieved with 

TlsGetValue. The PAL implements TLS as a process-wide 64-bit bitmask, sTlsSlotFields, which 

is used to keep track of slot reservations, and a per-thread array, tlsSlots, which is a member of the 

THREAD structure. 

The pthreads package has an API named pthread_key that could have been used to implement TLS 

slots, but this approach was rejected in favor of the simple, array-based mechanism described here. In 

particular, the SSCLI implementation depends on having zeroed memory in TLS slots, and bugs on some 

flavors of Unix prevented this from always being true. 

Synchronizing Processes and Threads 

The CLI was designed to provide programmers with numerous design alternatives when creating 

components and when grouping components together into collaborative systems. Many of these have to do 

with using boundaries, such as processes, threads, and application domains, to package and protect 

component instances. To enable collaboration between components protected in this way, the PAL must 

not only support creating the boundaries, but also communicating across them. To complement the several 

kinds of isolation provided by the PAL to component implementers, the PAL also provides a rich set of 

synchronization primitives. 

The Win32 synchronization mechanisms provided by the PAL are: 

Critical sections 

Critical sections are regions of code that are protected in such a way that only one thread at a time may 

enter the region and execute code. 

Mutexes (mutual exclusion objects) 

Mutexes are locks used to protect resources that guarantee ownership by a single thread at a time. A 

mutex can be used by multiple processes simultaneously; one thread from one process will be given 

ownership at a time. 

Events 

Events allow the programmer to send a message from one thread to another. Events can be used to 

communicate between threads in different processes. 

Semaphores 

Semaphores act as a gate and allow a limited number of threads (up to a programmable maximum) to 

enter. Rotor‘s PAL limits the use semaphores to a single process. 

Processes and threads 

The PAL has the ability to wait for the termination of a process or a thread, which is a form of 

synchronization. 

To implement these mechanisms in the PAL, a bewildering number of mapping choices were available in 

the form of Unix synchronization primitives. After evaluation, the venerable Unix pipe, a workhorse that is 

portable, works both cross-thread and cross-process, and has the blocking granularity of a single thread, 

was selected as the basis for all of the PAL‘s synchronization mechanisms, save critical sections , which are 

implemented using the pthread package‘s own mutex mechanism. We will discuss both approaches in turn. 
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Critical Sections 

A critical section (often referred to in the code as a critsec ) is a programming device used to enforce 

mutual exclusion between threads. A thread that is running code protected by a critical section is 

guaranteed that no other thread in its process can be running the same code at the same time. Once a critsec 

is released, there is no guarantee as to which pending thread will be granted ownership. In addition, there is 

no mechanism for detecting when a critsec has been abandoned by a thread that has exited, which means 

that deadlocks can occur when threads unexpectedly terminate. The structure used to represent a critical 

section in the PAL is shown in Example 9-7. 

Example Error! No text of specified style in document.-7. Critical sections are widely used in the PAL’s 

multithreaded code (defined in pal/rotor_pal.h) 

 

typedef struct _CRITICAL_SECTION { 

  PVOID   DebugInfo; 

  LONG    RecursionCount; 

  HANDLE  OwningThread; 

  HANDLE  LockSemaphore; 

} CRITICAL_SECTION, *PCRITICAL_SECTION, *LPCRITICAL_SECTION; 

Calls to EnterCriticalSection and LeaveCriticalSection are used to bracket sections of 

code to be protected. They can be acquired recursively by a single thread (typically in nested calls), and the 

RecursionCount field is used to record the number of times the critical section has been acquired in 

this way. A critsec that has been acquired multiple times on a thread must be released the same number of 

times. The OwningThread field contains a handle to the thread that currently owns the critical section, 

with NULL being used to indicate no owner. 

While the LockSemaphore field looks as though it might be a handle to a PAL object, it is actually a 

pointer to a pthread_mutex_t, which is a type defined by the POSIX threading library. Each PAL 

critical section has a corresponding pthread mutex. The pthreads implementation maps quite well to the 

Win32 critical section APIs: pthread_mutex_lock corresponds to EnterCriticalSection, 

pthread_mutext_unlock corresponds to LeaveCriticalSection, and 

pthread_mutex_trylock corresponds to TryEnterCriticalSection. 

The pthreads mutex implementation is very different from the Win32-style mutex 

implementation found in the PAL. The PAL‘s implementation is described in the later 

section ――Mutexes‖.‖ 

The routines EnterCriticalSection and LeaveCriticalSection are wrappers over the PAL‘s 

SYNCEnterCriticalSection and SYNCLeaveCriticalSection routines. These two functions 

are used internally within the PAL, and each take an additional parameter that is used to indicate when a 

call is being made from within the PAL. This distinction is important for the implementation of thread 

suspension and resumption, which is discussed in the ――Suspending and Resuming PAL Threads‖― section 

of this chapter. 

The BlockingPipe and the ThreadWaitingList 

Every THREAD has a single pipe associated with it, called its blocking pipe. The file for this pipe, created 

by createBlockingPipe, can be found in the configuration directory for the PAL process group, and 

the filename is a 

Exploring Lock Contention 
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The DebugInfo field is part of a useful piece of debugging infrastructure for detecting and 

reporting lock contention , which is a situation where threads are blocked excessively, because 

they are all trying to access the same shared resource at the same time. (The use of this field for 

lock contention analysis is specific to the PAL. On Windows, this field is opaque to the 

programmer.) 

The contention-detection code for critical sections is conditionally compiled under the 

REPORT_LOCK_CONTENTION macro and is not normally enabled. DebugInfo is a count that 

is incremented each time a thread attempts to enter the critsec and fails. When the critsec is 

destroyed, if the DebugInfo count is greater then 1, a message is printed to stderr reporting the 

address of the critsec and the value of the critsec‘s DebugInfo. For critsecs with very high lock 

counts, the code using the critsec should be inspected to see if the locking can be removed or 

performed over a smaller range of code. 

combination of the process ID, the thread ID, and the string .rotor_pal_threadpipe. For example, a 

thread with a PID of 1064 and a TID of 657840 might have the name /tmp/.rotor-pal-503-

1067299/.rotor_pal_threadpipe-1064-657840. Using canonical names like this, it is easy for one PAL 

process to locate the thread pipe for a thread in another process using only information that it has in its 

handles. 

Threads signal one another in various communication patterns by using synchronization objects as 

notification channels. When a thread wishes to be signaled by a synchronization object—for example, in 

response to a call to WaitForSingleObject—a thread adds itself to a structure called a thread waiting 

list, which is associated with the object in question. This is done using an object-specific routine, such as 

MutexAddThreadToList. After adding itself to this list, the thread then blocks by calling poll on its 

blocking pipe. Eventually, when the object wishes to wake up the thread by signaling from a different 

thread, the signaling object opens the blocking pipe and writes a wakeup code, which brings the thread 

back from the poll call. At this point, the original thread can remove itself from the object‘s thread 

waiting list, again using an object-specific routine such as MutexRemoveWaitingThread. 

As you can see from this discussion, waiting on the blocking pipe is central to the operation of almost all of 

the PAL‘s synchronization mechanisms. The data structure ThreadWaitingList, shown in Example 9-

8, is used to represent the outstanding synchronization requests within the PAL. It is used by 

synchronization objects to keep track of the blocking pipes for its clients. 

Example Error! No text of specified style in document.-8. The ThreadWaitingList data structure is used 

to implement synchronization objects (defined in pal/unix/include/pal/thread.h) 

 

typedef struct _ThreadWaitingList { 

  DWORD threadId; 

  DWORD processId; 

  int  blockingPipe; 

  union 

  { 

    SHMPTR shmNext; 

    struct _ThreadWaitingList *Next; 

  }ptr; 

  union 

  { 

    SHMPTR shmAwakened; 

    LPBOOL pAwakened; 

  }state; 

} ThreadWaitingList; 

The threadId and processId fields of ThreadWaitingList contain the thread and process IDs 

associated with a synchronization object, and the blockingPipe field contains the file descriptor of the 

pipe used for synchronization on the thread wishing to be signaled. The blockingPipe is used to wake 

up a thread when it is being signaled, but the value in this field, since it is a file descriptor, is only valid 

within the process that initialized the list. When the process being signaled is not the same as the process in 
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which the synchronization object resides, the threadId and processId are used to locate the pipe to 

be used, and the blockingPipe field is not referenced. 

ThreadWaitingList structures are strung together into a singly linked list whose root can be found in 

the synchronization object with which they are associated. Depending on the nature of the synchronization 

object, this structure can reside in process memory (the case for threads and semaphores) or in shared 

memory (the case for mutexes and events). Thus the ptr field is a union of a SHMPTR and pointer to the 

ThreadWaitingList structure. 

There is a potential race condition in the window between the return from poll and the thread‘s removal 

from the thread waiting list during which the thread could be resignaled, which would interfere with 

completion of the wakeup procedure already underway. The solution for this is to store a pointer to the 

thread‘s waitAwakened field in the list entry. This field can be used to track the thread‘s execution state 

and to check it during signaling (see THREADInterlockedAwaken in pal/unix/thread/thread.c for 

more details). Since this pointer may need to reference threads that live in other processes, a union of a 

shared-memory pointer and process pointer is once again used. 

Semaphores 

A semaphore object maintains a count between 0 and a specified maximum value. This value is 

incremented each time a thread releases the semaphore and is decremented each time a thread completes a 

wait on the semaphore. The initial value of the count can be specified at creation time. 

The Semaphore structure, shown in Example 9-9, contains the usual fields for a PAL entity, the 

objHeader, dwMagic, and refCount fields. The critSection field is used internally to guarantee 

atomic updating of the structure. Since this is a waitable entity, the waitingThread field acts as a head 

pointer for its thread waiting thread list. The waiting list is maintained as a FIFO (first-in, first out) queue 

by the semaphore implementation, and only allows references to threads that reside in the same process as 

the Semaphore. 

Example Error! No text of specified style in document.-9. The Semaphore structure (described in 

pal/unix/sync/semaphore.h) 

 

typedef struct _Semaphore 

{ 

  HOBJSTRUCT         objHeader; 

  DWORD              dwMagic; 

  INT                refCount; 

 

 LONG               semCount; 

  LONG               maximumCount; 

 

  CRITICAL_SECTION   critSection; 

  ThreadWaitingList *waitingThreads; 

} Semaphore; 

The PAL has several wait functions (although all are implemented using 

WaitForMultipleObjectsEx). When a wait function is called on a semaphore, the semCount, if 

greater then 0, is decremented and the function returns immediately, indicating that the semaphore was 

acquired. If semCount is 0, the thread is put on the semaphore‘s thread waiting list, and the thread blocks. 

To increment the semCount, ReleaseSemaphore is called. As long as the value remains less then 

maximumCount, the value is increased and the semaphore is released. If the value is at its maximum, the 

first waiting thread in the thread waiting list is signaled. Since the thread waiting list is maintained as a 

FIFO, threads are awakened in the order in which they acquired the semaphore. 

Due to the limited definition of semaphores   in the PAL, their implementation is fairly 

straightforward. When compared with the Win32 implementation, which requires cross-
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process capabilities and the OpenSemaphore API, the PAL version appears trivial. The 

simpler requirements of the SSCLI allowed the Rotor team to keep the design simple. 

Events 

Events are signaled using the SetEvent and ResetEvent APIs. These APIs enable one thread to signal 

another thread directly, as a message. Events come in two flavors: the manual-reset event and the auto-

reset event. A manual-reset event is like an on/off switch; when SetEvent is called, it signals all threads 

waiting on it to proceed and continues to do so until ResetEvent is called. An auto-reset event is very 

different; when SetEvent is called, the event signals a single thread from its thread waiting list and then 

immediately returns to an unsignaled state. 

Events may be shared between processes, which makes them trickier to implement then semaphores. (By 

default, an event that is named is accessible to other processes.) Events are represented within the PAL as 

two related data structures: the Event, which is the in-process portion, and the 

GLOBAL_EVENT_SYSTEM_OBJECT, which is the shared-memory portion. Both are shown in Example 

9-10. 

Example Error! No text of specified style in document.-10. The paired data structures for events (defined 

in pal/unix/sync/event.h) 

 

typedef struct _Event 

{ 

  HOBJSTRUCT   objHeader; 

  DWORD        dwMagic; 

  SHMPTR       info; 

  INT          refCount; 

} Event; 

 

typedef struct _GESO 

{ 

  SHM_NAMED_OBJECTS  ShmHeader; 

 

  INT                refCount; 

  BOOL               state; 

  BOOL               manualReset; 

  SHMPTR             waitingThreads; 

  SHMPTR             next; 

}GLOBAL_EVENT_SYSTEM_OBJECT, * PGLOBAL_EVENT_SYSTEM_OBJECT; 

The Event structure itself is minimal, including the same objHeader, dwMagic, and refCount fields 

described in the discussion of PAL processes earlier in this chapter. Its only real purpose, besides enabling 

handle management for the event itself, is to provide a place to put a pointer to an associated 

GLOBAL_EVENT_SYSTEM_OBJECT structure that is stored in shared memory. 

Important fields in GLOBAL_EVENT_SYSTEM_OBJECT are the state field, which indicates whether 

the event is signaled and the manualReset field, which indicates the event‘s type. The object name is 

stored in the SHM_NAMED_OBJECTS 

The Impact of Shared Memory 
Unlike the Semaphore object, there is no critical section field in Event or Mutex structures. 

Instead, since the code that implements synchronization for these entities uses shared memory, it 

must call SHMLock on that shared memory prior to access and SHMRelease when it is done. 

These calls bracket access to the memory in the same way that critical sections bracket access to 

sections of code. Shared memory locks are much heavier weight than critical sections, however, 

and their use impacts more client threads of the PAL in the event that they are competing for 

resources. 
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In addition to this, since both Event and Mutex entities have portions of their data stored in 

shared memory that is accessed by name, the names that they use must be created in a way that 

doesn‘t conflict with other processes using the same shared-memory segment. Each PAL process 

group must implement its own unique namespace so that its events will not mysteriously appear in 

other PAL process groups using the same shared memory. 

Name disambiguation is accomplished by mangling all occurrences of a name, using the 

MangleObjectNameW function. This function prepends the name passed to it with a string that 

is the hash of the fully qualified path to the PAL library binary, keeping the resulting string to 40 

characters so that it doesn‘t run afoul of Windows‘ relatively short MAX_PATH limit for names. 

The hash is performed once at PAL startup by the routine HashPath, and the result is stored in 

the global NameManglerW variable for quick retrieval. 

structure. When threads are waiting to be signaled, they occupy a thread waiting list, whose head can be 

found in the waitingThreads field. 

Events are created using CreateEvent, although this API defers first to OpenEvent to ensure that the 

name has not already been used. If the event does not already exist, a paired set is created consisting of a 

GLOBAL_EVENT_SYSTEM_OBJECT in shared memory and   an Event in local memory. Events may be 

created without a name, in which case the handle must be passed among all parties wishing to use the 

event. 

Mutexes 

A mutex is a PAL entity that is used as a lock when accessing resources. The name is a contracted form of 

―mutual exclusion,‖ which is the principle that a mutex enforces: only one thread can own the mutex at a 

time. Mutexes implement a simple toggle; they are unsignaled when no thread owns them and signaled 

when owned by a thread. (When unsignaled, they can be acquired without waiting. When signaled, a thread 

must wait for access.) Like critical sections, mutexes are used to coordinate access between multiple 

threads. Unlike critical sections, mutexes can be used by multiple processes, and because of this, mutexes 

share implementation similarities with events. Mutexes also differ from critical sections in that they have a 

well-defined order in which clients are granted access. (Critical sections do not guarantee wake order.) 

Like events, a mutex may be created with or without a name. Unlike events, the name does not govern the 

cross-process visibility of the mutex: all mutexes are available in shared memory to other PAL processes 

within a process group. This is done to support the PAL_LocalHandleToRemote API, which can be 

used to pass a mutex handle to another process. (This is used when debugging. An unnamed mutex is 

created and then duplicated using this API for the debugger to use.) The pair of structures used to represent 

a mutex is shown in Example 9-11. 

Example Error! No text of specified style in document.-11. The paired data structures that represent 

mutexes (defined in pal/unix/include/pal/mutex.h) 

 

typedef struct _MHO 

{ 

  HOBJSTRUCT     HandleHeader; 

  UINT           Ref_Count; 

  SHMPTR         ShmKernelObject; 

 

  struct _MHO *  pNext; 

  struct _MHO *  pPrev; 

 

} MUTEX_HANDLE_OBJECT, * PMUTEX_HANDLE_OBJECT; 

 

typedef struct _GMSO 

{ 

  SHM_NAMED_OBJECTS  ShmHeader; 

  SHMPTR             ShmWaitingForThreadList; 

  UINT               Ref_Count; 
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  UINT               Mutex_Count; 

  BOOL               abandoned; 

  struct { 

    DWORD ProcessId; 

    DWORD ThreadId; 

  } Owner; 

} GLOBAL_MUTEX_SYSTEM_OBJECT, * PGLOBAL_MUTEX_SYSTEM_OBJECT; 

MUTEX_HANDLE_OBJECT is the in-process data structure that acts as a local proxy for the 

GLOBAL_MUTEX_SYSTEM_OBJECT. It contains the usual HOBJSTRUCT and Ref_Count found in all 

objects and described in the section on PAL processes in this chapter. Its ShmKernelObject field is the 

pointer to shared memory in which the actual mutex object resides. 

GLOBAL_MUTEX_SYSTEM_OBJECT is used to represent the mutex in shared memory. Its Ref_Count 

field holds a count of all outstanding references, its ShmHeader field contains the mutex‘ name, and its 

ShmWaitingForThreadList field contains the head of the thread waiting list for the mutex. This list 

is managed as a FIFO queue, in the same way that semaphores managed their waiting threads, guaranteeing 

that threads are granted access to the mutex in the order they initiate waiting. 

The Mutex_Count field deserves explanation. After all, if only one thread can gain ownership of the 

mutex at a time, why have a count? The reason is that the specification requires that a thread be able to 

acquire the mutex multiple times. Mutex_Count keeps track of these references. Each call to acquire the 

mutex must have a matching call to ReleaseMutex, which decrements this counter. 

There are two other fields that are unique among synchronization entities: the pNext and pPrev fields of 

the MUTEX_HANDLE_OBJECT. In addition to being held in the handle table, in-process mutex objects are 

joined as a doubly-linked list that is rooted in the process global pMutexHandle. This list is used when a 

thread exits while holding a mutex, a process known as abandonment . Abandoning a mutex is the 

equivalent of calling RelaseMutex until the mutex‘s Mutex_Count reaches 0. To abandon the 

mutexes held by a thread, the routine MutexReleaseMutexes traverses the list, examining each 

ProcessId and ThreadId looking for a match with the current process and thread. The abandoned 

field in the GLOBAL_MUTEX_SYSTEM_OBJECT is also set when the mutex is abandoned, and is reset 

only when a new thread takes ownership. 

Implementing Signaling 

The PAL provides a number of waiting functions for threads. All of these (WaitForSingleObject, 

WaitForMultipleObjects, Sleep, and SleepEx) are implemented using 

WaitForMultipleObjectsEx . Because of this, this section will step through only 

WaitForMultipleObjectsEx. You will understand how signal waiting is done in the PAL if you 

understand how this function, defined in pal/unix/sync/wait.c, works. 

The code for WaitForMultipleObjectsEx can be tricky to trace at runtime, due to 

its use of indirect recursion, as well as its use of a worker thread when waiting for a 

process to terminate. 

Here is the function prototype for WaitForMultipleObjectsEx: 

 

    WaitForMultipleObjectsEx( 

           IN DWORD nCount, 

           IN CONST HANDLE *lpHandles, 

           IN BOOL bWaitAll, 

           IN DWORD dwMilliseconds, 

           IN BOOL bAlertable) 
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The arguments lpHandles and nCount combine to specify an array containing the handles of all objects 

to wait on. If all objects must signal before the function returns, bWaitAll is set to true; otherwise, the 

first object to signal will cause the function to return. The dwMilliseconds argument is used to indicate 

how long a timeout to use before returning, regardless of success. This argument may be INFINITE, in 

which case the wait will return only when all wait conditions have been met. Finally, bAlertable 

indicates that the wait may be terminated by a queued APC, which is discussed in the later section 

――Asynchronous Procedure Calls‖.‖ 

The first thing done in WaitForMultipleObjectsEx is to validate the handles passed in the 

lpHandles argument and lock them. A check is made that the handles are waitable, which means that 

they are of type PROCESS, EVENT, SEMAPHORE, MUTEX, or THREAD, but not FILE or MAP. A check is 

also made to make sure that there is at most one process object in the list to wait on. (The one-process 

limitation was specified because the SSCLI never needs to wait on more then one process, and this 

limitation greatly simplifies the implementation.) The code looks like this: 

 

    for (i = 0; i < nCount; i++) { 

      // Create a local copy of lpHandles before locking, since 

      //  caller might change out from under us. 

      hHandles[i] = lpHandles[i]; 

      hObjs[i] = HMGRLockHandle(hHandles[i]); 

 

      if (hObjs[i] == NULL) { 

        SetLastError(ERROR_INVALID_PARAMETER); 

        goto WaitFMOExit; 

      } 

 

      handles_locked++; 

 

      if ((hObjs[i]->type != HOBJ_PROCESS)  && 

          (hObjs[i]->type != HOBJ_EVENT)  && 

          (hObjs[i]->type != HOBJ_SEMAPHORE)  && 

          (hObjs[i]->type != HOBJ_MUTEX)  && 

          (hObjs[i]->type != HOBJ_THREAD)) { 

        SetLastError(ERROR_INVALID_HANDLE); 

        goto WaitFMOExit; 

      } 

 

      // Remember index of process handle 

      if(HOBJ_PROCESS == hObjs[i]->type) { 

        if (-1 == process_index) { 

          process_index = i; 

        } else if(!bWaitAll) { 

          // There must never be more than 1 process handle 

          ASSERT("found more than 1 process handle in the array!\n"); 

        } 

      } 

    } 

After this, a check is made to see whether the wait is alertable and if there are any queued APCs. If these 

conditions are met, the queued APCs are called, any handles are unlocked and the wait returns with 

STATUS_USER_APC. Notice that if an APC is queued to a thread while the thread is waiting on other 

objects, the wait will be cut short and the APC called: 

 

    if (bAlertable) { 

      NumAPCCalled = THREADCallThreadAPCs(); 

      if (NumAPCCalled == -1) { 

        ERROR("Failed in calling APCs for the current thread\n"); 

        goto WaitFMOExit; 

      } else if (NumAPCCalled > 0) { 

        retValue = STATUS_USER_APC; 
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        goto WaitFMOExit; 

      } 

    } 

The code then classifies the wait into one of three cases: 

1. There is one object to wait for (nCount == 1), the object is a process, and the wait is nonalertable 

(bAlertable is false). 

2. There is more then one object to wait on (nCount > 1), and the programmer has requested waiting 

for all of them (bWaitAll is true). 

3. All other waits. 

The first two cases are clearly subsets of the third case. What is useful about these two subsets is that they 

can be implemented more optimally than the general case. For the first case, WFMO_WaitForProcess is 

called with appropriate parameters. The routine calls GetExitCodeProcess inside an infinite loop, 

which breaks out when either the timeout has expired or the process exits. (GetExitCodeProcess does 

not wait for the process to end. It returns immediately, either with an exit code or with STILL_ACTIVE to 

indicate that the process is alive.) We will skip the code for this case, since it is straightforward. 

Here is the start of the code that implements the second case, which can be found in the 

WFMO_WaitForAllObjects function: 

 

    // Save current time, so that we can know when the timeout is elapsed 

    old_time = GetTickCount(); 

 

    // Step 1 : wait for processes and threads. 

    for(i=0;i<nCount;i++) { 

      if ( HOBJ_PROCESS == hObjs[i]->type || HOBJ_THREAD  == hObjs[i]->type ) { 

        ret = WaitForSingleObject(lpHandles[i], dwMilliseconds); 

        if (WAIT_TIMEOUT == ret) { 

          return WAIT_TIMEOUT; 

        } 

      } else { 

        // Build arrays of "resettable" handles (mutexes, events, semaphores) 

        resetables[resetable_count] = lpHandles[i]; 

        resetable_objs[resetable_count] = hObjs[i]; 

        resetable_count++; 

      } 

 

      // If we have a timeout value, adjust it 

      if ( 0 != dwMilliseconds && INFINITE != dwMilliseconds ) { 

        WFMO_update_timeout(&old_time, &dwMilliseconds); 

        if (0 == dwMilliseconds) { 

          return WAIT_TIMEOUT; 

        } 

      } 

    } 

 

    // If only process and thread objects were given, we can stop here 

    if( 0 == resetable_count) { 

      return WAIT_OBJECT_0; 

    } 

The list of valid object types for case 1 can be divided into two groups: handles that can have their signal 

state reset, which are events, semaphores, and mutexes, and handles that cannot have their signal reset, 

which are threads and processes. (The signal is the exit code in these cases.) Since the termination criterion 

for this particular case is that every handle must signal, there is no point in worrying about handles that 

might set and reset their signals (perhaps multiple times) until the handles that cannot reset their signals 

have signaled. 
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WFMO_WaitForAllObjects calls WaitForSingleObject on any process or thread that is in its 

list. In a not-entirely-unexpected display of recursion, WaitForSingleObject bottoms out in a call to 

WaitForMultipleObjectsEx, but with a single handle and with bWaitAll and bAlertable 

both set to False. For the purpose of this discussion, it is important to know that calls to 

WaitForSingleObject with a thread or a process handle are synchronized, and so each call will wait 

for its thread or process to actually terminate before the next object is checked. Before proceeding, the 

timeout value is updated to account for the time spent waiting on nonresettable objects. 

Now that process and thread handles have signaled, the code drops into a large loop to wait on the 

remaining objects. First, there is a call to WaitForSingleObject on the current 

blocking_object, which is initialized as the index of the first item in the list of resettable handles. 

(WaitForSingleObject will recursively make a synchronized call to 

WaitForMultipleObjectsEx.) 

 

    blocking_object = 0; 

    while(1) { 

      ret = WaitForSingleObject( resetables[blocking_object], dwMilliseconds); 

      if (WAIT_TIMEOUT == ret) { 

        return WAIT_TIMEOUT; 

      } 

      got_abandoned = was_abandoned[blocking_object] = WAIT_ABANDONED==ret; 

 

      // function continues 

The list of resettable handles is then walked, and WaitForSingleObject is called on each with a 

timeout of 0 (skipping the blocking_object). The objective is to check for handles that have already 

signaled. If none of the waits return WAIT_TIMEOUT, then all handles have signaled, and the routine 

returns successfully. Otherwise, the wait that returns WAIT_TIMEOUT causes the walk to halt, and the 

handle that caused this return is marked as the blocking object: 

 

      for(i=0; i<resetable_count;i++) { 

        // Skip the first object we waited on, it's already signalled 

        if (i == blocking_object) { 

          continue; 

        } 

        // Wait on all others without blocking, to see if they're signaled 

        ret = WaitForSingleObject(resetables[i], 0); 

 

        if (WAIT_TIMEOUT == ret) { 

          resetables[i]); 

          break; 

        } 

 

        was_abandoned[i] = WAIT_ABANDONED == ret; 

        if (was_abandoned[i]) { 

          got_abandoned = TRUE; 

        } 

      } 

 

      // function continues 

The list of resettable objects is now walked backwards from the handle before the blocking_object to 

the start of the list. Since all of these handles have already signaled, they are released so that other waiting 

threads may be unblocked. 

Mutexes that were acquired due to abandonment are released with WTC_ABANDON as their wakeup code 

for the next thread waiting. Other mutexes and semaphores are released normally, and events are placed 

into a signaled state by calling SetEvent: 
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      // If the for loop completed normally, all object were signal 

      if (i == resetable_count) { 

        if (got_abandoned) { 

          return WAIT_ABANDONED; 

        } 

        return WAIT_OBJECT_0; 

      } 

 

      // We'll wait on object that wasn't signalled next pass. 

      blocking_object = i; 

 

      // Give up ownership or re-signal all events we succesfully waited on 

      for(; i>=0;i--) { 

        switch(resetable_objs[i]->type) { 

          case HOBJ_MUTEX: 

            if (was_abandoned[i]) { 

              // Re-flag as abandoned if that's how it was 

              MutexReleaseMutex((MUTEX_HANDLE_OBJECT *)resetable_objs[i], 

                                                        WUTC_ABANDONED, FALSE); 

            } else { 

              ReleaseMutex(resetables[i]); 

            } 

            break; 

 

          case HOBJ_SEMAPHORE: 

            ReleaseSemaphore(resetables[i], 1, NULL); 

            break; 

          case HOBJ_EVENT: 

            SetEvent(resetables[i]); 

            break; 

          default: 

            break; 

        } 

      } 

 

      // If we have a timeout value (not infinite), update 

      if ( 0 != dwMilliseconds && INFINITE != dwMilliseconds ) { 

        WFMO_update_timeout(&old_time, &dwMilliseconds); 

        if (0 == dwMilliseconds) { 

          return WAIT_TIMEOUT; 

        } 

      } 

    } 

Finally, the timeout value is updated by subtracting the time spent on this pass. The loop continues until all 

handles have signaled or the timeout is reached. 

Broadly speaking, the PAL‘s implementation of signal waiting can be divided into two types of code, the 

first of which, as we have just seen, involves process waiting by polling, and the second deals with the 

general case. The code for the first, with its polling loops, is more complicated than the general case, but 

there is a good reason to break it out. 

There is an impedance mismatch between the Unix process model and the PAL process model. In Win32, a 

wait on a process is the same as a wait on another handle, and any handle can terminate a call to 

WaitForMultipleObjectsEx. In the Unix PAL, process terminations must be treated very 

differently than other handles, and catching them requires heavy software machinery in the form of a new 

thread. The expense of creating a new thread is why the PAL attempts to avoid the general-case solution. 

The code for the general case will make the differences clear. At its start, the list of handles to wait on is 

checked for the presence of a process. If one is included, a set of expensive resources is created (if they do 

not already exist) that will be used to enable the wait on the process, as follows (error handling has been 

removed for readability): 



Appendix A: The Platform Adaptation Layer  | 286 

 

    // If there is a process handle, get ready to use a worker thread 

    if ( -1 != process_index) { 

      if (NULL == worker_handle) { 

        // First-time initialization : create worker thread and event 

        DWORD tid; 

        keep_going = TRUE; 

        process_handle = NULL; 

        worker_event = CreateEventW(NULL, FALSE, FALSE, NULL); 

      } 

 

      // Create event used to indicate worker thread is going to standby mode 

      standby_event = CreateEventW(NULL, FALSE, FALSE, NULL); 

      // Create event used by worker thread to signal process termination 

      process_event = CreateEventW(NULL, FALSE, FALSE, NULL); 

      // Create the worker thread itself 

      worker_handle = CreateThread(NULL, 0, &WFMO_workerthread, NULL, 0, &tid); 

    } 

 

    // Tell worker thread which process to wait on, and how long 

    process_handle = hHandles[process_index]; 

    worker_timeout = dwMilliseconds; 

 

    // Housekeeping code to set up wait state deleted 

 

    for (i = 0; i < handles_locked; i++) { 

      if (i == process_index) { 

        // Reached the index of the process handle. Tell worker thread to wait, 

        //  and wait on event as proxy. 

        ret = WaitOn(HOBJ_EVENT, process_event, shmThreadWaitState); 

        SetEvent(worker_event); 

      } else { 

        ret = WaitOn(hObjs[i]->type, *(hHandles+i), shmThreadWaitState); 

      } 

 

      if (WOC_SIGNALED == ret || WOC_ABANDONED == ret) { 

        // One object was signaled, we are done 

        if (WOC_SIGNALED == ret) { 

          retValue = WAIT_OBJECT_0 + i; 

        } else { 

          retValue = WAIT_ABANDONED_0 + i; 

        } 

 

        StopWaitingOnObjects(hObjs, hHandles, i, process_index); 

 

        // Rest of function not shown 

Two events and a thread are needed to properly catch process termination in a nonsynchronized fashion. A 

thread (worker_thread) acts as the proxy for the process while waiting, the standby_event is used 

to signal from the worker thread to the waiting thread that the process has terminated and is entering 

―standby‖ mode, and the process_event is used by the waiting thread to signal the worker thread to 

begin waiting on the process. The standby_event becomes a proxy handle for the process that can be 

waited on like other PAL handles. This is an expensive solution indeed, but once it is in place, the rest of 

WaitForMultipleObjectsEx is straightforward. 

With the process proxy in place, the list of handles to wait on is walked, and WaitOn is called on each. 

WaitOn is a dispatcher function that defers to handle-specific routines to set up the wait. If there are no 

errors and no objects have already signaled, ThreadWait is called which in turn calls 

PollBlockingPipe to enter a polling loop, waiting for a wakeup code to be written to the thread‘s 

blocking pipe. 
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Once WaitOn returns, StopWaitingOnObjects is called to clear the pending waits. The wait may 

have stopped due to an object signaling, an APC being queued (since this is an alertable wait), the time 

limit being exceeded, or a mutex being abandoned. Each case is converted to an appropriate exit code, and 

if the object that signaled was the worker_event, this signal is mapped back to the original process 

object. At this point, control is returned to the caller, as WaitForMultipleObjectsEx returns. 

Suspending and Resuming PAL Threads 

Now that we have discussed synchronization and signaling within the Unix PAL, we can see them in action 

in the way that PAL threads are suspended and resumed. Although the POSIX threads package meets most 

of the PAL‘s requirements, the pthread API does not contain a standard way to suspend or resume a thread. 

To further complicate matters, PAL threads must be able to suspend themselves, and they should be 

capable of tracking and recovering from multiple requests for suspension by maintaining a suspend count. 

(Nonstandardized extensions to pthreads certainly exist, such as FreeBSD‘s pthread_suspend_np and 

pthread_resume_np functions, but none of these fully capture the PAL‘s Win32 semantics.) 

To implement self-suspension, the code in SuspendThread waits on the thread‘s blocking pipe until 

another thread calls ResumeThread , which resumes the thread by writing to the pipe. Since this use of 

the blocking pipe (an expensive resource to allocate on a per-thread basis) is shared with the signaling 

mechanism described in ―Implementing Signaling,‖ the SuspendedWithPipeFlag in the THREAD 

structure is used to indicate when the pipe is being utilized for suspension rather than for waiting. 

When suspending another thread, platform-specific approaches are used. On FreeBSD, SuspendThread 

utilizes the pthread_suspend_np routine, keeping a suspension count in the field 

dwSuspendCount. On Mac OS X, the pthread_t is converted to a Mach thread ID, and 

thread_suspend is called. (These calls, conditionally compiled, can be seen in Example 9-7.) 

The code in the Unix implementations of SuspendThread and ResumeThread is very susceptible to 

deadlocks, due to the PAL‘s internal use of critical sections to serialize access to its data structures when 

using and updating them. The danger arises when a thread is suspended while it holds a PAL-internal 

critical section; subsequent threads attempting to access the same structure will block until the first thread 

is resumed. Under the worst case scenario, for example, a thread might hold a critical section on a structure 

required to resume execution, resulting in deadlock. (The Win32 PAL does not share this problem, since it 

defers to the Windows implementation of SuspendThread and ResumeThread, which are written 

without the use of critical sections.) 

To avoid the deadlock problem, each thread maintains a count of the number of PAL-internal critical 

sections it has entered. By keeping this count, the PAL can implement a conservative strategy through 

which a thread will not be suspended until its critical section count has gone to 0. When SuspendThread 

is called, the code immediately enters spin lock, as follows: 

 

    while(0 != InterlockedCompareExchange(&lpThread->suspend_spinlock,1,0)) 

      sched_yield(); 

The lock guarantees that only one thread will gain access to the code following the spinlock. Normally, you 

would use a critical section to ensure this restricted access, but since you are trying to avoid using critical 

sections, the more conservative (and expensive, because of its processor usage) spinlock approach makes 

sense. 

After acquiring the spinlock, the critical section count must go to 0. The code that accomplishes this is 

shown in Example 9-12. 

Example Error! No text of specified style in document.-12. SuspendThread must reduce the target 

thread’s critical section count to zero before suspending (extracted from pal/unix/thread/thread.c) 

 

if(0 != lpThread->critsec_count) { 

  pthread_mutex_lock(&lpThread->suspension_mutex); 
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  pthread_mutex_lock(&lpThread->cond_mutex); 

  lpThread->suspend_intent = TRUE; 

 

  // Let the thread run until it releases all its critical sections 

#if HAVE_PTHREAD_NP 

  pthread_resume_np((pthread_t)lpThread->dwThreadId); 

#elif HAVE_MACH_THREADS 

  thread_resume(pthread_mach_thread_np((pthread_t) lpThread->dwThreadId)); 

#endif 

 

  // Wait for signal 

  pthread_cond_wait(&lpThread->suspender_cond, 

                    &lpThread->cond_mutex); 

 

  // Once mutex is tripped, it is safe to suspend 

#if HAVE_PTHREAD_NP 

  pthread_suspend_np((pthread_t)lpThread->dwThreadId); 

#elif HAVE_MACH_THREADS 

  thread_suspend(pthread_mach_thread_np((pthread_t) lpThread->dwThreadId)); 

#endif 

 

  lpThread->suspend_intent = FALSE; 

  // Allow target thread to acquire the mutex and continue when resumed 

  pthread_mutex_unlock(&lpThread->cond_mutex); 

  pthread_mutex_unlock(&lpThread->suspension_mutex); 

} 

The pthread_mutex_lock API is used to lock the suspension_mutex and cond_mutex 

mutexes, both of which are fields of the THREAD structure. Once both mutexes have been acquired, the 

suspend_intent field in the target thread is set to true and the target thread is resumed using 

pthread_resume_np on FreeBSD and thread_resume on Mac OS X. The calling thread then 

blocks until the outstanding critical sections are released. 

Having been resumed, the target thread is now running. Every time the routine 

SYNCLeaveCriticalSection (the code used to exit a critical section) is executed, the 

critsec_count is decremented and checked to see whether it is zero. When this constraint is met, the 

code sequence in Example 9-13 is executed. 

Example Error! No text of specified style in document.-13. The handshake used to protect 

SuspendThread from deadlock (extracted from pal/unix/sync/critsect.c) 

 

// Wait until the suspender thread is calling pthread_cond_wait 

pthread_mutex_lock(&pCurrentThread->cond_mutex); 

pthread_mutex_unlock(&pCurrentThread->cond_mutex); 

 

// Let suspender thread suspend this thread 

pthread_cond_signal(&pCurrentThread->suspender_cond); 

 

// Wait for the suspender to unlock AND for the resumer to resume 

pthread_mutex_lock(&pCurrentThread->suspension_mutex); 

 

// We have been resumed; release the mutex. 

pthread_mutex_unlock(&pCurrentThread->suspension_mutex); 

The two mutexes are being used as a handshake mechanism between the thread wishing to suspend and the 

thread that will be suspended. The target thread signals the suspender via pthread_cond_signal, and 

then attempts to lock the suspension_mutex where it will remain until the ResumeThread is called. 

Once the suspender thread is signaled, SuspendThread resumes. Using pthread_suspend_np, it 

once again suspends the target thread and then unlocks the two mutexes. (Unlocking the mutexes has no 

effect on the target thread because it is now suspended.) After incrementing dwSuspendCount and 

releasing the spinlock, SuspendThread returns. 
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Asynchronous Procedure Calls 

Asynchronous Procedure Calls (APCs ), which provide a way to execute code within the context of a 

specific thread, are used by Rotor‘s threading implementation. (Specifically, they provide a way to politely 

interrupt threads that are busily beavering away at something else.) They are implemented as callback 

functions, which always have the signature: 

 

    VOID CALLBACK APCProc(ULONG_PTR dwParam); 

An APC is queued to a thread, where it is scheduled for execution. While not strictly a synchronization 

mechanism, the queuing of an APC has an effect similar to synchronization. 

The QueueUserAPC API adds the APC passed as a parameter to a per-thread queue of functions to be 

called. A thread will call its APCs only when it is alertable, which is defined to be after it uses 

WaitForMultipleObjectsEx or SleepEx with the alertable parameter set to True. APCs are 

called in FIFO order. 

In the Unix PAL, the thread maintains its queue as a singly linked list of APC_TRACKER structures: 

 

    typedef struct _APC_TRACKER 

    { 

      PAPCFUNC             pfnAPC; 

      ULONG_PTR            pAPCData; 

      struct _APC_TRACKER *pNext; 

    } APC_TRACKER, *LPAPC_TRACKER; 

The root of this list can be found in the lpAPCTracker field of THREAD. 

Since each APCProc takes a ULONG_PTR argument, each element of the APC tracker list must hold onto 

the function argument in addition to the function pointer. The routine THREADCallThreadAPCs 

handles the calling of the APC functions and is called in three places: before the thread starts actually 

waiting on handles in WaitForMultipleObjectsEx, before the DLL_THREAD_ATTACH call in 

THREADEntry, and after the blocking pipe has been released in ThreadWait. 

Handling Exceptions in the PAL 

The SSCLI implementation uses Win32 Structured Exception Handling (SEH) heavily, and because of this, 

the PAL must provide an implementation of this feature for its use. 

Before launching into the details of how the PAL implements SEH portably, a quick review is in order. 

SEH takes the following form in Win32 code: 

 

    _  _try { 

      <guarded code> 

    } 

    _  _except (<filter>) { 

      <exception handler> 

    } 

    _  _finally { 

      <termination handler> 

    } 

The filter and its exception handler are executed if an exception occurs during the execution of the guarded 

code; if an exception occurs within the try block, the filter is used to determine whether the except 

block should be run. The termination handler is an optional piece of code that is executed whenever control 

moves out of the guarded section; as control moves out of the try block for any reason, the finally block 

is executed. Any code blocks may themselves contain try blocks,exceptblocks, orfinally blocks (or 
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call functions that contain such blocks), and because of this, handlers may be, and often are, nested to an 

arbitrary depth. 

The algorithm for exception handling is as follows: 

1. An exception is raised. 

2. The system looks at the hierarchy of active exception handlers and executes the filter of the handler 

with highest precedence. This is the exception handler most recently installed and most deeply nested. 

3. If the filter passes control by returning EXCEPTION_CONTINUE_SEARCH, execution returns to step 

1 but at the next highest precedence exception handler. 

4. If the filter returns EXCEPTION_CONTINUE_EXECUTION, execution continues where the exception 

was raised 

5. If the filter returns EXCEPTION_EXECUTE_HANDLER, then: 

a) Each termination handler on the stack is executed in order of precedence, up to the scope of the 

current exception handler. 

b) The stack is unwound, clearing all stack frames between the currently executing code (in which 

the exception was raised), and the stack frame that contains the exception handler gaining control. 

c) The exception handler is executed. 

d) Control passes to the line of code that follows the end of the exception handler. 

The act of traversing the exception handlers and running the filter functions is commonly referred to as the 

first pass   of exception handling. The act of executing the termination handlers, unwinding the stack, and 

executing the exception handler is commonly called the second pass   of exception handling. (This is the 

same terminology used in Chapter 6 when discussing exception handling in the execution engine.) 

Win32 SEH is not available on non-Windows platforms, although C/C++ exception handling is. One 

seemingly obvious implementation alternative for the PAL would be to use C++ exception handling to 

implement Win32 SEH. Unfortunately, C/C++ exception handling lacks several of the features of Win32 

SEH, which renders this choice untenable. The missing features are: 

Two-pass semantics 

The two-pass semantics of Win32 SEH are hard to emulate using single-pass C/C++ exception 

handling. 

Very low-level hooks 

Special hooks are necessary to handle exceptions in JIT-compiled code. These hooks must provide a 

level of control comparable to x86 Windows, in which the chain of exception handlers can be 

manipulated directly. 

Order of execution 

The Rotor execution engine depends on subtle details such as the fact that a termination handler is 

executed before the stack is unwound. These details are hard to guarantee using generic C/C++ 

exception handling. 

Because of this, the Rotor team decided to implement SEH as part of the PAL. It is exposed as a set of 

macros to use as though they were the Win32 constructs. The complete set of macros and their differences 

from the Win32 SEH constructs are documented in the PAL specification and in Appendix D, and the 

macro definitions can be found in rotor_pal.h. For a quick taste of the use of these macros, Example 

9-14 contains pseudocode for both Win32 SEH code and corresponding PAL SEH code. 

Example Error! No text of specified style in document.-14. Win32 SEH and PAL SEH compared 

 

// Win32-style exception handling 

 

// local variable declarations 

_  _try { 
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  // code which references locals from above 

} _  _except ( ExceptionFilter(GetExceptionInformation(), pData) ) { 

  // code which references locals from above 

} 

 

// PAL-style exception handling 

 

// local variable declarations 

PAL_TRY { 

  // code which references locals from above 

} PAL_EXCEPT_FILTER(ExceptionFilter, pData) { 

  // code which references locals from above 

} PAL_ENDTRY 

To implement SEH, the PAL defines five new routines: 

 PAL_TryHelper 

 PAL_EndTryHelper 

 PAL_SetBottommostRegistration 

 PAL_GetBottommostRegistration 

 PAL_GetBottommostRegistrationPtr 

The PAL specification describes signatures for all of these functions. 

Handling Signals with Exception Handlers 

On Windows, SEH provides a unified way to handle exceptions arising from hardware faults, the operating 

system, and user code. The PAL provides the same unification on Unix by mapping synchronous Unix 

signals into exceptions. 

During PAL startup, PAL_Initialize calls SEHInitialize, which in turn calls 

SEHInitializeSignals to set up signal handlers. The handle_signal function is called to install 

signal handlers for every signal that a user process is permitted to handle. Signal handlers are installed for 

both signals that are transformed into exceptions, such as SIGKILL, SIGTRAP, SIGFPE, SIGBUS, and 

SIGSEGV, and for events that are transformed into application termination by the PAL, such as SIGINT 

and SIGQUIT. All signals that the PAL handles have the SA_RESTART flag set, which tells the operating 

system to automatically restart any restartable system call that is interrupted by a signal. 

On Mac OS X, the PAL uses a worker thread to listen on a task‘s Mach exception port. When a message 

arrives, the worker thread manipulates the contents of the faulting thread‘s registers to perform a nonlocal 

goto to PAL_DispatchException and to set up an EXCEPTION_POINTERS structure on the 

faulting thread‘s stack. While this is a lower-level interception mechanism than signals, it is used because 

Mac OS X signal handlers don‘t receive the full processor context of the faulting thread, but Mach 

exception handlers do. 

When a signal that is being mapped to an exception is raised, the signal handler initializes an exception 

record and converts the signal‘s siginfo and context into an exception code using the routine 

CONTEXTGetExceptionCodeForSignal. The exception address and CONTEXT record, which are 

architecture- and operating system-specific, are then associated with the exception and filled in from the 

context that is passed to the signal handler. 

The last task to be performed before an exception is actually raised is to check the thread‘s safe_state 

flag to determine whether a signal is already being processed. If one is, the PAL assumes that this is a 

major problem and the code in common_signal_handler will call ExitProcess to halt execution. 

If no signal is being processed, safe_state is set to false, and the exception is raised by calling the 

routine SEHRaiseException. 
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Managing Exception State 

Before diving into the code for SEHRaiseException, you need to understand the data structures used 

to represent exceptions and how they are managed. The PAL‘s SEH implementation uses a per-thread 

linked list of exception handlers. The root of this list is the SEH_TLS_INFO structure, shown in Example 

9-15. 

Example Error! No text of specified style in document.-15. There is one SEH_TLS_INFO structure per 

thread in the PAL 

 

typedef struct 

{ 

  PPAL_EXCEPTION_REGISTRATION  bottom_frame; 

  EXCEPTION_RECORD             current_exception; 

  BOOL                         safe_state; 

  int                          signal_code; 

} SEH_TLS_INFO; 

There is one instance of this structure for each PAL thread, and a pointer to it is stored in each thread-local 

storage. The bottom_frame field points to the bottom-most registration frame for this thread, while 

current_exception contains a copy of the current exception record and signal_code contains a 

copy of the code from the Unix signal (or 0 for user mode exceptions). Both values are copied into the 

SEH_TLS_INFO structure, because the original record is typically created on the stack, where it quickly 

becomes invalid as the stack is unwound. As discussed in the discussion on signal handling, safe_state 

is used as a flag to indicate whether a signal is currently being processed. 

A registration frame, shown in Example 9-16, is a structure that holds data about handlers. Registration 

frames are arranged in a singly linked list, with the head pointer stored in the bottom_frame field of the 

SEH_TLS_INFO for a thread. 

Example Error! No text of specified style in document.-16. The PAL_EXCEPTION_REGISTRATION 

structure holds data about exception handlers 

 

typedef struct _PAL_EXCEPTION_REGISTRATION { 

  // pointer to next exception record up the stack 

  struct _PAL_EXCEPTION_REGISTRATION *Next; 

 

  // pointer to the exception filter expression 

  EXCEPTION_REGISTRATION_RECORD PFN_PAL_EXCEPTION_FILTER Handler; 

 

  // parameter to pass verbatim to the filter function 

  PVOID pvFilterParameter; 

 

  // PAL_EXCEPTION_FLAGS_* constants 

  DWORD dwFlags; 

 

  // reserved for the PAL (typically a CRT jmp_buf or sigjmp_buf struct) 

  char ReservedForPAL[PAL_TRY_LOCAL_SIZE]; 

} PAL_EXCEPTION_REGISTRATION, *PPAL_EXCEPTION_REGISTRATION; 

The first parameter in the registration frame is a Next pointer, which is used to build up the linked list of 

handlers. After this is an optional exception filter function, Handler, and the parameter to this function, 

pvFilterParameter. The dwFlags that follows is treated as a 2-bit bitfield. The least significant bit, 

PAL_EXCEPTION_FLAGS_UNWINDTARGET, is used to mark the frame that is handling an exception. 

The other bit, PAL_EXCEPTION_FLAGS_UNWINDONLY, marks frames that need special stack 

unwinding and are used by JIT-compiled code. The final field, ReservedForPAL is where data that 

enables a jump to the handler using setjmp is stored. 

New registration frames are added to the list when PAL_TryHelper is called and removed when 

PAL_EndTryHelper is called. This can occur in the macros defined for PAL SEH, where PAL_TRY 
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allocates space for a PAL_EXCEPTION_REGISTRATION structure by declaring a local variable of that 

type named PalSEHRecord, thus adding it to the current stack activation record. (This is safe to do; the 

try block‘s lifetime is linked to the lifetime of the routine it is being run in.) 

The PAL macros in pal/rotor_pal.h have an interesting structure created by using two nested do loops. 

Their pseudocode skeleton, created by laying the macros back-to-back, is shown in Example 9-17. (Macro 

boundaries are shown as comments in this pseudocode and are highlighted.) 

Example Error! No text of specified style in document.-17. How the PAL exception-handling macros fit 

together 

// PAL_TRY                                                          \ 

 

PAL_SEH_DISPATCHER_STATE PalSEHDispatcherState = SetUpForSEH; 

PAL_EXCEPTION_REGISTRATION PalSEHRecord; 

volatile int PalSEHExceptionCode = 0; 

int alloca; alloca = 0; 

 

do { 

  do { 

    if (PalSEHDispatcherState == InTryBlock) { 

// END OF PAL_TRY // PAL_EXCEPT_FINALLY_COMMON(__pfnFilter, _  _pvFilterParameter) 

 

      break; // break out of do loop 

    } else if (PalSEHDispatcherState == SetUpForSEH) { 

      PalSEHRecord.Handler = (_  _pfnFilter); 

      PalSEHRecord.pvFilterParameter = (_  _pvFilterParameter); 

      PalSEHRecord.dwFlags = 0; 

      PAL_TryHelper(&PalSEHRecord); 

      PalSEHExceptionCode = PAL_setjmp(PalSEHRecord.ReservedForPAL); 

      if (PalSEHExceptionCode == 0) { 

 

// setjmp returned 0 - ready to run the "try" block 

 

        PalSEHDispatcherState = InTryBlock; 

      } else { 

 

// setjmp returned nonzero - unwind in progress, so run the handler 

 

        PalSEHDispatcherState = InExceptFinallyBlock; 

        break; // break out of do loop 

      } 

    } 

  } while(1); 

  if(PalSEHDispatcherState == InExceptFinallyBlock) { 

 

// run the handler block 

// END OF PAL_EXCEPT_FINALLY_COMMON // PAL_ENDTRY 

 

  } 

  PalSEHDispatcherState = (PAL_SEH_DISPATCHER_STATE) 

  PAL_EndTryHelper(&PalSEHRecord, PalSEHExceptionCode); 

} while (PalSEHDispatcherState != DoneWithSEH);// END OF PAL_ENDTRY 

Within the PAL SEH loops, PAL_EXCEPT_FINALLY_COMMON is used to do the bulk of the work. It first 

sets up the filter and filter parameter if they exist. After this, the dwFlags word is zeroed, and 

PAL_TryHelper is called to add the registration frame to the chain for the thread. Then the 

ReservedForPAL field is populated by a call to PAL_setjmp, which will return 0 during normal 

execution and a nonzero value when the stack is being unwound. This call is made after 

PAL_TryHelper, because the stack unwind during the second pass will pop stack frames off the stack, 

executing a siglongjmp for each unmanaged frame being removed that has a termination handler (the 

data for which is stored in registration frame). When execution resumes at the longjmp, it will fall 
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through to the termination code. If PAL_TryHelper were called after PAL_setjump, control flow 

would be incorrect. 

Bracketing the termination handler code in Example 9-17 is the PAL_ENDTRY macro, with its call to 

PAL_EndTryHelper that removes the registration frame originally put in place by 

PAL_EXCEPT_FINALLY_COMMON. PAL_ENTRY will return with a value of 0 (DoneWithSEH) if the 

exception handler has been reached (dwFlags is PAL_EXCEPTION_FLAGS_UNWINDTARGET), in 

which case the while loop will be exited. Otherwise, it will call SEHUnwind, which will cause the next 

frame to be removed, and execution will never return to this point in the code. 

The SEH routines are also called before entering and after leaving JIT-compiled code. As discussed in 

Chapter 6, all managed regions of the stack have an enclosing try block. To add the registration frame, 

helper code calls the PAL_TryHelper function, setting dwFlags to 

PAL_EXCEPTION_FLAGS_UNWINDONLY and supplying a special filter function that is used during 

stack unwinding. 

Raising Exceptions and Unwinding the Stack 

We‘ve now seen how guarded regions of code can be set up using the PAL‘s exception macros, as well as 

the runtime code that is produced by those macros. We‘ve also seen how Unix signals are converted into 

exceptions. Only one important detail remains to be seen: how the exceptions themselves are raised and 

propagated, and how the stack is unwound as a part of this process, when SEHRaiseException is 

called. 

SEHRaiseException and SEHUnwind correspond to the first and second pass of Win32 SEH. 

SEHRaiseException uses a while loop to walk the frames for its thread, starting with the frame 

returned by PAL_GetBottommostRegistration. As it walks up the chain of registration frames, it 

calls the filter function for each frame that has one. This loop is shown in Example 9-18. 

Example Error! No text of specified style in document.-18. Registration frames are walked to find 

exception handlers (extracted from SEHRaiseException in pal/unix/exception/exception.c) 

 

 

// code to initialize walk omitted 

 

while( frame ) { 

 

// code to locate appropriate frames omitted 

 

handler_retval = 

            frame->Handler(lpExceptionPointers, frame->pvFilterParameter); 

 

// more code omitted 

 

  switch(handler_retval) { 

    case EXCEPTION_EXECUTE_HANDLER: 

      frame->dwFlags |= PAL_EXCEPTION_FLAGS_UNWINDTARGET; 

      break; 

    case EXCEPTION_CONTINUE_SEARCH: 

      frame->dwFlags &= ~PAL_EXCEPTION_FLAGS_UNWINDTARGET; 

      break; 

    case EXCEPTION_CONTINUE_EXECUTION: 

      TRACE("Filter returned EXCEPTION_CONTINUE_EXECUTION"); 

      return; 

    default: 

      ASSERT("Filter for frame %p returned an invalid value!\n", frame); 

      break; 

  } 

 

  if ( frame->dwFlags & PAL_EXCEPTION_FLAGS_UNWINDONLY) { 
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    memcpy(frame->ReservedForPAL, lpExceptionPointers->ExceptionRecord, 

           min(sizeof(EXCEPTION_RECORD), PAL_TRY_LOCAL_SIZE)); 

  } 

 

  if ( frame->dwFlags & PAL_EXCEPTION_FLAGS_UNWINDTARGET) { 

    break; 

  } 

  frame = frame->Next; 

} 

 

// Allow signal handling to resume 

SEHSetSafeState(TRUE); 

 

// If a handler was found, frame will hold the registration frame that was 

// being examined when break caused us to fall through from the walk 

if ( frame ) { 

  SEHUnwind(); 

} 

 

// function continues with default handling 

A filter that returns EXCEPTION_CONTINUE_EXECUTION wishes to continue the execution. Execution 

continues from the spot where the exception was thrown, possibly using a modified machine context if the 

context passed as a parameter is modified by the filter. In this case, SEHRaiseException returns 

immediately so that execution can continue; it is up to the calling function to determine what happens next. 

If SEHRaiseException was called from common_signal_handler in response to a signal, this 

routine will uninstall the signal handler and execute a sigreturn, thereby allowing default operating 

system behavior to occur. If, on the other hand, the source of the exception was a call to 

RaiseException, SEHRaiseException simply returns. 

A filter that returns EXCEPTION_CONTINUE_SEARCH wishes the search for an appropriate handler to 

continue. In this case, the value of the PAL_EXCEPTION_FLAGS_UNWINDTARGET bit is preserved, the 

rest of the bitfield is cleared, and the walk continues. 

A filter that returns EXCEPTION_EXECUTE_HANDLER wishes to schedule execution of the handler block 

found in frame->Handler. To do this, the PAL_EXCEPTION_FLAGS_UNWINDTARGET bit of the 

dwFlags bitfield is set to record the fact that this handler should be called during the second pass. The 

frame thus becomes the target of the stack unwind process that is about to occur. With the target located, 

execution of the loop is terminated (after the exception record is stored into the ReservedForPAL field, 

if necessary). 

Assuming a target was found, SEHUnwind is called to start the second pass. SEHUnwind revisits the 

bottom-most registration frame and walks up the chain of frames in order, as shown in Example 9-19. 

Example Error! No text of specified style in document.-19. The second-pass walk of a thread’s 

registration frames (extracted from pal/unix/exception/exception.c) 

 

jmp_frame = PAL_GetBottommostRegistration(); 

 

// loop until a frame to execute is found 

while (NULL != jmp_frame) { 

  if ( jmp_frame->Handler == NULL ) { 

    // finally blocks have no filter entry 

    // if this is a finally block, break out of loop and longjmp 

    break; 

  } 

 

  // this case for JIT compiled (or special) code 

  if( jmp_frame->dwFlags & PAL_EXCEPTION_FLAGS_UNWINDONLY) { 

    // code for exceptions from JIT-compiled code omitted 

    jmp_frame->dwFlags &= ~PAL_EXCEPTION_FLAGS_UNWINDTARGET; 
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    PAL_SetBottommostRegistration(jmp_frame); 

 

    ep.ExceptionRecord = (PEXCEPTION_RECORD) jmp_frame->ReservedForPAL; 

    ep.ExceptionRecord->ExceptionFlags |= EXCEPTION_UNWINDING; 

    ep.ContextRecord = NULL; 

 

    retval = jmp_frame->Handler(&ep, jmp_frame->pvFilterParameter); 

 

  // this case for "normal" exception handling 

  } else if ( jmp_frame->dwFlags & PAL_EXCEPTION_FLAGS_UNWINDTARGET ) { 

    break; 

  } 

 

  jmp_frame = jmp_frame->Next; 

} 

 

// when loop is terminated using "break", execute the frame's handler 

if (jmp_frame) { 

  // get set for second pass to continue 

  PAL_SetBottommostRegistration(jmp_frame->Next); 

  siglongjmp((LPVOID)jmp_frame->ReservedForPAL,1); 

} 

The unwinding of the stack involves non-local transfers of control, which is accomplished by using Unix‘ 

longjmp mechanism. When the target frame is found, or when the Handler field is NULL (which 

indicates that the frame is a termination handler that must be executed), the walk of registration frames is 

terminated using break, and siglongjmp is called with the contents of the ReservedForPAL field. 

The jump transfers execution directly to the frame‘s exception or termination handler. Before doing this, 

the bottom-most handler in the chain of registration frames is reset to point to the Next registration frame 

in the chain. If the handler that is the target of the jump is a termination handler, it will continue the 

unwinding process; every termination handler will be called up the chain until the target frame is reached. 

The code in the target frame‘s handler will be run at that point, after which normal execution can resume. 

Careful examination of Example 9-19 will reveal an alternative unwinding strategy used by registration 

frames that have their PAL_EXCEPTION_FLAGS_UNWINDONLY flag set. The filter function in this case 

is an execution engine helper routine, and rather than jumping nonlocally, control is transferred using a 

function call on the handler directly. Note that an EXCEPTION_RECORD is set up for this function, and 

that the exception record has its EXCEPTION_UNWINDING flag set. By checking this value, the helper 

can continue unwinding the chain of registration frames through managed regions of the stack. 

Frames marked as ―unwind only‖ in this way are used to handle exceptions that occur in JIT-compiled 

code. Every entry into JIT-compiled code is protected by the execution engine helper function, which will 

dispatch exceptions to managed handlers as appropriate. If a regular PAL_TRY/PAL_EXCEPT were used 

to protect JIT-compiled code, it would not be able to execute second-pass handlers, since their activation 

records would have been eliminated from the stack by the call to longjmp. ―Unwind only‖ frames are 

also much faster to set up than regular PAL_TRY frames, because they do not capture CPU state using 

setjmp. Because of this, they are used internally by some execution engine functions. (See 

Object::Validate in clr/src/vm/object.cpp for an example of this use.) 

If no frame is found to handle an exception after two passes over the chain of registration frames, the 

process is terminated by a call to TerminateProcess, unless the exception was raised by a signal. In 

this case, the signal handler is removed and SEHRaiseException returns, allowing the signal to be 

raised again, just as if EXCEPTION_CONTINUE_EXECUTION had been encountered. The advantage to 

this approach is that unhandled PAL exceptions turn into Unix core dumps. 
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Managing Memory with the PAL 

Memory is a fundamental computational resource, and not surprisingly, the PAL provides memory 

allocation as a service to the SSCLI. The four Win32 routines, VirtualAlloc, VirtualFree, 

VirtualProtect, and VirtualQuery, form the basis for this service and are what lie beneath the 

intricate memory management mechanisms that we examined in Chapter 7. In the Unix PAL, the logical 

implementation choice would seem to be to use the mmap functions as a basis for these APIs. This is, in 

fact, ultimately the choice, although a few problems had to be solved along the way to get the code to work, 

mostly having to do with the lower-level nature of mmap. 

While mmap has the ability to allocate memory in a way that maps nicely to VirtualAlloc, there is no 

standard equivalent to VirtualQuery. What is ore problematical is that some implementations of mmap 

are unable to provide memory at a specific virtual address and, instead, assign the address unilaterally. (The 

hint parameter, which is provided in the API for this purpose, is honored by most implementations but not 

all.) VirtualAlloc, of course, has a nearly opposite usage: allocation either happens at the location 

specified or the request fails. 

The SSCLI depends on the VirtualAlloc approach, since several of its algorithms use structures that 

have known starting addresses to simplify address calculations. Because of this, and because of the lack of 

VirtualQuery functionality, the PAL implements extra infrastructure to keep track of the state of 

memory, and additionally defines several platform-specific macros: MMAP_IGNORES_HINT and 

HAVE_VM_ALLOCATE (for use with Mac OS X). The use of these flags causes the file 

pal/unix/map/virtual.c to be a slightly gnarly combination of several solutions under #ifdef. 

 

FreeBSD doesn‘t ignore mmap‘s address hint, but other Unix implementations do. To ensure 

portable behavior, the general solution selected was to map a file into memory—the PAL uses its 

own on-disk image for this purpose, since it is reasonably certain to exist—and to reserve a 1 GB 

chunk of address space within that map. Memory can then be suballocated from the resulting 

address range by using a local allocator and a free list to replace mmap allocation. 

VirtualQuery and VirtualProtect can remain unchanged within this scheme, but 

VIRTUALReserve and VirtualCommit must use the PAL routines in place of calls to mmap. 

VirtualFree also needs to have a slightly different codepath. 

Mac OS X ignores the address hint. On this operating system, however, there is an alternative 

workaround. Rather then reimplement the allocator, the OS X PAL handles this case by calling 

Mach‘s vm_allocate to allocate the memory at the requested address and, if successful, then 

calls mmap at the same address. Not pretty, but it seems to work. (Of course, one good reason to 

use an adaptation layer is to isolate such less-than-pretty bits from the main code base.) 

 

There is only one data structure of note, the CMI list, which is used by the virtual-memory management 

code. This list is a doubly linked list of CMI structures, shown in Example 9-20, which is rooted in the 

global variable pVirtualMemory. Notice the use of HAVE_VM_ALLOCATE in this structure definition. 

Example Error! No text of specified style in document.-20. CMI structures 

 

typedef struct _CMI { 

  struct _CMI * pNext;    /* Link to the next entry. */ 

  struct _CMI * pLast;    /* Link to the previous entry. */ 

 

  UINT          startBoundary;    // Start of page-aligned region. 

  UINT          memSize;          // Size of the region 

 

#if !HAVE_VM_ALLOCATE 

  DWORD         accessProtection; // Initial access protection 

  DWORD         allocationType;   // Initial allocation type 
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  BYTE        * pAllocState;      // Per-page protection tracking 

  BYTE        * pProtectionState; // Per-page allocation type tracking #endif // 

!HAVE_VM_ALLOCATE 

}CMI, * PCMI; 

The CMI list represents all virtual memory managed by the PAL. Each startBoundary field contains 

the page-aligned starting location of the memory region for an entry, and memSize is its page-aligned size. 

allocationType is used for the initial allocation type of the region, and is recorded directly from the 

arguments to VirtualAlloc, and is one or more of the following: MEM_COMMIT, MEM_RESERVE, or 

MEM_TOP_DOWN (which is ignored by the PAL). The initial allocation type for the region can be found in 

the allocationType field, whose value is recorded directly from the call to VirtualAlloc. 

There is a single critical section, virtual_critsec, to protect access to the CMI list. Locking is 

designed to minimize lock contention. 

Protecting Memory 

The PAL provides memory protection to help minimize the chances of corrupting the contents of memory. 

The accessProtection field of the CMI structure contains the initial access protection setting for a 

range of memory, while the pProtectionState field points to an array of bytes, each of which 

represents the protection state of a corresponding page of memory in the region. In the PAL, protection 

setting can combine: PAGE_NOACCESS, PAGE_READONLY, PAGE_READWRITE, PAGE_EXECUTE, 

PAGE_EXECUTE_READ, and PAGE_EXECUTE_READWRITE. The values stored in the 

pProtectionState array are converted from these PAL-specified values to internal values defined in 

the enum VIRTUAL_CONSTANTS. 

The implementation of the VirtualProtect API is fairly straightforward. After protection flags are 

checked for valid combinations, the requested starting address and size is page-aligned, and the CMI list is 

consulted to see whether the starting address is known. If it is, the code ensures that all of the pages that are 

covered by the request have been committed, and mprotect is called on the pages with new protection 

flag values. Finally, the list‘s byte array is updated with the new protection values. 

Reserving Versus Committing Memory 

VirtualAlloc is actually a simple wrapper over two distinct functions: VIRTUALReserveMemory 

and VIRTUALCommitMemory. In the Win32 model, pages of virtual memory are classified as free, 

reserved, or committed. PAL programmers can reserve a range of addresses, using 

VIRTUALReserveMemory, without actually requiring committed pages for those addresses until they 

are needed, at which point VIRTUALCommitMemory can be called. Address reservation is separated 

from page commitment in this way since contiguous ranges of addresses are often useful for algorithmic 

efficiency, and yet the system resources required to back large ranges with physical memory can be 

prohibitively expensive. Since the pages in a range are typically not needed all at one time, incremental 

commitment is a good solution. 

VIRTUALReserveMemory takes the same arguments as VirtualAlloc. After aligning to the nearest 

64 KB boundary and adjusting the allocation size to be page-aligned (and increasing the size if necessary to 

make up for starting alignment), this function calls mmap using MAP_ANON | MAP_PRIVATE. There is 

a catch here, since mmap both reserves and commits memory in the same action, and most Unix memory 

managers can overcommit memory. (Overcommitment means that the first time an application touches 

some page, the memory manager may discover that it can‘t find a free physical page and is forced to 

segfault!) In an attempt to mitigate this situation, VIRTUALCommitMemory writes a 0 to each page, 

verifying that the physical page is available. (If it is not, the PAL fails, which is the desired behavior, since 

the SSCLI is not built to expect segfaults that result from committing memory.) 

VIRTUALCommitMemory uses the pAllocState field in Example 9-20 to track the status of the pages 

being managed by the PAL. pAllocState contains a pointer to an array of bytes that represents a bitmap 
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over all of the pages in the region. This bitmap is used to implement the separate actions of page 

reservation and page commitment; it records whether a page is committed. 

VirtualFree also supports the separation between memory reservation and memory commitment. 

Decommitting memory (bringing the memory back to the reserved state) and releasing memory (releasing 

the reserve back to the operating system) are both possible. In fact, the two operations cannot be done at 

one time; if this is attempted, an error occurs. This is a good example of a PAL-only simplification; on 

Windows, recommitting and releasing memory may be combined into a single operation under some, but 

not all, circumstances. 

When releasing memory, the starting address supplied to the function must match the base address of a 

CMI region, and the size parameter must be 0. VirtualFree calls munmap with the region‘s base 

address and size, which is obtained from the CMI list. The region is removed from the CMI list via 

VIRTUALReleaseMemory. 

Updating Memory with Interlocked Instructions 

The PAL includes a family of routines that is extremely valuable for implementing runtime infrastructure in 

a multithreaded environment. Each of these routines guarantees that the action it performs, such as 

incrementing or decrementing a memory location, is done atomically. Even if two threads in different 

processes were to access a shared memory location, atomic operations guarantee that only one will be able 

to read or write at a time, and no interleaving will occur. 

Other mechanisms in the PAL, such as critical sections, achieve the same effect, but the routines in this 

family are typically much more lightweight in terms of processor overhead. Their limitation is that they can 

update only a single memory location, and exchange only two memory locations. Critical sections or 

mutexes must be used for anything larger. 

The interlocked routines must typically be implemented in assembler, and almost always leverage unique 

processor characteristics. Consider one of the routines used in several places in the PAL: 

InterlockedCompareExchange. The code for the Intel x86 version of this function can be found in 

pal/unix/arch/i386/interlock.c: 

 

    __asm__ __volatile_  _( 

         "lock; cmpxchgl %2,(%1)" 

         : "=a" (result) 

         : "r" (Destination), "r" (Exchange), "0" (Comperand) 

         : "memory" 

         ); 

Note that the cmpxchgl instruction is being used, which performs the compare and exchange in a single 

operation, in combination with the lock prefix, which is required to cause an atomic update in a 

multiprocessor environment. Now consider what this routine looks like in pal/unix/arch/ppc/interlock.s, 

which is an implementation for the Motorola PowerPC chip: 

 

    InterlockedCompareExchange 

      lwarx r6, 0, r2 

      cmpw r6,r5 

      bne ContW 

      stwcx. r4,0,r2 

      bne _InterlockedCompareExchange 

    ContW: 

      sync 

      mr r2,r6 

      blr 

The PowerPC has no single instruction equivalent to cmpxchgl, and so the compare and exchange is 

implemented using load and store with reservation operations. 
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Exploring the Rest of the PAL 

The rest of the PAL‘s implementation has much less impact on the algorithms and operation of the 

execution engine than the topics already discussed in this chapter. It does, however, bear marks left by 

higher-level design choices, and perusing the code looking for these marks can be a very interesting 

exercise. 

The code that provides network and file I/O, for example, is straightforward until the point where it hits 

semantic differences between Unix and the programming model of the CLI‘s frameworks. As a final 

source-code expedition, we will briefly outline two areas in which these semantic mismatches require the 

PAL to install expensive impedance-matching code. 

Locking File Regions in Multiple Processes 

Unlike most flavors of Unix, Win32 supports region locking within opened files. Even so, implementing 

this feature in the PAL would be straightforward, were it not for the locked regions of opened files that 

must be accessible to all PAL processes. Because the feature is exposed by the Lock and Unlock 

methods of System.IO.FileStream in the base class library, locking must be valid across process 

group boundaries, and the data used to represent opened files must be stored in shared memory. As 

discussed in the previous section ―Sharing Memory Between Unix Processes,‖ shared memory is a 

potential bottleneck to system throughput due to its region locking. Because of this, the data needed to 

implement file I/O, like all of the other handle-based implementations in the PAL, is divided between local- 

and shared-memory structures. 

The file structure, with its now-familiar initial HOBJSTRUCT, holds file data local to a process, while 

the SHMFILELOCKS and SHMFILELOCKRGNS structures combine to represent region-locking data that 

must be available in shared memory. All of these structures are defined in pal/unix/include/pal/file.h, and 

all are shown in Example 9-21. 

Example Error! No text of specified style in document.-21. The structures used to represent region 

locking in files (defined in pal/unix//include/pal/file.h) 

 

typedef struct _file 

{ 

  HOBJSTRUCT        handle_data; 

  struct _file     *self_addr; 

  int               unix_fd; 

  // Windows can open a file for writing only, so this must exist here 

  DWORD             dwDesiredAccess; 

  int               open_flags; 

  BOOL              open_flags_deviceaccessonly; 

  char             *unix_filename; 

  SHMPTR            shmFileLocks; 

  BOOL              inheritable; 

} file; 

 

typedef struct 

{ 

  SHMPTR            unix_filename; 

  SHMPTR            fileLockedRgns; 

  UINT              refCount; 

  SHMPTR            next; 

  SHMPTR            prev; 

  DWORD             share_mode; 

  int               nbReadAccess; 

  int               nbWriteAccess; 

} SHMFILELOCKS; 

 

typedef struct 
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{ 

  DWORD             processId; 

  file             *fileStructPtr; 

  UINT64            lockRgnStart; 

  UINT64            nbBytesLocked; 

  int               lockType; 

  SHMPTR next; 

} SHMFILELOCKRGNS; 

The self_addr field in file is set to point to the head of the _file structure and is used strictly for 

PAL debugging. Unsurprisingly, unix_fd contains the handle of the underlying Unix file descriptor, 

valid only while the underlying file is open (and otherwise set to -1). The dwDesiredAccess field 

contains a copy of the parameter value of the same name passed to the CreateFile functions, while 

open_flags are the flags that were actually used to open the Unix file. The value of the open_flags 

field is ultimately a combination of the dwDesiredAccess and dwCreationDisposition 

arguments to CreateFile, and since it is used for a number of file code operations, it makes sense to 

calculate it and then cache the resulting value, which is exactly what is done. The 

open_flags_deviceaccessonly field is used when a file is opened with dwDesiredAccess 

equal to 0, which indicates that the call is intended to allow queries about file or device attributes, and not 

to access the file or device. The inheritable field is used to indicate whether the file can be inherited 

by spawned processes, and finally, shmFileLocks contains a pointer to the shared memory information 

that details the lock structures associated with a file. 

The two data structures used to implement file locking for PAL processes within a process group are 

SHMFILELOCKS and SHMFILELOCKRGNS. In SHMFILELOCKS, the unix_filename field is a 

pointer to shared memory that is used to uniquely identify the file with which a locked region is associated. 

(To see this field in action, examine the function FILEGetSHMFileLocks in pal/unix/file/file.c.) 

The fileLockedRgns field contains a pointer to a linked list of SHMFILELOCKRGNS that define 

individual locked regions of a file. Like other shared memory structures, SHMFILELOCKS structures are 

placed in a doubly linked list; hence the next and prev pointers. Each region stores the dwShareMode 

argument from calls to CreateFile into its share_mode field the first time that a file is opened. 

Subsequent opens, whether within a process or from another process in the PAL process group, will consult 

this field to check for sharing flags. 

Both nbReadAccess and nbWriteAccess are used as reference counts to track the count of open file 

handles with, respectively, GENERIC_READ and GENERIC_WRITE access. When CreateFile is 

called to open a file, the file‘s nbReadAccess and nbWriteAccess counts will be consulted if the file 

is open within the process group. For each reference count that is nonzero, dwShareMode must have the 

appropriate bit set (FILE_SHARE_READ and/or FILE_SHARE_WRITE) to open the file. The value of the 

lockType field may contain one of two values: either USER_LOCK_RGN for normal locks that come 

from a call to LockFile, or RDWR_LOCK_RGN for locks that are used internally by the PAL to 

implement ReadFile and WriteFile. 

Finally, the linked list of SHMFILELOCKRGNS is sorted by the value of the lockRgnStart field, which 

represents the start of the locking region. Both lockRgnStart and nbBytesLocked (which holds the 

number of bytes to lock in the region) are UINT64 values so that they can be used with very large files. 

As you can see, by requiring that region locking be visible across process boundaries, a simple task was 

made much more complex! 

Asynchronous Socket Operations 

The PAL supports both the Winsock 1 and Winsock 2 APIs. Most of Winsock 1 is provided by a very light 

layer over the BSD socket API, since the functionality is nearly identical. Winsock 2, however, is more 

difficult to map, since its model for asynchronous I/O is different. 
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The basic approach used by the PAL to implement asynchronous sockets is to employ a worker thread for 

handling socket operations in the background. Commands to this thread are one-way, and are sent using a 

pipe. The thread is created, along with its pipe, the first time WSAStartup is called. It is destroyed in 

WSACleanup when the SOCK_startup_count goes to 0. (See pal/unix/socket/socket2.c for details.) 

There is never more than one worker thread at a time in a given process. 

The heart of the worker is the function SOCKWorkerThreadMain, which can be found in 

pal/unix/socket/async.c. It is a large while loop in which a list of sockets is repeatedly checked using 

poll for: 

 Pending data that is ready to be received 

 Sockets that are ready to accept outgoing data 

 Sockets that have completed connecting 

 Pending connections that are ready to be accepted 

 Sockets that have been closed remotely 

 Errors 

When the worker thread calls poll to wait for its next activity, it includes the descriptor for its 

communication pipe in the list of file descriptors. Doing so allows the worker thread to wake up when 

either an interesting event occurs on a socket being monitored, or when a new command has been issued by 

another thread in the system via a call to WSARecv, WSASend, WSARecvFrom, WSASendTo, or 

WSAEventSelect. 

Commands are represented by the ws2_op structure, which is shown in Example 9-22. 

Example Error! No text of specified style in document.-22. The ws2_op structure is used to control 

asynchronous socket operations 

 

typedef struct _ws2_op 

{ 

  struct _ws2_op * self_addr; 

  PAL_SOCKET       s; 

  enum ws2_opcode  opcode; 

  HANDLE           event; 

} ws2_op; 

Commands, when they are sent, set the socket value s on which the operation will be performed. The field 

opcode in sw2_op can take on any of the following values: 

WS2_OP_SENDTO 

Queues data to be sent on the socket 

WS2_OP_RECVFROM 

Queues a buffer into which data will be received from the socket 

WS2_OP_EVENTSELECT 

Informs the worker thread which network events to monitor 

WS2_OP_CLOSESOCKET 

Closes the socket, when overlapped operations have concluded 

WS2_OP_STOP_THREAD 

Terminates the worker thread 

Wrapping up our discussion of the mechanism, the event in Example 9-22 named, somewhat ambiguously, 

event, is used for close notifications, since the WS2_OP_CLOSESOCKET command cannot take place 

immediately if overlapped operations are pending. 
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Once again, what could have been a very thin wrapper on preexisting Unix functionality became a more 

heavyweight and more complicated solution, due to an impedance mismatch between the semantics of the 

higher-level programming API and the systems-level service. The PAL may abstract platform differences 

away for the purposes of Rotor‘s source code, but those differences are very real from the perspective of 

resource consumption and processor cycles. 

Joining Components to the OS 

The PAL contains important lessons for students of high-level abstractions such as the CLI. Structure and 

behavior represented as CLI types must eventually become code that runs within the boundaries imposed 

by the APIs of some operating system. This code must accommodate the processor instruction set and 

device drivers of the system unequivocally; there is no give-and-take. Because of this, the options presented 

by an operating system API profoundly affect all abstractions built above them, including virtualized 

execution. 

One could imagine the opposite also being true: the CLI‘s integration model could be so valuable that it 

could affect the capabilities and abstractions of underlying operating systems. Boundaries that enhance the 

safety of collaboration, such as those that accompany the concepts of component, of application domain, of 

typesafe code, of automatic memory management, and of generalized chained protection frames, 

characterize the CLI integration model. One of the main purposes of operating systems is to enable the 

integration of code from many sources with concepts such as device drivers, applications, and system 

libraries—so the design of OS boundary abstractions is also very important. 

There is currently overlap between the mechanisms invented to support CLI components and those that 

support operating systems, such as the use of threads and structured exceptions, but this overlap is 

surprisingly small. The successful joining of component-based software to operating systems and hardware 

design seems to be a page yet to be written. 
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Appendix B: Add a new CIL opcode 

As has already been noted, the SSCLI environment raison d’etre was to provide a platform and testbed for 

experimentation, instrumentation, and research. While the first edition of this book was successful in its 

goal of providing a base overview of the SSCLI source code, one thing it admittedly didn‘t do was to 

answer the important question, ―What can I do with it? Why should I bother learning all this stuff if I‘m not 

a researcher, experimenter, or CLI implementer?‖ 

Back in 2002, Peter Drayton sought to answer that question for himself. He did so by asking himself the 

rather ambitious question, ―How hard would it be to take the SSCLI bits and extend them somehow?‖ In 

his case, that question gave birth to a more concrete, related question: what would it take to add an 

instruction to the instruction set and have it flow through the runtime and tools?  

After a night of sleepless hacking, Peter answered the call, made a presentation out of it, and then, for the 

second edition of this book, generously donated his work so that we could bring it to all of those who might 

be similarly interested. It is a wonderful tour de force of some of the most interesting parts of Rotor, 

offering a great path of study for those who prefer a threaded path through the source. 

Adding Exponentiation to Rotor 

The goal is explore the nuts and bolts of the SSCLI and experiment by extending the runtime instruction set 

to include exponentiation. Exponentiation, for those whose mathematics background deserted them after 

college or university, is a mathematical operation that corresponds to repeated multiplication (given the 

exponential equation 10^3, 10 being the base, 3 being the exponent, the result is 10 x 10 x 10 = 1000).  

The simplest approach, after a moment‘s thought, is to add a new method to the System namespace 

somewhere, which could take a ―base‖ and an ―exponent‖ and return the appropriate result. This design 

approach passes the ―simplest possible thing that could possibly work‖ criteria, but for a pedagogical 

exercise, fails miserably: not only is it an ―API-centric‖ solution that requires more work of the user (and 

less of the implementer) but it‘s also just too easy, and doesn‘t meet the goal of experimenting in the guts 

of the runtime. Instead, let‘s be egregious. Let‘s add a new opcode to the instruction set.  

Designing this new opcode is reasonably simple, given the existing arithmetic instructions already part of 

the CIL Specification:  

Push two operands (x, y) of type double on to the stack;  

  ldc.r8    10 

  ldc.r8    20 

Call the new ―expon‖ IL instruction to pop off the doubles from the virtual stack, and push the result of the 

exponentiation operation on to the stack: 

  ldc.r8    10 

  ldc.r8    20 

  expon 

(For this particular experiment, we will stick with this overly simple design; a more extensive 

implementation might be extended to take integer, non-floating point values as input and output, for 

example, or a mix of floating and integral values. Whether or not this is a good idea is left up to the readers 

to experiment with and decide for themselves.) 
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Of course, the new IL opcode should follow the rules of its cousins: it should be verifiable and thus 

provably safe in the runtime; it should be read and understood by various CLI tools; and it should be 

emittable by the Reflection.Emit namespace.  

What’s needed?  

In order to support a new IL opcode, we need to make modifications to a various runtime subsystems. 

Firstly, the JIT compiler must recognize and generate the necessary code to perform the calculation. 

Secondly, the JIT verifier must verify that the IL stack is safe before executing the instruction (meaning if 

there are typed requirements for the opcode, that those types are placed safely on the stack at the time of the 

operation). 

Thirdly, we need the assembler and disassembler to recognize the instruction.  

And, last, we need the CLI runtime libraries to support emitting the instruction at runtime. 

Of course, there are various other places we can add support for the instruction in the SSCLI distribution, 

such as extending the programming languages to recognize situations where the expon opcode would be 

useful to emit, right through to fully utilizing the hardware platform we‘re running on, such as the floating-

point numeric processor present in most modern Intel x86 CPUs. In this example, we‘ll limit the scope a 

little, just to reduce the experiment workload, and leave it to the above four steps.  

For those developers more interested in language hacking, adding support for an 

exponentiation operator to C# or JScript that emits this newly-minted ―expon‖ opcode 

makes for a wonderful weekend project. 

One last thing, before we get started: this is going to be a fairly intensive walkthrough of the SSCLI source 

base, so before getting too deeply wrapped into the discussion, grab a large mug of your favorite 

caffeinated beverage, pull up the chair to the desk, fire up a Rotor command-line window, and settle in for 

the long haul. 

Approach and Research 

If you‘ve read Chapter 5 in detail, a lot of what we‘re about to review in this section will 

be familiar already. This section explains an approach to debugging and understanding 

the unmanaged runtime by breaking in to the JIT compilation process. Feel free to skip 

the Approach section if Chapter 5 is already fresh in your mind.  

The simplest approach to adding a new opcode is to find an existing opcode that is functionally similar. In 

our case, the ―mul‖ opcode is very close: it pops two objects of the same type from the IL stack, multiplies 

them, and pushes the result. And with that, we fire up our favorite IDE to explore the source code, and our 

favorite debugger.  

Rotor Spelunking 
 

When spelunking or tinkering with any large source base, particularly a native code source base 

such as the SSCLI, two things will make the difference between an enjoyable experience and one 

that isn‘t: the IDE/editor/workspace tool, and the debugger. 
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The IDE should support symbol parsing for C++ and even C# if possible. Source Insight 

(http://www.sourceinsight.com) supports parsing symbols for both languages (and other languages 

as well), and seems to do a fantastic job at searching for, and drilling in to code symbols. When 

looking for a particular class/method pair, instead of opening files at random or ―grep‖ing through 

the source files for a recognizable name, just hit F7, start typing the class name and method name, 

and it‘ll take you right there. When looking at some source and the question of ―What does this 

method call do?‖, just hit Ctrl-Plus on the method call site and it‘ll resolve the symbol and drop 

you in to its source definition. It makes navigating the SSCLI source code easy.  

The debugger choice is usually a personal preference. If you have a copy of Visual Studio 2005, it 

supports the full set of unmanaged runtime debugging scenarios, even to the point where you can 

disassemble the JIT machine code output – a nice bonus. If you prefer something ―meatier‖ and 

more deeply integrated with the operating system as well as the SSCLI/CLR, the ―WinDbg‖ 

debugger is available from Microsoft and is described in some detail in other parts of this book. 

The SSCLI distribution has debugging documentation in sscli20/docs/debugging to help you make 

your decision and start your journey spelunking the runtime. 

While the SSCLI supports many different types of instrumentation and logging options to make 

understanding runtime execution easier, that exercise was covered elsewhere in this text and won‘t 

necessarily serve our purposes here. Instead, we‘re just going to jump right in to the guts of the source 

we‘re executing, see what happens and, more importantly, where it happens, as a crib to understanding 

what we need to do to bring ―expon‖ to life. For that, we need a debugging breakpoint and an example 

program that uses the ―mul‖ opcode. Let‘s start with the example: 

  Example B-1 C# source that generates a “mul” opcode 

 

  using System; 

 

  public class MulExample 

  { 

    public static void Main() 

    { 

      double a = 10; 

      double b = 2; 

      double result = a * b; 

    } 

  } 

   

After compiling Example B-1‘s source, we end up with a classic CLI assembly, which we can next 

disassemble into its constituent IL by running it through the ILDASM tool: 

  Example B-2 ILDasm output for “mul” C# example 

 

  .method public hidebysig static void  Main() cil managed 

  { 

    .entrypoint 

    // Code size       26 (0x1a) 

    .maxstack  2 

    .locals init (float64 V_0, 

             float64 V_1, 

             float64 V_2) 

    IL_0000:  nop 

    IL_0001:  ldc.r8     10. 

    IL_000a:  stloc.0 

    IL_000b:  ldc.r8     2. 

    IL_0014:  stloc.1 

    IL_0015:  ldloc.0 

    IL_0016:  ldloc.1 

    IL_0017:  mul 

    IL_0018:  stloc.2 

http://www.sourceinsight.com/
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    IL_0019:  ret 

  } // end of method MulExample::Main 

This looks remarkably similar to what we would have expected it to look like: load the constant 8-byte real 

value 10, store it to a local variable, load the constant 8-byte real value, store it to another local variable, 

push the first local variable onto the execution stack, push the second local variable onto the execution 

stack, invoke ―mul‖ to pop the top two execution stack values off and push the result onto the execution 

stack, store the result to a local variable, and return. As exercises in IL go, this was not difficult. 

The next step, however, is a tad more difficult. In order to see the Rotor treatment of the ―mul‖ opcode, the 

debugger either has to start executing from the very  beginning in clix.exe and single-step execution all the 

way through to the treatment of the ―mul‖ opcode—a tedious process in the extreme—or the debugger 

needs a breakpoint set someplace just before the ―interesting stuff‖ happens. Clearly the second approach is 

vastly superior, but where this breakpoint should be set is not necessarily obvious. 

Thinking about the architecture of the Rotor implementation for a while leads to a possible solution. From 

Chapter 3 and 4, we know that the CLI stores IL in metadata, which means that each IL instruction has its 

own ―byte‖ value telling the metadata reader/writer what the opcode is. We also know that the CLI needs to 

verify the IL stream before execution, and that the CLI needs to transform the IL stream into a native code 

stream, which takes place in the JIT compiler. 

Thus, several potential solutions present themselves. One would be to set breakpoints in the entrypoints for 

the metadata reader/writer, find where the stream for main is stored, and set a data-access breakpoint on 

that IL and see who comes calling for it later. Another would be to set a breakpoint at the IL verifier during 

the assembly-load process, and follow the verifier process (which, as we have already seen, is shared with 

the JIT compiler anyway). Either of these approaches would be fine, but for the purpose of this exercise, 

the easiest choice is to set a breakpoint on the JIT compiler itself or some subsystem within it, in order to 

watch the translation of ―mul‖ to x86. 

Having said that, however, nowhere in this book did we explicitly state where in the SSCLI source base 

does that translation take place (and, even if we had, this hardly scales to every instruction in the IL 

instruction set.) Thus, a bit of research is necessary: doing a symbol search for the symbols relating to 

―compile mul‖ is sufficient enough to find an interesting entrypoint in to the JIT compiler:  

 
Example B-3 Source Insight ―symbol browsing‖ search window 
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The symbol browser found a method called FJit.compileCEE_MUL that lives in sscli20/clr/src/fjit 

which looks like it may do the fun part of compiling the ―mul‖ multiplication opcode. Let‘s set a breakpoint 

on that method and run: 

(This example uses cdb.exe, a command-line cousin to WinDbg, both of which are found in the Debugging 

Tools for Windows package freely available from Microsoft at 

http://www.microsoft.com/whdc/DevTools/Debugging/default.mspx. Fortunately, the commands shown 

here extend to windbg.exe and ntsd.exe as well) 

0:000>  bp mscorejt!FJit::compileCEE_MUL 

Bp expression 'mscorejt!FJit::compileCEE_MUL' could not be resolved, adding deferred 

bp 

0:000> g 

... 

mscorejt!FJit::compileCEE_MUL: 

79a1cebc 55              push    ebp 

The ―bp‖ command, of course, sets the breakpoint on said method, but since that DLL hasn‘t been loaded at 

the time the breakpoint was set, the debugger responds by saying it will set it as soon as this symbol is 

somewhere inside the process. In the case of the SSCLI, this will happen when clix.exe fires up and, as part 

of the CLI bootstrap process, loads the JIT compiler DLL (mscorejt.DLL); see Chapter 5 for more details. 

The ―g‖ command turns the process loose to run, and before long, the breakpoint is hit and control returns 

to the developer. 

Using the ―k‖ command shows what‘s on the unmanaged call stack: 

0:000> k 

ChildEBP RetAddr 

001ada14 79a436ad mscorejt!FJit::compileCEE_MUL 

001ada68 79a4682c mscorejt!FJit::jitCompile+0x1708 

001adc4c 793c011d mscorejt!FJitCompiler::compileMethod+0x37d 

001adc78 793c25c2 mscorwks!invokeCompileMethodHelper+0x22 

001adcbc 793d98de mscorwks!invokeCompileMethod+0x31 

001add88 793d9ced mscorwks!CallCompileMethodWithSEHWrapper+0xcc 

001ae74c 7946a2e4 mscorwks!UnsafeJitFunction+0x30c 

001ae908 7946aca1 mscorwks!MethodDesc::MakeJitWorker+0x2a0 

001ae984 7946b0df mscorwks!MethodDesc::DoPrestub+0x618 

001aea84 001db0ca mscorwks!PreStubWorker+0x235 

Bingo. The FJitCompiler::compileMethod method found in sscli20/clr/src/fjit/Fjitcompiler.cpp 

looks like out JIT entrypoint. However on examination, the code in that method isn‘t special cased, and 

doesn‘t actually care about the IL instruction stream for a given method about to be JIT compiled – that 

code actually lives in the FJit::jitCompile method. 

Some readers may be actively wondering why we can determine this from a list of 

methods that all seem similarly-named. In this case, this is where the ability to quickly 

look at method implementations can be handy: glancing at the other method 

implementations on the stack don‘t really reveal much by way of JIT goodness until the 

FJitCompiler::compileMethod() call. Plus, the transition from ―mscorwks‖ to ―mscorejt‖ 

libraries is another, equally interesting, clue. 

There‘s a lot of code in that method, so rather than simply set the breakpoint at the beginning and watch 

each and every IL instruction come through here, instead, we want to find any place that‘s special cased to 

the ―mul‖ opcode. This is most easily accomplished by either scanning the code visually, or by letting 

―Find‖ in the editor do some of the work, but either way, a little further down, we see the following:  

  while (!FinishedJitting) 

  { 

     // ... 

 

http://www.microsoft.com/whdc/DevTools/Debugging/default.mspx
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     switch (opcode) 

     { 

        // ... 

        case CEE_MUL: 

            JitResult = compileCEE_MUL(); 

            break; 

     } 

  } 

This seems promising—a bit of background verification reveals that CEE_MUL is the symbolic 

representation for the IL ―mul‖ instruction, so it seems like a winner. Drilling into the 

FJit::compileCEE_MUL method reveals the following:  

  FJitResult FJit::compileCEE_MUL()  

  { 

      OpType result_mul; 

      BINARY_NUMERIC_RESULT(topOp(),topOp(1), CEE_MUL, result_mul); 

      TYPE_SWITCH_ARITH(topOp(), emit_MUL, ()); 

      POP_STACK(2); 

      pushOp(result_mul); 

      return FJIT_OK; 

  } 

Success! This is pretty clearly the spot desired—even without knowing what the implementation is actually 

doing, we can see that some kind of arithmetic operation is taking place, generating a result, and pushing it 

back onto the stack, just from the names of the symbols in the method itself (result_mul being a dead 

giveaway, for example). 

Take a brief moment to refresh the mug of caffeinated beverage. 

As has already been noted elsewhere, most of the SSCLI JIT engine is handled through some complex 

macrology. The BINARY_NUMERIC_RESULT macro in sscli20/clr/src/fjit/Fjitverifier.h takes two items 

from the IL stack and checks that they are type equivalent. The TYPE_SWITCH_ARITH macro takes a 

type, a macro name, and any specified arguments, and calls the relevant ―emit‖ macro for the specified 

type: emit_MUL_XX. In a general case for multiplying two integers, the emit_MUL_I4 macro will be 

called.  

  #ifndef emit_MUL_I4 

  #define emit_MUL_I4()                       \ 

  {                                           \ 

      callInfo.reset();                       \ 

      emit_tos_arg( 1, INTERNAL_CALL );       \ 

      emit_tos_arg( 2, INTERNAL_CALL );       \ 

      emit_callhelper_I4I4_I4(MUL_I4_helper); \ 

      emit_pushresult_I4();                   \ 

  } 

 

  #ifdef DECLARE_HELPERS 

  int HELPER_CALL MUL_I4_helper(int i, int j) { 

      return j * i; 

  } 

  #endif 

This code emits the processor specific instructions in to an instruction buffer to execute a multiplication 

operation. The   emit_tos_arg macro emits code to move the argument on the top of the IL stack in to a 

processor register if the call site allows it or on to the processors physical stack if it doesn‘t. This is 

required to set up the call site to the MUL_I4_helper method, which in turn, contains C++ code that 

multiplies the two integers and returns the result. A little further down, lies the equivalent compile methods 

for double and float types, as well as methods that handle overflow scenarios. All simply call a helper 

method that performs the operation in unmanaged C++ with the unmanaged type equivalent – in other 

words, it‘s simply relying on the C++ compiler to provide an efficient implementation of the operation.  
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Of course, this isn‘t the whole story. Asking the IDE for the symbols matching emit_MUL_I4 shows a 

redefine of the same macro in sscli20/clr/src/fjit/i386/x86fjit.h.  

  #undef  emit_MUL_I4 

  #define emit_MUL_I4()        

      enregisterTOS;       

      x86_pop(X86_ECX);        

      x86_uarith(x86OpIMul, x86Big, X86_ECX);  

      inRegTOS = true       

This macro calls out to quite a few x86 processor specific macros whose job it is to manipulate the true 

processor stack: place arguments in x86 registers, and emit processor specific instructions to perform the 

operation. The result is likely very similar to the code that would be emitted by the C++ compiler by 

compiling the MUL_I4_helper macro, but here we‘re given a chance to be extra efficient if the 

implementation requires it. For the case of our ―expon‖ example, this extra efficiency isn‘t really necessary: 

the C++ compilers emitted code for an exponent helper function should be sufficient.  

Walking through the ―mul‖ code has shown that more setup will be required before the ―expon‖ opcode can 

be brought to life, but the basic approach outlined above has been shown to at least gets us bootstrapped. 

We can let the compiler, runtime errors, and other problems reveal what we‘ve not thought about as we 

experiment.  

With that, let‘s get going. 

Step 0: Preparation 

Before we get going too far with this, it should be ridiculously obvious that some kind of testbed case is 

necessary, and since the C# compiler hasn‘t a clue about this new opcode, the testbed is going to have to 

come from someplace else. The easiest way to do this is to take the above C# code that produced ―mul‖, 

change the instruction to read ―expon‖, and save it. Naturally, the IL assembler (ilasm) has no idea about 

this instruction, either, but this will be corrected soon. 

 

  Example B-4 Exponentiation operation on two floats 7.0^2.0 (expon_r8.il) 

 

  .assembly extern mscorlib {} 

  .assembly expdemo {} 

  .method static void main() { 

    .entrypoint 

    ldc.r8 2.0 

    ldc.r8 7.0 

    expon 

    call void [mscorlib]System.Console::WriteLine(float64) 

    ret 

  }  

We push the exponent (2.0) on the stack first, and the base (7.0) second before calling the ―expon‖ IL 

opcode.  

Since we‘d like the example to be a bit more rounded and useful, we may as well add another test case 

while we‘re at it, this time using i4 (int) values instead of r8 (double) values:  

  Example B-5 Exponentiation operation on two integers 3^3 (expon_i4.il) 

 

  .assembly extern mscorlib {} 

  .assembly expi4demo {} 

  .method static void main() { 

    .entrypoint 

    ldc.i4 3 

    ldc.i4 3 

    expon 
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    call void [mscorlib]System.Console::WriteLine(int32) 

    ret 

  } 

This pair of programs will form the test cases: once these two assemble and run without error, we will have 

been successful.  

Step 1: Adding the opcode 

 To make the test cases work successfully, the metadata reader/writer needs to know about the ―expon‖ 

opcode, so that when the runtime slurps up the IL, it won‘t burp and error out when it sees the ―expon‖ IL 

instruction.  

Opcodes are structurally defined in opcode_t, found in sscli20/clr/src/inc/OpEnum.h, after which a 

master table file called opcode.def is slurped in to bring definition to all the opcodes in the runtime. Thus, 

clearly the first step is to add the new ―expon‖ definition to this master table file:   

OPDEF(CEE_EXPON, "expon", PopR8+PopR8, PushR8, InlineNone, IPrimitive, 1,  0xFF, 

0xA6, NEXT)  

This defines both the C++ macro used to identify the instruction, the human readable form ―expon‖, along 

with the stack behavior for the instruction. We also define the metadata bits for the opcode: FF A6, which 

must be unique. The contents of the definition line are relatively intuitive, but readers are encouraged to 

rummage around in the opcode table for a while to see how other opcodes are defined, nonetheless. 

We also need to make sure that Reflection.Emit and DynamicMethod are able to generate the new 

IL opcode. Reflection.Emit uses a slightly different mechanism than the opcodes table, so in order to 

make it support ―expon‖ it‘s necessary to crack open the C# OpCodes class in the Reflection.Emit 

namespace and add it to sscli20/clr/src/bcl/system/reflection/emit/opcodes.cs: 

 public static readonly OpCode Expon = new OpCode("expon", 

StackBehaviour.Pop1_pop1, StackBehaviour.Push1, OperandType.InlineNone, 

OpCodeType.Primitive, 1, (byte)0xff, (byte)0xa6, FlowControl.Next, false,  -1);  

Step 2: Verifying the “expon” opcode 

The verifier ensures the structural integrity of loaded IL, to ensure that malicious, ill-formed or corrupt 

streams of IL won‘t compromise the execution engine. As of this moment, any use of the ―expon‖ opcode 

will result in a verification error, since the opcode ―FF A6‖ is not recognized by the verifier, so the next 

step is to either convince the verifier to look the other way when it sees this opcode, or teach the verifier 

how to verify ―expon‖ IL instructions. The latter is vastly preferred. 

Interestingly and perhaps counterintuitively, there are two places we need to poke in order to enable 

verification: the logic contained within the FJit::jitCompile method, and the metadata verifier that‘s 

defined by the interface IMetaDataValidate and implemented by sscli20/clr/src/vm/Validator.cpp. 

This is necessary because the SSCLI implementation sees verification and JIT compilation as highly related 

activities: each is cracking the IL stream into constituent atoms, the one to ensure that everything is 

―righteous‖, and the other to translate into x86. 

To add the verification rules to the metadata verifier, we touch another lookup table defined in 

sscli20/clr/src/vm/vertable.h, adding the following: 

VEROPCODE(CEE_EXPON,  "N=:-")  

The string literal defines the semantics for the verification. The rules for these symbols and their semantics 

can be found at the top of the vertable.h file, but all follow this basic schema:  

Usage: <pop stack> : <operand checks> <push stack> <branches> <!>  

For our example, we follow the same rules as the ―mul‖ opcode: ―N‖ defines that a number (any integer or 

real number) must be on the stack, along with ―=‖, which means another element of the same type must be 

on the stack as well. A moment‘s reflection suggests that ―NN:-‖ would also have worked, and perhaps 
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might make it more explicit, but consistency is a virtue, and since ―mul‖ uses this ―N=‖ approach, so will 

―expon‖. The ―-― notation tells the verifier to rewind the stack to undo the last pop – this is essentially the 

same as saying a ―N‖ element will be pushed back on to the stack after the operation.  

Thus, the string literal above tells the verifier the rules for ―expon‖: ―pop two number elements, and push a 

number element back on to the stack as the result‖. After modifying the metadata verifier, we should take a 

quick peek at the JIT compiler‘s intertwined verification code found in FJit::jitCompile. The good 

news is that verification is implicit in compilation: i.e. if the JIT compiler comes across the opcode, calls 

the opcode code generation method, and that opcode doesn‘t receive what it wants from the stack, it returns 

an error. No further modification is necessary to support verification. 

Step 3: Generating code 

As of right now, the IL stream will be loaded and verified, but nothing will happen: JIT compilation 

doesn‘t know what to do with it. To get the JITter to ―do the right thing‖ with the ―expon‖ opcode, the 

JIT‘s ‗uber‘ switch statement must be modified to recognize the new opcode and generate x86 for it, rather 

than ignoring it. Jumping right in to FJit::jitCompile, it‘s fairly simple to add the following to 

sscli20/clr/src/jit/Fjit.cpp: 

  while (!FinishedJitting) 

  { 

     // ... 

 

     switch (opcode) 

     { 

  // ... 

  case CEE_EXPON: 

   JitResult = compileCEE_EXPON(); 

   break; 

… and then to add the actual workhorse method (compileCEE_EXPON) itself: 

  FJitResult FJit::compileCEE_EXPON() 

  { 

    OpType result_exp; 

    BINARY_NUMERIC_RESULT(topOp(),topOp(1), CEE_EXPON, result_exp); 

    TYPE_SWITCH_ARITH(topOp(), emit_EXPON, ()); 

    POP_STACK(2); 

    pushOp(result_exp); 

    return FJIT_OK; 

  } 

… and of course, to modify the C++ header definition found in sscli20/clr/src/jit/Fjit.h 

 FJitResult compileCEE_EXPON(); 

The compile code is very similar to the ―mul‖ opcode (which, after all, is why we chose ―mul‖ as our 

research testbed back during the research phase): ―expon‖ pops two elements off the stack, then tells the 

TYPE_SWITCH_ARITH macro to call the relevant emit_EXPON_XX macro that we‘re about to define in 

sscli20/clr/src/jit/Fjitdef.h:  

  Example B-6 JIT Helpers to emit code for “expon” instruction (FJitdef.h) 

 

 #ifndef emit_EXPON_R8 

    #define emit_EXPON_R8()   \ 

      emit_callhelper_R8R8_R8(EXPON_R8_helper); \ 

      emit_pushresult_R8() 

 

    #ifdef DECLARE_HELPERS 

    double HELPER_CALL EXPON_R8_helper(double i, double j) { 

      double result = pow(i, j); 

      return result; 
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    } 

    #endif 

  #endif 

 

 

  #ifndef emit_EXPON_I4 

    #define emit_EXPON_I4()   \ 

      emit_callhelper_I4I4_I4(EXPON_I4_helper); \ 

      emit_pushresult_I4() 

 

    #ifdef DECLARE_HELPERS 

    int HELPER_CALL EXPON_I4_helper(int i, int j) { 

      int result = (int) pow(((double)i), ((double)j)); 

      return result; 

    } 

    #endif 

  #endif 

 

 

  #ifndef emit_EXPON_I8 

    #define emit_EXPON_I8()   \ 

      emit_callhelper_I8I8_I8(EXPON_I8_helper); \ 

      emit_pushresult_I8() 

 

    #ifdef DECLARE_HELPERS 

    __int64 HELPER_CALL EXPON_I8_helper(__int64 i, __int64 j) { 

      __int64 result = (__int64) pow(((double)i), ((double)j)); 

      return result; 

    } 

    #endif 

  #endif 

We defined three macros, one for each type of ―number‖ (remember the changes we made to the metadata 

verifier?) that we‘ve chosen to support: I4 (int32), I8 (double) and R8 (float). We could easily add more 

(short, unsigned int, etc) if we wanted to (yet another good exercise for the curious and/or experimental 

reader). Essentially, these ―emit‖ methods simply call their C++ helper method counterparts, which in turn 

leverage the C++ method ―pow‖, which performs an exponentiation operation on two numbers. We 

essentially let the C++ compiler do the native processor code emission for us, and leverage the result.  

Step 4: Test  

Let‘s see how our examples run:  

  C:\sscli20\demos>ilasm expon_r8.il 

 

  Microsoft (R) .NET Framework IL Assembler.  Version 2.0.50826.0 

  Copyright (c) Microsoft Corporation.  All rights reserved. 

  Assembling 'expon_r8.il'  to EXE --> 'expon_r8.exe' 

  Source file is ANSI 

 

  Assembled global method main 

  Creating PE file 

 

  Emitting classes: 

 

  Emitting fields and methods: 

  Global  Methods: 1; 

 

  Emitting events and properties: 

  Global 

  Writing PE file 

  Operation completed successfully   
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The result:  

  C:\sscli20\demos>clix expon_r8.exe 

  49 

And our 3^3 example using 32 bit integers? 

  C:\sscli20\demos>clix expon_i4.exe 

  27 

Okay great. What about a case that‘s invalid, like passing a float for the exponent, and an integer for the 

base?  

  Example B-7 IL code for an unverifiable case: i4^r8 (badcase.il) 

   

    .entrypoint 

    ldc.r8 3.2 

    ldc.i4 3 

    expon 

    call void [mscorlib]System.Console::WriteLine(int32) 

    ret   

ilasm.exe has no problem constructing the program, as verification is not performed on assembly. However, 

when we go to run the resulting executable under clix, we get an expected result:  

C:\sscli20\demos>clix badcase.exe 

VALIDATION FAILS: (topOp(1).enum_() == typeI4) || ( topOp(1).enum_() == typeI ) 

|| (topOp(1).enum_() == typeByRef && ( ((int)CEE_EXPON == (int)CEE_ADD) || ((int 

)CEE_EXPON == (int)CEE_SUB) )) 

At <Module>::main at e 

 

Unhandled Exception: System.InvalidProgramException: Common Language Runtime det 

ected an invalid program. 

   at main()    expon 

Great! Verification failed during JIT compilation - exactly what we‘d expect.  

Really? That’s it? 

We‘ve touched only a few files: opcode.def, opcodes.cs, vertable.h, FJit.h, FJit.cpp, and FJitdef.h. As a 

result, we‘re able to generate verifiable, safe code that performs an exponentiation operation and places the 

result back on the stack. 

Bear in mind, however, that the SSCLI‘s JIT implementation is a deliberately simplified engine, and that 

the JIT compiler that ships with production-quality environments (like the CLR or the Sun Hotspot Java 

Virtual Machine) is vastly more complicated, aggressively seeking out optimizations wherever and 

however it can. But the process of adding the opcode has served its intended purpose, that of giving us the 

chance to thread our way through one aspect of the SSCLI environment and see the various places that it 

touches during execution. 

Summary 

We‘ve learned two things: one, how to use existing source in the source base in order to plan an approach 

for an experiment, and two, that even something as perceptibly hard as adding a new opcode to the runtime, 

can actually be pretty easy.  

Sure, we left a bunch of stuff on the cutting room floor—as noted before, the C# and JScript.NET 

compilers know nothing about the new opcode, nor do we support implicit type conversions, nor do we 

support any form of optimized code emitted from the x86 JIT—but the original goal, that of learning more 

about the CLI and introducing an arguably genuinely useful feature to the CLI, pretty clearly was met. 

What‘s more, the missing pieces are excellent candidates for further experimentation.  
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Hopefully, Peter‘s wonderful example inspires you to actively plough in to the runtime‘s internals and add, 

modify, tinker and/or explore – it‘s just too much fun not to. 
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